
C H A P T E R 2 4
PRACTICE SET

Questions

Q24-1. The protocol field of the datagram defines the transport-layer protocol that
should receive the transport-layer packet. If the value is 06, the protocol is
TCP; if the value is 17, the protocol is UDP.

Q24-3. UDP is preferred because each user datagram can be used for each chunk of
data.

Q24-5. The answer is positive. There is nothing in the UDP or TCP protocol that
requires the use of the IP protocol. A UDP user datagram or a TCP segment
can be encapsulated in an Ethernet frame. However, the protocol field of the
Ethernet needs to define which protocol is directly used in this case.

Q24-7. The SYN segment cannot carry data. The SYN + ACK segment cannot carry
data either, but this segment is actually the SYN segment with an additional
ACK bit. Although some people think that the FIN segment may not carry
data, it actually can. The client or the server can send the last bytes of data in a
segment and set the FIN bit.

Q24-9. We find the sequence number of the second segment in each case:

a. The sequence number of the second segment is 101 + 0 = 101.

b. The sequence number of the second segment is 101 + 10 = 111.

Q24-11. A segment that should be unambiguously acknowledged needs to consume a
sequence number; otherwise, the segment and the next one have the same
sequence number and it is not clear to which segment the acknowledgment
belongs.

a. A SYN segment needs to be acknowledged unambiguously because it
opens the connection.

b. A SYN + ACK is actually a combination of two segments; the first embed-
ded segment, which is a SYN, needs to be acknowledged.
1

2

c. A FIN segment needs to be acknowledged unambiguously because it sig-
nals closing of a connection.

d. An ACK segment that carries no data is never acknowledged (no ACK for
an ACK). It, therefore, does not consume a sequence number.

Q24-13. The window size field of the TCP header is only 16 bits. A number with 16
bits can define a decimal number between 0 and 65,535.

Q24-15. A SYN segment opens the connection in only one direction. For a communi-
cation using TCP, two SYN segments are needed, one for each direction.

Q24-17. A segment carrying an RST flag can close the communication in both direc-
tions immediately. The segment carrying an RST flag should not even be
acknowledged.

Q24-19. The server needs to immediately send a segment with the RST flag set to show
that the connection cannot be established. As we see in Chapter 19, if the net-
work layer knows about the availability, it can also send an ICMP packet.

Q24-21. A connection identifier in this case needs to include the identifier for two end
points. In this case, a unique identifier for each end is defined by a socket
address. The connection identifier should therefore be a pair of socket
addresses: the source socket address and the destination socket address.

Q24-23. In this case, Bob has made a passive open connection when he publicly
announced his telephone number or privately gave his telephone number to
Alice. Alice makes an active open when she dials Bob’s telephone number.

Q24-25. A TCP segment or a combination of two or more segments can perform one of
the following tasks:

a. Establishing a connection

b. Terminating a connection

c. Transferring data

d. Acknowledging the receipt of a segment

e. Advertising the window size (rwnd)

Q24-27. The acknowledgment identifies the sequence number of the next segment that
is expected to arrive.

Q24-29. The TCP server has received a segment whose sequence number is higher
than expected. The TCP server should store the out-of-order segment and send
an ACK with acknowledgment number 2001 to lead to the generation of a

3

duplicate acknowledgment and possibly the fast retransmission of the missing
segment (Rule 4 in ACK generation).

Q24-31. The server needs to store the bytes in the buffer and sends an ACK with
sequence number 2401. This reaction helps the client to purge the correspond-
ing segment from its queue (Rule 5 in ACK generation).

Q24-33. The client needs to store the new bytes, but delay the acknowledgment until
receiving the next segment or wait a period of 500 ms. This reduces the num-
ber of ACKs in the network. (Rule 2 in ACK generation).

Q24-35. Figures 24.22 and 24.23 define the FSMs for unidirectional communication.
The first rule of ACK generation is for bidirectional communication. It is the
interaction between the sender and receiver TCP at each end. The rule should
be implemented in the software.

