CHAPTER 5

PRACTICE SET

Questions

- **Q5-1.** Normally, *analog transmission* refers to the transmission of analog signals using a band-pass channel. Baseband digital or analog signals are converted to a complex analog signal with a range of frequencies suitable for the channel.
- **Q5-3.** The process of changing one of the characteristics of an analog signal based on the information in digital data is called *digital-to-analog conversion*. It is also called modulation of a digital signal. The baseband digital signal representing the digital data modulates the carrier to create a broadband analog signal.
- **Q5-5.** We can say that the most susceptible technique is *ASK* because the amplitude is more affected by noise than the phase or frequency.
- **Q5-7.** The two components of a signal are called *I* and *Q*. The I component, called in-phase, is shown on the horizontal axis; the Q component, called quadrature, is shown on the vertical axis.

Q5-9.

- a. AM changes the *amplitude* of the carrier
- **b.** FM changes the *frequency* of the carrier
- c. PM changes the *phase* of the carrier

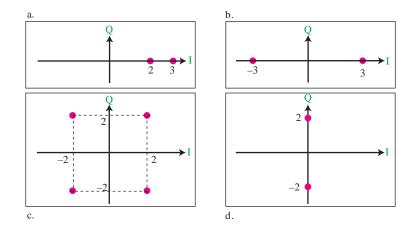
Problems

P5-1. We use the formula $S = (1/r) \times N$, but first we need to calculate the value of r for each case.

a. $r = \log_2 2$	= 1	\rightarrow	$S = (1/1) \times (2000 \text{ bps})$	= 2000 baud
b. $r = \log_2 2$	= 1	\rightarrow	$S = (1/1) \times (4000 \text{ bps})$	=4000 baud

c.	$r = \log_2 4$	= 2	\rightarrow	$S = (1/2) \times (6000 \text{ bps})$	= 3000 baud
d.	$r = \log_2 64$	= 6	\rightarrow	$S = (1/6) \times (36,000 \text{ bps})$	= 6000 baud

- **P5-3.** We use the formula $r = \log_2 L$ to calculate the value of r for each case.
 - **a.** $\log_2 4 = 2$ **b.** $\log_2 8 = 3$ **c.** $\log_2 4 = 2$ **d.** $\log_2 128 = 7$
- **P5-5.** See the following figure:



- **a.** This is ASK. There are two peak amplitudes both with the same phase (0 degrees). The values of the peak amplitudes are $A_1 = 2$ (the distance between the first dot and the origin) and $A_2 = 3$ (the distance between the second dot and the origin).
- **b.** This is BPSK, There is only one peak amplitude (3). The distance between each dot and the origin is 3. However, we have two phases, 0 and 180 degrees.
- **c.** This can be either QPSK (one amplitude, four phases) or 4-QAM (one amplitude and four phases). The amplitude is the distance between a point and the origin, which is $(2^2 + 2^2)^{1/2} = 2.83$.
- **d.** This is also BPSK. The peak amplitude is 2, but this time the phases are 90 and 270 degrees.

P5-7. We use the formula $B = (1 + d) \times (1/r) \times N$, but first we need to calculate the value of *r* for each case.

a. <i>r</i> = 1	\rightarrow	$B = (1 + 1) \times (1/1) \times (4000 \text{ bps})$	= 8000 Hz
b. <i>r</i> = 1	\rightarrow	$B = (1 + 1) \times (1/1) \times (4000 \text{ bps}) + 4 \text{ KHz}$	= 8000 Hz
c. <i>r</i> =2	\rightarrow	$B = (1 + 1) \times (1/2) \times (4000 \text{ bps})$	= 2000 Hz
d. $r = 4$	\rightarrow	$B = (1 + 1) \times (1/4) \times (4000 \text{ bps})$	= 1000 Hz

P5-9.

First, we calculate the bandwidth for each channel = (1 MHz) / 10 = 100 KHz. We then find the value of r for each channel:

 $B = (1 + d) \times (1/r) \times (N) \rightarrow r = N / B \rightarrow r = (1 \text{ Mbps}/100 \text{ KHz}) = 10$

We can then calculate the number of levels: $L = 2^r = 2^{10} = 1024$. This means that we need a 1024-QAM technique to achieve this data rate.

P5-11.

a. $B_{AM} =$	$2 \times B = 2 \times 5$	= 10 KHz
b. $B_{FM} =$	$2 \times (1 + \beta) \times B = 2 \times (1 + 5) \times 5$	= 60 KHz
$\mathbf{c.} \ \mathbf{B}_{\mathbf{PM}} =$	$2 \times (1 + \beta) \times B = 2 \times (1 + 1) \times 5$	= 20 KHz