CHAPTER 31

PRACTICE SET

Questions

Q31-1. Only snooping is a threat to confidentiality. Masquerading and repudiation are threats to integrity.

Q31-3. Only denial of service is a threat to availability. Repudiation and modification are threats to integrity.

Q31-5. This is an example of steganography because the letter is covered by the seal.
Q31-7. This is an example of steganography because the message is hidden inside the essay.

Q31-9. This is an example of symmetric-key cryptography because the same key is used both for encryption and decryption. In asymmetric-key cryptography, a public key should be used for encryption and a private key for decryption.

Q31-11. This is a monoalphabetic substitution cipher because changing depends on what the character is, not on the position of the character.

Q31-13. The key in this case needs to be between 0 and 25 (although there is no cipher if the key is 0). on average Eve needs to test $26 / 2=13$ keys to break the code.

Q31-15. For the additive cipher, we use only one key. For the monoalphabetic cipher, we use 26 keys. For the autokey cipher, we use 1000 keys.

Q31-17. This is a straight permutation because the number of inputs and the number of outputs are the same.

Q31-19.
a. The inverse of a swap operation is another swap operation. In other words, the swap operation is self-invertible.
b. The inverse of a shift right operation is a shift left operation using the same number of bits to be shifted.
c. The inverse of a combine operation is a split operation.

Q31-21. Half of the input in DES is only 32 bits. The key is applied only to this 32-bit section. The two inputs to an XOR should be of the same size. Since the key is 48 bits, we need to expand the 32 -bit section to a 48 -bit section using an expansion P-box. Making the key for each round smaller jeopardizes the security of DES.

Q31-23. The one-time pad is an ideal, but a theoretical, cipher; it cannot be implemented easily because it requires that the sender and receiver have a secure channel to exchange the key stream. However, it is controversial; if there is a secure channel, the main message, in plaintext, can be sent through that channel.

Q31-25. To be safe, the keys used in asymmetric-key cryptography should be very large. This makes the calculation very long if the message is also long. Compare the short key of DES (56 bits) with the long key of RSA (500 to 1000 bits).

Q31-27. If $e=1$, there is no encryption: $\mathrm{C}=\mathrm{P}^{1}=\mathrm{P}$. If Eve intercepts the ciphertext, she has the plaintext.

Q31-29. Message authentication and entity authentication both authenticate the sender for the receiver. As their names indicate, however, message authentication authenticates the sender for a particular message, while entity authentication authenticates the sender for the entire session in which several messages can be sent. If the sender is sending only a single message, message authentication has the same effect as entity authentication; if a sender is sending several messages, one entity authentication authenticates the sender for all messages.

Q31-31
a. The first choice is actually very inefficient and not practical because Alice needs to have a shared secret key between herself and each of the recipients. She also needs to create fifty separate MACs, one for each secret key.
b. Alice can use digital signature and sign only one message with her own private key. She then sends a copy of the message to each recipient. Each recipient needs to use Alice's public key to verify the message.

Q31-33. Alice needs to use the public key of each recipient, which different for each of them. This means Alice needs to use 100 public keys.

Q31-35. A KDC is designed to solve the problem of secret-key distribution.

Problems

P31-1.
a. This is snooping (an attack to confidentiality). Although the contents of the test are not confidential on the day of the test, they are confidential before the test day.
b. This is modification (an attack to integrity). The value of the check is changed (from \$10 to \$100).
c. This is denial of service (an attack to availability). Sending so many emails may crash the server and the service may be interrupted.

P31-3.
a. The ciphertext is NBCMCMUHYRYLWCMY as shown below:

Plaintext			Encryption	Ciphertext		
t	\rightarrow	19	$(19+20) \bmod 26=13$	13	\rightarrow	N
h	\rightarrow	07	$(07+20) \bmod 26=01$	01	\rightarrow	B
i	\rightarrow	08	$(08+20) \bmod 26=02$	02	\rightarrow	C
s	\rightarrow	18	$(18+20) \bmod 26=12$	12	\rightarrow	M
i	\rightarrow	08	$(08+20) \bmod 26=02$	02	\rightarrow	C
s	\rightarrow	18	$(18+20) \bmod 26=12$	12	\rightarrow	M
a	\rightarrow	00	$(00+20) \bmod 26=20$	20	\rightarrow	U
n	\rightarrow	13	$(13+20) \bmod 26=07$	07	\rightarrow	H
e	\rightarrow	04	$(04+20) \bmod 26=24$	24	\rightarrow	Y
x	\rightarrow	23	$(23+20) \bmod 26=17$	17	\rightarrow	R
e	\rightarrow	04	$(04+20) \bmod 26=24$	24	\rightarrow	Y
r	\rightarrow	17	$(17+20) \bmod 26=11$	11	\rightarrow	L
c	\rightarrow	02	$(02+20) \bmod 26=22$	22	\rightarrow	W
i	\rightarrow	08	$(08+20) \bmod 26=02$	02	\rightarrow	C
s	\rightarrow	18	$(18+20) \bmod 26=12$	12	\rightarrow	M
e	\rightarrow	04	$(04+20) \bmod 26=24$	24	\rightarrow	Y

b. We can retrieve the plaintext by subtracting 20 from each ciphertext character using modulo 26 arithmetic as shown below:

Ciphertext

N	\rightarrow	13
B	\rightarrow	01
C	\rightarrow	02
M	\rightarrow	12
C	\rightarrow	02
M	\rightarrow	12
U	\rightarrow	20
H	\rightarrow	07
Y	\rightarrow	24
R	\rightarrow	17
Y	\rightarrow	24
L	\rightarrow	11
W	\rightarrow	22
C	\rightarrow	02
M	\rightarrow	12
Y	\rightarrow	24

Decryption

P31-5. The plaintext and ciphertext are shown below, ignoring the space:
Plaintext
Ciphertext
an exercise $\quad(5,5),(3,3),(1,5),(3,1),(1,5),(2,2),(3,5),(4,4),(3,2),(1,5)$

P31-7. We apply the key $=1,2,3,4,5,6$, and 7 to find the plaintext.