Q24-37. The six rules we mentioned for ACK generation are related to flow and error
control and are applicable during the data transmission phase, not the connec-
tion establishment phase. In this case, if the client accepts the connection, it
needs to send an ACK segment immediately or a data segment that acknowl-
edges the SYN + ACK segment. Otherwise, it needs to send an RST segment
and abort the connection.

Q24-39.

Q24-41.

Q24-43. The SACK chunk with a cumTSN of 23 was delayed.

general header 12 bytes
DATA chunk #1 header 16 bytes
DATA chunk #1 22 bytes
padding 2 bytes
DATA chunk #2 header 16 bytes
DATA chunk #2 22 bytes
padding 16 bytes
Total 92 bytes

general header 12 bytes
COOKIE-ECHO chunk 204 bytes
DATA chunk 36 bytes
Total 252 bytes

4

Problems

P24-1.

a. The minimum size is 8 bytes (header without payload).

b. Although the theoretical maximum size is 65,535 bytes, since a user data-
gram needs to be encapsulated in a single IP datagram (UDP is a connec-
tionless protocol) and the maximum payload of an IP datagram is 65,515
bytes (see Chapter 19), we should say the maximum size of a UDP data-
gram is only 65,515 bytes.

c. The minimum size of the application-layer payload is zero bytes.

d. The maximum size of the application-layer payload is 65,507 bytes
(65,515 − 8).

P24-3.

a. The source port number is the first 16 bits or (0045)16 = 69.

b. The destination port number is the second 16 bits (DF00)16 = 57,088.
c. The total length of the datagram is the third 16 bits (0058)16 = 88 bytes.

d. The length of the data is 88 − 8 = 80 bytes.

e. The message is from a server with a small (well-known) port number to a
client with a large (ephemeral) port number.

f. The well-known port number 69 belongs to TFTP.

g. The sender has not calculated the checksum for this packet because the
value of the checksum is all zeros.

P24-5. The number (0111)2 in decimal is 7. The total length of the header is then (7 ×
4) = 28. The base header is 20 bytes. The segment has 28 − 20 = 8 bytes of
options.

P24-7. The following are eight out of 64 possible combinations that are normally
used:

000000 → A data segment with no acknowledgment
110000 → A data segment with urgent data and acknowledgment
010000 → An ACK segment with or without data
000010 → A SYN segment
011000 → A data segment with push data and acknowledgment
000001 → A FIN segment
010010 → An ACK + SYN segment
000100 → An RST segment

5

P24-9. Even with three letters exchanged between Alice and Bob, there is no guaran-
tee that both know where and when they should meet. However, more and
more communication raises the probability that both parties know about the
meeting. Experts believe that three communications between the two parties
are adequate assurance that they can come to the meeting. Let us go through
each event:

a. Alice cannot go to the meeting because she is not sure that Bob has
received the letter. The letter may have been lost and Bob knows nothing
about the meeting. This is similar to sending a SYN segment from the cli-
ent to the server. The client (Alice) sets the scenario.

b. Bob cannot go to the meeting because he does know if Alice has received
his confirmation. This is similar to the SYN + ACK. The server (Bob) con-
firms Alice’s request.

c. Alice cannot go to the meeting with total assurance that Bob will be there
because she does not know if Bob has received her letter and knows that
she knows that the meeting is confirmed. This is similar to the last ACK.
The client (Alice) confirms that she has received the confirmation from the
server (Bob).

P24-11.

a. The sequence number in the SYN segment is 2171. The SYN segment con-
sumes one sequence number; the next sequence number to be used is 2172.

b. The sequence number in the data segment is 2172 (which represents the
sequence number of the first byte). The bytes in the packets are numbered
2172 to 3171. Note that the client sends the data with the second packet (no
separate ACK segment).

a. The sequence number in the FIN segment is 3172. Note that the FIN seg-
ment does consume a sequence number, but it needs a sequence number to
be acknowledged.

P24-13. The data section is only 16 bytes. The TCP header is 20 bytes. The efficiency
is

(16) / (16 + 20) = 0.444 → 44.4%

6

P24-15. The following shows the three segments exchanged:

P24-17. The following figure shows the connection termination phase. We assume a
three-handshake connection termination because the server has no more data
to send.

