CHAPTER 5

PRACTICE SET

Questions

Q5-1. Normally, analog transmission refers to the transmission of analog signals using a band-pass channel. Baseband digital or analog signals are converted to a complex analog signal with a range of frequencies suitable for the channel.

Q5-3. The process of changing one of the characteristics of an analog signal based on the information in digital data is called digital-to-analog conversion. It is also called modulation of a digital signal. The baseband digital signal representing the digital data modulates the carrier to create a broadband analog signal.

Q5-5. We can say that the most susceptible technique is ASK because the amplitude is more affected by noise than the phase or frequency.

Q5-7. The two components of a signal are called I and Q. The I component, called in-phase, is shown on the horizontal axis; the Q component, called quadrature, is shown on the vertical axis.

Q5-9.
a. AM changes the amplitude of the carrier
b. FM changes the frequency of the carrier
c. PM changes the phase of the carrier

Problems

P5-1. We use the formula $S=(1 / r) \times N$, but first we need to calculate the value of r for each case.
a. $\mathrm{r}=\log _{2} 2 \quad=1 \quad \rightarrow \quad \mathrm{~S}=(1 / 1) \times(2000 \mathrm{bps}) \quad=2000$ baud
b. $\mathrm{r}=\log _{2} 2 \quad=1 \quad \rightarrow \quad \mathrm{~S}=(1 / 1) \times(4000 \mathrm{bps}) \quad=4000 \mathrm{baud}$
c. $\mathrm{r}=\log _{2} 4 \quad=2 \rightarrow \mathrm{~S}=(1 / 2) \times(6000 \mathrm{bps}) \quad=3000$ baud
d. $\mathrm{r}=\log _{2} 64 \quad=6 \quad \rightarrow \quad \mathrm{~S}=(1 / 6) \times(36,000 \mathrm{bps}) \quad=6000$ baud

P5-3. We use the formula $r=\log _{2} \mathrm{~L}$ to calculate the value of r for each case.
a. $\log _{2} 4$
$=2$
b. $\log _{2} 8 \quad=3$
c. $\log _{2} 4=2$
d. $\log _{2} 128=7$

P5-5. See the following figure:

a. This is ASK. There are two peak amplitudes both with the same phase (0 degrees). The values of the peak amplitudes are $\mathrm{A}_{1}=2$ (the distance between the first dot and the origin) and $\mathrm{A}_{2}=3$ (the distance between the second dot and the origin).
b. This is BPSK, There is only one peak amplitude (3). The distance between each dot and the origin is 3 . However, we have two phases, 0 and 180 degrees.
c. This can be either QPSK (one amplitude, four phases) or 4-QAM (one amplitude and four phases). The amplitude is the distance between a point and the origin, which is $\left(2^{2}+2^{2}\right)^{1 / 2}=2.83$.
d. This is also BPSK. The peak amplitude is 2, but this time the phases are 90 and 270 degrees.

P5-7. We use the formula $\mathrm{B}=(1+\mathrm{d}) \times(1 / \mathrm{r}) \times \mathrm{N}$, but first we need to calculate the value of r for each case.
a. $r=1 \quad \rightarrow \quad \mathrm{~B}=(1+1) \times(1 / 1) \times(4000 \mathrm{bps}) \quad=8000 \mathrm{~Hz}$
b. $r=1 \rightarrow B=(1+1) \times(1 / 1) \times(4000 \mathrm{bps})+4 \mathrm{KHz} \quad=8000 \mathrm{~Hz}$
c. $r=2 \rightarrow B=(1+1) \times(1 / 2) \times(4000 \mathrm{bps}) \quad=2000 \mathrm{~Hz}$
d. $r=4 \quad \rightarrow \quad \mathrm{~B}=(1+1) \times(1 / 4) \times(4000 \mathrm{bps}) \quad=1000 \mathrm{~Hz}$

P5-9.
First, we calculate the bandwidth for each channel $=(1 \mathrm{MHz}) / 10=100 \mathrm{KHz}$. We then find the value of r for each channel:

$$
\mathrm{B}=(1+\mathrm{d}) \times(1 / \mathrm{r}) \times(\mathrm{N}) \rightarrow \mathrm{r}=\mathrm{N} / \mathrm{B} \quad \rightarrow \mathrm{r}=(1 \mathrm{Mbps} / 100 \mathrm{KHz})=10
$$

We can then calculate the number of levels: $L=2^{r}=2^{10}=1024$. This means that we need a 1024-QAM technique to achieve this data rate.

P5-11.
a. $\mathrm{B}_{\mathrm{AM}}=2 \times \mathrm{B}=2 \times 5 \quad=10 \mathrm{KHz}$
b. $\mathrm{B}_{\mathrm{FM}}=2 \times(1+\beta) \times \mathrm{B}=2 \times(1+5) \times 5=60 \mathrm{KHz}$
c. $B_{P M}=2 \times(1+\beta) \times B=2 \times(1+1) \times 5=20 \mathrm{KHz}$