Ciphertext	Key	Plaintext UVACLYZLJBL
UVACLYZLJBL	1	tuzbkxeykiaxy
UVACLYZLJBL	2	styajwdxjhzwj
UVACLYZLJBL	3	rsxzivcwigyvi
UVACLYZLJBL	4	qrwyhubvhfxuh
UVACLYZLJBL	5	pqvxgtaugewtg
UVACLYZLJBL	6	opuwfsztfdvsf
notverysecure		

P31-9. The content of each element represents the input column number; the index represents the output column number.
a. The encryption key can be represented as shown below.

3	1	4	5	2
1	2	3	4	5

b. The decryption key can be represented as shown below. Note that the indexes are sorted.

2	5	1	3	4
1	2	3	4	5

c. We can first exchange the content and index and then sort the array according to the index. For example, to get the decryption key from the encryption key in part a, we can first swap the contents and the index and then sort it according to the index.

1: Swap				
1	2	3	4	5
3	1	4	5	2

2: Sort				
2	5	1	3	4
1	2	3	4	5

P31-11.
a. Swap of (10011011) is (10111001).
b. Swap of (10111001) is (10011011).
c. The original word in part a and the result of part b are the same, which shows that swapping is a self-invertible operation.

P31-13. As we said about the keys for the transposition cipher, permutation boxes ($\mathrm{P}-$ boxes) can be represented by a table in which the contents of each element shows the input number and the index show the output number.
a. A straight permutation box of $n \times n$ size is a table of n entries in which each entry is unique. A compression permutation of $n \times m$ size is a table of m entries in which the blocked inputs are not shown. An expansion permutation of $n \times m$ size is a table of n entries in which some of the entries are repeated. The following shows the three tables for permutation boxes. We have not shown the indexes.

b. The compression and expansion boxes have no inversions because the number of inputs and outputs is not equal. Only the straight boxes can be inverted. We first need to swap the contents and the indexes and then sort
the result according to the index. The following shows the inversion of a straight permutation box used in the decryption.

1: Original					\rightarrow	2. Swap						3: Reorder				
2	5	4	1	3		1	2	3	4	5	\rightarrow	4	1	5	3	2
1	2	3	4	5		2	5	4	1	3		1	2	3	4	5

P31-15. le. In other words, we need to show that the component NI is eliminated in the decryption process.

$$
\begin{array}{ll}
\text { Encryption: } & \mathrm{C} 1=\mathrm{P} 1 \oplus \mathrm{NI} \\
\text { Decryption: } & \mathrm{P} 2=\mathrm{C} 2 \oplus \mathrm{NI}=\mathrm{C} 1 \oplus \mathrm{NI}=(\mathrm{P} 1 \oplus \mathrm{NI}) \oplus \mathrm{NI}=\mathrm{P} 1 \oplus(\mathrm{NI} \oplus \mathrm{NI}) \\
& \mathrm{P} 2=\mathrm{P} 1 \oplus(0)=\mathrm{P} 1
\end{array}
$$

P31-17. Both operations are keyless and the operations are predefined. If Eve, the intruder, wants to break the cipher, she can easily simulate them.

P31-19. We first find the value of $\phi=(p-1) \times(q-1)=120$. We then need to see which of the e values satisfies the relation $(d \times e) \bmod 120=1$. We will find that 103 is the answer.
a. $(7 \times 11) \bmod 120=77$
b. $(7 \times 103) \bmod 120=721 \bmod 120=1$
(Answer is 103)
c. $(7 \times 19) \bmod 120=133 \bmod 120=13$

P31-21. Two messages can easily have the same traditional checksum. For example, two different messages in which two bytes are swapped will have the same traditional checksum because the calculation of a traditional checksum is independent from the position of the bytes. This means a traditional checksum cannot be used as a cryptographic hash function.

P31-23. The following shows the new diagram. The timestamp, T, included in the only message does the job of the challenge message and R_{B}.

P31-25. The following shows one simple solution. It shows the idea, but it is vulnerable to some attacks. There are some better but more complicated solutions. In
the first message, Alice sends her identification and her nonce. In the second message, Bob sends his identification, his nonce, and Alice's encrypted nonce. Alice's nonce is encrypted with the shared secret key. When Alice receives this message and decrypts her nonce, Bob is authenticated for her because only Bob can encrypt Alice's nonce with the shared secret key. In the third message, Alice sends Bob's encrypted nonce. When Bob receives this message and decrypts his nonce, Alice is authenticated for Bob because only Alice can encrypt Bob's nonce with the shared secret key.

P31-27. The following shows the new diagram. Two nonces and two keys are used to achieve bidirectional authentication.

SigA: Signed with Alice's private key

SigB: Signed with Bob's private key

P31-29. The following shows the value of the digest after hashing each character of the text. The method is not secure because the digest is always between 0 and 25 . The total number of possible digests is $\mathrm{N}=26$.

Initial value of the digest:	$d=00$
After hashing the first character (H: 07):	$\mathrm{d}=(00+07) \bmod 26=07$
After hashing the second character (E: 04):	$\mathrm{d}=(07+04) \bmod 26=11$
After hashing the third character (L: 11):	$\mathrm{d}=(11+11) \bmod 26=22$
After hashing the fourth character (L: 11):	$\mathrm{d}=(22+11) \bmod 26=07$
After hashing the fifth character (O: 14):	$\mathrm{d}=(07+14) \bmod 26=21$