Checksum

8059,100
14,534

785
5 0 0 0 0 1 00

SYN Segment

Time

Client Server

Time

SYN + ACK Segment

8059,100
14534

785
5 4000

Checksum
0 1 0 0 0 0

21,733
14,535

ACK Segment

59100
21,732

785
5 5000

Checksum
0 1 0 0 1 0

14,535

80

3

1

2

59,100

Checksum

8059,100
14,635
785

5 0 0 01 100

FIN + ACK Segment

Time

Client
Server

Time

FIN + ACK Segment

8059,100
14534

785
5

Checksum
0 1 0 0 0 0

22,934
14,636

ACK Segment

59100
22,933
785

5

0

0

0

Checksum
0 1 0 0 0

14,536

80

3

1

2

59,100

22,933

1

7

P24-19. The following figure shows the new diagram.

Note that the FIN-WAIT-2 state is not used in this case. Note also that there
are changes in the server side that are not shown in the text because this is
somewhat of an implementation issue. In this case, the server sends FIN +
ACK before going to the LAST-ACK state.

P24-21. Bob, the server, sends the response to Alice’s IP address; the destination IP
address is the source IP address in the request message. Since Alice has not
requested this response, the response is dropped and lost. Eve can receive the
response only if she can intercept the message.

P24-23. The probability of this mistake is very low because the initial sequence num-
ber (ISN) has a high probability of being unique. Assume Alice and Bob were
using ISNs x and y, respectively in the previous connection, but z and t in this
connection. The old ACK segment (third segment) has the acknowledgment
number (y + 1); the new ACK segment should have the acknowledgment (t +
1). Bob’s server immediately recognizes the problem and sends an RST seg-
ment to abort the connection. Alice then needs to start a new connection.

P24-25. The receiving TCP allocates a fixed-size buffer (the same size as the buffer
allocated by the sending site). The application program at the receiver site
pulls data from the buffer, which means there is no flow control from the
receiving TCP toward the application program. Data received from the send-
ing TCP are stored in the buffer until they are consumed by the application
program. The part of the buffer that is still empty is advertised as the value of
rwnd to the sending TCP (flow control). The following figure shows a simple
example how the buffer status will change. We have shown both linear and

FIN-WAIT-1FIN-WAIT-1

TIME-WAITTIME-WAIT

ESTABLISHEDESTABLISHED

SNY-SENTSNY-SENT

SYN-RCVDSYN-RCVD

ESTABLISHEDESTABLISHED

LAST-ACKLAST-ACK

CLOSE- WAITCLOSE- WAIT

 ACK / – FIN / –

 FIN + ACK / ACK Close / FIN + ACK

close / FIN

Active open / SYN
Passive open / _Time-out / – ACK / –

SYN / SYN + ACK

SYN + ACK / ACK

Client States Server States

CLOSEDCLOSED

LISTENLISTEN

8

circular representation of the buffer. The latter better shows the position of the
data read by the application.

P24-27. The following figure shows the time line for each segment. Note that the situ-
ation is improved from the previous situation. Both of Nagle’s rules are
applied. Some segments are sent with the maximum segment size; others in

0% full

Red arrow shows
where the next byte
is read from the buffer

Fl
ow

 c
on

tr
ol

 fe
ed

ba
ck

25% full

50% full

100% full

(rwnd = buffer size)

(rwnd = buffer size)

(rwnd = 75% buffer size)

(rwnd = 75% buffer size)

(rwnd = 50% buffer size)

(rwnd = 50% buffer size)

(rwnd = 0)

Note:

50% empty

75% empty

100% empty

9

response to an ACK. The improvement is because the receiver delays
acknowledgments.

