CHAPTER 4

PRACTICE SET

Questions

Q4-1. The three different techniques described in this chapter are line coding, block coding, and scrambling.

Q4-3. The data rate defines the number of data elements (bits) sent in 1 s . The unit is bits per second (bps). The signal rate is the number of signal elements sent in 1 s . The unit is the baud.

Q4-5. When the voltage level in a digital signal is constant for a while, the spectrum creates very low frequencies, called DC components, that present problems for a system that cannot pass low frequencies.

Q4-7. In this chapter, we introduced unipolar, polar, bipolar, multilevel, and multitransition coding.

Q4-9. Scrambling, as discussed in this chapter, is a technique that substitutes long zero-level pulses with a combination of other levels without increasing the number of bits.

Q4-11. In parallel transmission we send data several bits at a time. In serial transmission we send data one bit at a time.

Problems

P4-1. We use the formula $\mathrm{s}=\mathrm{c} \times \mathrm{N} \times(1 / \mathrm{r})$ for each case. We let $\mathrm{c}=1 / 2$.
a. $\mathrm{r}=1 \quad \rightarrow \quad \mathrm{~s}=(1 / 2) \times(1 \mathrm{Mbps}) \times 1 / 1=500 \mathrm{kbaud}$
b. $\mathrm{r}=1 / 2 \rightarrow \mathrm{~s}=(1 / 2) \times(1 \mathrm{Mbps}) \times 1 /(1 / 2)=1 \mathrm{Mbaud}$
c. $\mathrm{r}=2 \rightarrow \mathrm{~s}=(1 / 2) \times(1 \mathrm{Mbps}) \times 1 / 2=250 \mathrm{Kbaud}$
d. $\mathrm{r}=4 / 3 \rightarrow \mathrm{~s}=(1 / 2) \times(1 \mathrm{Mbps}) \times 1 /(4 / 3)=375 \mathrm{Kbaud}$

P4-3. See the following figure. Bandwidth is proportional to (3/8)N which is within the range in Table 4.1 ($\mathrm{B}=0$ to N) for the NRZ-L scheme.

P4-5. See the following figure. Bandwidth is proportional to (12.5 / 8)N which is within the range in Table $4.1(\mathrm{~B}=\mathrm{N}$ to $\mathrm{B}=2 \mathrm{~N})$ for the Manchester scheme.

Average Number of Changes $=(15+15+8+12) / 4=12.5$ for $\mathrm{N}=8$

P4-7. See the following figure. B is proportional to (5.25 / 16) N which is inside range in Table $4.1(\mathrm{~B}=0$ to $\mathrm{N} / 2$) for $2 \mathrm{~B} / 1 \mathrm{Q}$.

Average Number of Changes $=(0+7+7+7) / 4=5.25$ for $\mathrm{N}=16$

P4-9. The data stream can be found as
a. NRZ-I: 10011001.
b. Differential Manchester: 11000100.
c. AMI: 01110001.

P4-11. The data rate is 100 Kbps . For each case, we first need to calculate the value of f / N. We then use Figure 4.8 in the text to find P (energy per Hz). All calculations are approximations.
a. $f / \mathrm{N}=0 / 100 \quad=0 \quad \rightarrow \quad \mathrm{P}=0.0$
b. $f / \mathrm{N}=50 / 100 \quad=1 / 2 \quad \rightarrow \quad \mathrm{P}=0.3$
c. $f / \mathrm{N}=100 / 100=1 \quad \rightarrow \quad \mathrm{P}=0.4$
d. $f / \mathrm{N}=150 / 100=1.5 \quad \rightarrow \quad \mathrm{P}=0.0$

P4-13. In 5B/6B, we have $2^{5}=32$ data sequences and $2^{6}=64$ code sequences. The number of unused code sequences is $64-32=32$. In $3 \mathrm{~B} / 4 \mathrm{~B}$, we have $2^{3}=8$ data sequences and $2^{4}=16$ code sequences. The number of unused code sequences is $16-8=8$.

P4-15.

a. In a low-pass signal, the minimum frequency 0 . Therefore, we have

$$
f_{\max }=0+200=200 \mathrm{KHz} . \quad \rightarrow f_{\mathrm{s}}=2 \times 200,000=400,000 \text { samples } / \mathrm{s}
$$

b. In a bandpass signal, the maximum frequency is equal to the minimum frequency plus the bandwidth. Therefore, we have

$$
f_{\max }=100+200=300 \mathrm{KHz} . \rightarrow f_{\mathrm{s}}=2 \times 300,000=600,000 \text { samples } / \mathrm{s}
$$

P4-17. The maximum data rate can be calculated as

$$
\mathrm{N}_{\max }=2 \times \mathrm{B} \times n_{\mathrm{b}}=2 \times 200 \mathrm{KHz} \times \log _{2} 4=800 \mathrm{kbps}
$$

P4-19. We can calculate the data rate for each scheme:
a. NRZ $\quad \rightarrow \quad \mathrm{N}=2 \times \mathrm{B}=2 \times 1 \mathrm{MHz}=2 \mathrm{Mbps}$
b. Manchester $\rightarrow \quad \mathrm{N}=1 \times \mathrm{B}=1 \times 1 \mathrm{MHz}=1 \mathrm{Mbps}$
c. MLT-3 $\quad \rightarrow \quad \mathrm{N}=3 \times \mathrm{B}=3 \times 1 \mathrm{MHz}=3 \mathrm{Mbps}$
d. 2B1Q $\quad \rightarrow \quad \mathrm{N}=4 \times \mathrm{B}=4 \times 1 \mathrm{MHz}=4 \mathrm{Mbps}$

