CHAPTER 6

PRACTICE SET

Questions

Q6-1. Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link.

Q6-3. In multiplexing, the word link refers to the physical path. The word channel refers to the portion of a link that carries a transmission between a given pair of lines. One link can have many (n) channels.

Q6-5. To maximize the efficiency of their infrastructure, telephone companies have traditionally multiplexed analog signals from lower-bandwidth lines onto higher-bandwidth lines. The analog hierarchy uses voice channels (4 KHz), groups (48 KHz), supergroups (240 KHz), master groups (2.4 MHz), and jumbo groups (15.12 MHz).

Q6-7. WDM is common for multiplexing optical signals because it allows the multiplexing of signals with a very high frequency.

Q6-9. In synchronous TDM, each input has a reserved slot in the output frame. This can be inefficient if some input lines have no data to send. In statistical TDM, slots are dynamically allocated to improve bandwidth efficiency. Only when an input line has a slot's worth of data to send is it given a slot in the output frame.

Q6-11 The frequency hopping spread spectrum (FHSS) technique uses M different carrier frequencies that are modulated by the source signal. At one moment, the signal modulates one carrier frequency; at the next moment, the signal modulates another carrier frequency.

Problems

P6-1. To multiplex 10 voice channels, we need nine guard bands. The required bandwidth is then $B=(4 \mathrm{KHz}) \times 10+(500 \mathrm{~Hz}) \times 9=44.5 \mathrm{KHz}$

P6-3.
a. Group level: overhead $=48 \mathrm{KHz}-(12 \times 4 \mathrm{KHz})=0 \mathrm{~Hz}$.
b. Supergroup level: overhead $=240 \mathrm{KHz}-(5 \times 48 \mathrm{KHz})=0 \mathrm{~Hz}$.
c. Master group: overhead $=2520 \mathrm{KHz}-(10 \times 240 \mathrm{KHz})=120 \mathrm{KHz}$.
d. Jumbo Group: overhead $=16.984 \mathrm{MHz}-(6 \times 2.52 \mathrm{MHz})=1.864 \mathrm{MHz}$.

P6-5.
a. Each output frame carries 2 bits from each source plus one extra bit for synchronization. Frame size $=20 \times 2+1=41$ bits.
b. Each frame carries 2 bit from each source. Frame rate $=100,000 / 2=$ 50,000 frames/s.
c. Frame duration $=1 /($ frame rate $)=1 / 50,000=20 \mathrm{~ms}$.
d. Data rate $=(50,000 \mathrm{frames} / \mathrm{s}) \times(41 \mathrm{bits} /$ frame $)=2.05 \mathrm{Mbps}$. The output data rate here is slightly less than the one in Problem 4.
e. In each frame 40 bits out of 41 are useful. Efficiency $=40 / 41=97.5 \%$. Efficiency is better than the one in Problem 4.

P6-7. We combine six 200-kbps sources into three $400-\mathrm{kbps}$. Now we have seven 400-kbps channel.
a. Each output frame carries 1 bit from each of the seven $400-\mathrm{kbps}$ line. Frame size $=7 \times 1=7$ bits.
b. Each frame carries 1 bit from each $400-\mathrm{kbps}$ source. Frame rate $=400,000$ frames/s.
c. Frame duration $=1 /($ frame rate $)=1 / 400,000=2.5 \mathrm{~ms}$.
d. Output data rate $=(400,000$ frames $/ \mathrm{s}) \times(7$ bits/frame $)=2.8 \mathrm{Mbps}$. We can also calculate the output data rate as the sum of input data rate because there is no synchronizing bits. Output data rate $=6 \times 200+4 \times 400=2.8$ Mbps.

P6-9. We need to add extra bits to the second source to make both rates $=190 \mathrm{kbps}$. Now we have two sources, each of 190 Kbps .
a. The frame carries 1 bit from each source. Frame size $=1+1=2$ bits.
b. Each frame carries 1 bit from each 190 -kbps source. Frame rate $=190,000$ frames/s.
c. Frame duration $=1 /($ frame rate $)=1 / 190,000=5.3 \mathrm{~ms}$.
d. Output data rate $=(190,000$ frames $/ \mathrm{s}) \times(2 \mathrm{bits} /$ frame $)=380 \mathrm{kbps}$. Here the output bit rate is greater than the sum of the input rates (370 kbps) because of extra bits added to the second source.

P6-11. See the following figure.

P6-13. See the following figure.

P6-15. The number of hops $=100 \mathrm{KHz} / 4 \mathrm{KHz}=25$. So we need $\log _{2} 25=4.64 \approx 5$ bits

P6-17. Random numbers are $11,13,10,6,12,3,8,9$ as calculated below:

N_{1}	$=$	11
$\mathrm{~N}_{2}=(5+7 \times 11) \bmod 17-1$	$=$	13
$\mathrm{~N}_{3}=(5+7 \times 13) \bmod 17-1$	$=$	10
$\mathrm{~N}_{4}=(5+7 \times 10) \bmod 17-1$	$=$	6
$\mathrm{~N}_{5}=(5+7 \times 6) \bmod 17-1$	$=$	12
$\mathrm{~N}_{6}=(5+7 \times 12) \bmod 17-1$	$=$	3
$\mathrm{~N}_{7}=(5+7 \times 3) \bmod 17-1$	$=$	8
$\mathrm{~N}_{8}=(5+7 \times 8) \bmod 17-1$	$=$	9