P24-29. We explain each case separately:

a. When a received segment has a sequence number greater than Rn, it means
that the bytes are received out of order. TCP stores the bytes in the receive
window, but it sends an ACK with the acknowledgment number equal to
Rn to help fast retransmission of the missing bytes. This is a duplicate ACK
because the receiver has already sent an ACK with the acknowledgment
number equal to Rn. The issuing of duplicate ACKs is only a clue to the
sender that some packets have arrived out of order. If three duplicate ACKs
arrive, the sender deploys the fast retransmission and resends the packet
with the sequence number defined by the acknowledgment.

b. When a duplicate segment arrives, the receiver TCP drops the packet and
sends an ACK that defines the segment expected. This is also a duplicate
ACK that gives a clue to the sender that its timer may have timed out pre-
maturely. One might ask how the receiver could know whether the dupli-

Time

Client Server

Bytes 01-10t: 10 ms

t: 20 ms

t: 30 ms

t: 40 ms

t: 50 ms

t: 60 ms

t: 70 ms

t: 80 ms

t: 90 ms

t: 100 ms

t: 20 ms

t: 50 ms

t: 70 ms

t: 100 ms

t: 110 ms

60 ms

Bytes 01-10

Bytes 01-10

Bytes 11-40 (MSS)

Bytes 41-60

Bytes 61-90 (MSS)

Bytes 91-100

ACK

Bytes 11-20

Bytes 11-40

Bytes 21-30

Bytes 31-40

Bytes 41-50

Bytes 51-60

Bytes 61-70

Bytes 71-80

Bytes 81-90

Bytes 91-100

Time TimeTime

ACK

ACK

Bytes 41-60

Bytes 61-90

Bytes 91-100

TCP TCPProcess Process

1

2

3

4

5

10
cate ACK is for an out-of-order segment or a duplicate segment. To trigger
a fast retransmission, the sender needs to receive three duplicate ACKs
(four ACKs with the same sequence number); a duplicate ACK per se does
not trigger a fast retransmission.

P24-31. The data from the client process, 5400 bytes, can be divided into six chunks
(five chunks of 980 bytes and one chunk of 500 bytes). After adding a header
of 20 bytes, we have six segments (five segments of 1000 bytes and one seg-
ment of 520 bytes). The segments and the ACKs are created according to the
rule we mentioned in the text. The size of the congestion window is increased
by one MSS for each ACK received. If we follow the growth of the cwnd, we
can see the pattern is exponential, but the base is decreased from 2 to 1.5 (20 =
1, 21 = 2, 1.752 ≈ 3, 1.603 ≈ 4, and 1.54 ≈ 5).

P24-33. The following shows the events and the values. The units of windows and
ssthresh are MSS. We use abbreviations for states such as slow start (SS), con-
gestion avoidance (CA), and fast recovery (FR). The leftmost state shows the
current state, the rightmost one shows the new state.

State Event ssthresh cwnd State
SS ACK arrived 8 5 + 1 = 6 SS
SS ACK arrived 8 6 + 1 = 7 SS
SS ACK arrived 8 7 + 1 = 8 CA

cwnd = 5000 bytes

cwnd = 4000 bytes

cwnd = 3000 bytes

cwnd = 2000 bytes

cwnd = 1000 bytes

500
ms

500
ms

Client Server

Time Time

Segment
ACK

11
P24-35. According to Karn’s algorithm, we need to ignore the RTT for segment 1 in
our calculation because it was timed-out and resent. Using only segment 2, the
calculation is shown below:

The following shows the calculation:

P24-37. It sends an INIT_ACK chunk.

P24-39.

a. 0432 in hex is 1074 in decimal. The source port is 1074.

b. 0017 in hex is 23 in decimal. The destination port is 23.

c. The verification tag is 1.

d. The checksum is 0.

P24-41. See the following figure. Chunks 18 and 19 are sent but not acknowledged
(200 bytes of data). 18 DATA chunks (1800 bytes) can be sent, but only 4
chunks are in the queue. Chunk 20 is the next chunk to be sent.

P24-43. See the following figure. We have filled the fields with available information.
Each packet has the general header and the appropriate control chunk. Note

CA 3 dup-ACKs 4 4 + 3 = 7 FR
FR dup-ACK 4 7 + 1/7 ≈ 7.14 FR
FR dup-ACK 4 7.14 + 1/(7.14) = 7.38 FR
FR ACK arrived 4 4 CA
CA ACK arrived 4 4 + 1/4 = 4.25 CA
CA Time-out 2.12 1 SS

RTTM = 23 − 6 = 17 ms
RTTS = (1 − 0.2) RTTS + 0.2 × RTTM = 14.6 ms

RTTD = (1 − β) × RTTD + β × |RTTS − RTTM|
RTTD = (1 − 0.25) × 7 + 0.25 × |17 − 20| = 6 ms

Sending Queue
rwnd
inTransit

curTSN

outstanding chunks

To send

From process

181920212223

20
2000
200

12
that only the SHUTDOWN chunk has the cumTSN ACK, which acknowl-
edges the receipt of the last packet.

Client

Time Time

Server

1

2

3

SHUTDOWN COMPLETE

SHUTDOWN

SHUTDOWN ACK

2000

7 0 8
570

806

8 0 4

2000

 14 0 4T

	PRACTICE SET
	Questions
	Q24 -1. The protocol field of the datagram defines the transport-layer protocol that should receive the transport-layer packet. If the value is 06, the protocol is TCP; if the value is 17, the protocol is UDP.
	Q24-3. UDP is preferred because each user datagram can be used for each chunk of data.
	Q24-5. The answer is positive. There is nothing in the UDP or TCP protocol that requires the use of the IP protocol. A UDP user datagram or a TCP segment can be encapsulated in an Ethernet frame. However, the protocol field of the Ethernet needs to d...
	Q24-7. The SYN segment cannot carry data. The SYN + ACK segment cannot carry data either, but this segment is actually the SYN segment with an additional ACK bit. Although some people think that the FIN segment may not carry data, it actually can. Th...
	Q24-9. We find the sequence number of the second segment in each case:

	a. The sequence number of the second segment is 101 + 0 = 101.
	b. The sequence number of the second segment is 101 + 10 = 111.
	Q24-11. A segment that should be unambiguously acknowledged needs to consume a sequence number; otherwise, the segment and the next one have the same sequence number and it is not clear to which segment the acknowledgment belongs.

	a. A SYN segment needs to be acknowledged unambiguously because it opens the connection.
	b. A SYN + ACK is actually a combination of two segments; the first embedded segment, which is a SYN, needs to be acknowledged.
	c. A FIN segment needs to be acknowledged unambiguously because it signals closing of a connection.
	d. An ACK segment that carries no data is never acknowledged (no ACK for an ACK). It, therefore, does not consume a sequence number.
	Q24-13. The window size field of the TCP header is only 16 bits. A number with 16 bits can define a decimal number between 0 and 65,535.
	Q24-15. A SYN segment opens the connection in only one direction. For a communication using TCP, two SYN segments are needed, one for each direction.
	Q24-17. A segment carrying an RST flag can close the communication in both directions immediately. The segment carrying an RST flag should not even be acknowledged.
	Q24-19. The server needs to immediately send a segment with the RST flag set to show that the connection cannot be established. As we see in Chapter 19, if the network layer knows about the availability, it can also send an ICMP packet.
	Q24-21. A connection identifier in this case needs to include the identifier for two end points. In this case, a unique identifier for each end is defined by a socket address. The connection identifier should therefore be a pair of socket addresses: ...
	Q24-23. In this case, Bob has made a passive open connection when he publicly announced his telephone number or privately gave his telephone number to Alice. Alice makes an active open when she dials Bob’s telephone number.
	Q24-25. A TCP segment or a combination of two or more segments can perform one of the following tasks:

	a. Establishing a connection
	b. Terminating a connection
	c. Transferring data
	d. Acknowledging the receipt of a segment
	e. Advertising the window size (rwnd)
	Q24-27. The acknowledgment identifies the sequence number of the next segment that is expected to arrive.
	Q24-29. The TCP server has received a segment whose sequence number is higher than expected. The TCP server should store the out-of-order segment and send an ACK with acknowledgment number 2001 to lead to the generation of a duplicate acknowledgment ...
	Q24-31. The server needs to store the bytes in the buffer and sends an ACK with sequence number 2401. This reaction helps the client to purge the corresponding segment from its queue (Rule 5 in ACK generation).
	Q24-33. The client needs to store the new bytes, but delay the acknowledgment until receiving the next segment or wait a period of 500 ms. This reduces the number of ACKs in the network. (Rule 2 in ACK generation).
	Q24-35. Figures 24.22 and 24.23 define the FSMs for unidirectional communication. The first rule of ACK generation is for bidirectional communication. It is the interaction between the sender and receiver TCP at each end. The rule should be implement...
	Q24-37. The six rules we mentioned for ACK generation are related to flow and error control and are applicable during the data transmission phase, not the connection establishment phase. In this case, if the client accepts the connection, it needs to...
	Q24-39.

	general header
	12 bytes
	DATA chunk #1 header
	16 bytes
	DATA chunk #1
	22 bytes
	padding
	2 bytes
	DATA chunk #2 header
	16 bytes
	DATA chunk #2
	22 bytes
	padding
	16 bytes
	Total
	92 bytes
	Q24-41.

	general header
	12 bytes
	COOKIE-ECHO chunk
	204 bytes
	DATA chunk
	36 bytes
	Total
	252 bytes
	Q24-43. The SACK chunk with a cumTSN of 23 was delayed.
	Problems
	P24 -1.
	a. The minimum size is 8 bytes (header without payload).
	b. Although the theoretical maximum size is 65,535 bytes, since a user datagram needs to be encapsulated in a single IP datagram (UDP is a connectionless protocol) and the maximum payload of an IP datagram is 65,515 bytes (see Chapter 19), we should ...
	c. The minimum size of the application-layer payload is zero bytes.
	d. The maximum size of the application-layer payload is 65,507 bytes (65,515 - 8).

	P24-3.
	a. The source port number is the first 16 bits or (0045)16 = 69.
	b. The destination port number is the second 16 bits (DF00)16 = 57,088.
	c. The total length of the datagram is the third 16 bits (0058)16 = 88 bytes.
	d. The length of the data is 88 - 8 = 80 bytes.
	e. The message is from a server with a small (well-known) port number to a client with a large (ephemeral) port number.
	f. The well-known port number 69 belongs to TFTP.
	g. The sender has not calculated the checksum for this packet because the value of the checksum is all zeros.

	P24-5. The number (0111)2 in decimal is 7. The total length of the header is then (7 ´ 4) = 28. The base header is 20 bytes. The segment has 28 - 20 = 8 bytes of options.
	P24-7. The following are eight out of 64 possible combinations that are normally used:
	000000
	®
	A data segment with no acknowledgment
	110000
	®
	A data segment with urgent data and acknowledgment
	010000
	®
	An ACK segment with or without data
	000010
	®
	A SYN segment
	011000
	®
	A data segment with push data and acknowledgment
	000001
	®
	A FIN segment
	010010
	®
	An ACK + SYN segment
	000100
	®
	An RST segment

	P24-9. Even with three letters exchanged between Alice and Bob, there is no guarantee that both know where and when they should meet. However, more and more communication raises the probability that both parties know about the meeting. Experts believ...
	a. Alice cannot go to the meeting because she is not sure that Bob has received the letter. The letter may have been lost and Bob knows nothing about the meeting. This is similar to sending a SYN segment from the client to the server. The client (Ali...
	b. Bob cannot go to the meeting because he does know if Alice has received his confirmation. This is similar to the SYN + ACK. The server (Bob) confirms Alice’s request.
	c. Alice cannot go to the meeting with total assurance that Bob will be there because she does not know if Bob has received her letter and knows that she knows that the meeting is confirmed. This is similar to the last ACK. The client (Alice) confirm...

	P24-11.
	a. The sequence number in the SYN segment is 2171. The SYN segment consumes one sequence number; the next sequence number to be used is 2172.
	b. The sequence number in the data segment is 2172 (which represents the sequence number of the first byte). The bytes in the packets are numbered 2172 to 3171. Note that the client sends the data with the second packet (no separate ACK segment).
	a. The sequence number in the FIN segment is 3172. Note that the FIN segment does consume a sequence number, but it needs a sequence number to be acknowledged.

	P24-13. The data section is only 16 bytes. The TCP header is 20 bytes. The efficiency is
	(16) / (16 + 20) = 0.444 ® 44.4%

	P24-15. The following shows the three segments exchanged:
	P24-17. The following figure shows the connection termination phase. We assume a three-handshake connection termination because the server has no more data to send.
	P24-19. The following figure shows the new diagram.
	P24-21. Bob, the server, sends the response to Alice’s IP address; the destination IP address is the source IP address in the request message. Since Alice has not requested this response, the response is dropped and lost. Eve can receive the respon...
	P24-23. The probability of this mistake is very low because the initial sequence number (ISN) has a high probability of being unique. Assume Alice and Bob were using ISNs x and y, respectively in the previous connection, but z and t in this connectio...
	P24-25. The receiving TCP allocates a fixed-size buffer (the same size as the buffer allocated by the sending site). The application program at the receiver site pulls data from the buffer, which means there is no flow control from the receiving TCP ...
	P24-27. The following figure shows the time line for each segment. Note that the situation is improved from the previous situation. Both of Nagle’s rules are applied. Some segments are sent with the maximum segment size; others in response to an AC...
	P24-29. We explain each case separately:
	a. When a received segment has a sequence number greater than Rn, it means that the bytes are received out of order. TCP stores the bytes in the receive window, but it sends an ACK with the acknowledgment number equal to Rn to help fast retransmissio...
	b. When a duplicate segment arrives, the receiver TCP drops the packet and sends an ACK that defines the segment expected. This is also a duplicate ACK that gives a clue to the sender that its timer may have timed out prematurely. One might ask how t...

	P24-31. The data from the client process, 5400 bytes, can be divided into six chunks (five chunks of 980 bytes and one chunk of 500 bytes). After adding a header of 20 bytes, we have six segments (five segments of 1000 bytes and one segment of 520 by...
	P24-33. The following shows the events and the values. The units of windows and ssthresh are MSS. We use abbreviations for states such as slow start (SS), congestion avoidance (CA), and fast recovery (FR). The leftmost state shows the current state, ...
	State
	Event
	ssthresh
	cwnd
	State
	SS
	ACK arrived
	8
	5 + 1 = 6
	SS
	SS
	ACK arrived
	8
	6 + 1 = 7
	SS
	SS
	ACK arrived
	8
	7 + 1 = 8
	CA
	CA
	3 dup-ACKs
	4
	4 + 3 = 7
	FR
	FR
	dup-ACK
	4
	7 + 1/7 » 7.14
	FR
	FR
	dup-ACK
	4
	7.14 + 1/(7.14) = 7.38
	FR
	FR
	ACK arrived
	4
	4
	CA
	CA
	ACK arrived
	4
	4 + 1/4 = 4.25
	CA
	CA
	Time-out
	2.12
	1
	SS

	P24-35. According to Karn’s algorithm, we need to ignore the RTT for segment 1 in our calculation because it was timed-out and resent. Using only segment 2, the calculation is shown below:
	RTTM = 23 - 6 = 17 ms
	RTTS = (1 - 0.2) RTTS + 0.2 ´ RTTM = 14.6 ms
	RTTD = (1 - b) ´ RTTD + b ´ |RTTS - RTTM|
	RTTD = (1 - 0.25) ´ 7 + 0.25 ´ |17 - 20| = 6 ms

	P24-37. It sends an INIT_ACK chunk.
	P24-39.
	a. 0432 in hex is 1074 in decimal. The source port is 1074.
	b. 0017 in hex is 23 in decimal. The destination port is 23.
	c. The verification tag is 1.
	d. The checksum is 0.

	P24-41. See the following figure. Chunks 18 and 19 are sent but not acknowledged (200 bytes of data). 18 DATA chunks (1800 bytes) can be sent, but only 4 chunks are in the queue. Chunk 20 is the next chunk to be sent.
	P24-43. See the following figure. We have filled the fields with available information. Each packet has the general header and the appropriate control chunk. Note that only the SHUTDOWN chunk has the cumTSN ACK, which acknowledges the receipt of the ...

