
kun76256 book November 22, 2012 12:7

Contents

Preface xvi

• Part I •
Introduction and System
Engineering 1

Chapter 1 •
Introduction 2

1.1 What Is Software Engineering? 2

1.2 Why Software Engineering? 3

1.3 Software Life-Cycle Activities 4
1.3.1 Software Development Process 5
1.3.2 Software Quality Assurance 9
1.3.3 Software Project Management 10

1.4 Object-Oriented Software Engineering 11
1.4.1 Object-Oriented Modeling and Design

Languages 12
1.4.2 Object-Oriented Development

Processes 12
1.4.3 Object-Oriented Development

Methodologies 12

1.5 Software Engineering and Computer
Science 13

Summary 14

Further Reading 14

Chapter Review Questions 15

Exercises 15

Chapter 2 •
Software Process and Methodology 16

2.1 Challenges of System Development 17

2.2 Software Process 18

2.3 Merits and Problems of the Waterfall
Process 19

2.4 Software Development Is a Wicked
Problem 19

2.5 Software Process Models 21
2.5.1 Prototyping Process 21
2.5.2 Evolutionary Process 22
2.5.3 Spiral Process 22
2.5.4 The Unified Process 23
2.5.5 Personal Software Process 25
2.5.6 Team Software Process 28
2.5.7 Agile Processes 30

2.6 Software Development Methodology 37
2.6.1 Difference between Process and

Methodology 37
2.6.2 Benefits of a Methodology 38
2.6.3 Structured Methodologies 39
2.6.4 Classical OO Methodologies 39

2.7 Agile Methods 40
2.7.1 Dynamic Systems Development

Method 40
2.7.2 Scrum 42
2.7.3 Feature Driven Development 43
2.7.4 Extreme Programming 44
2.7.5 Agile or Plan-Driven 44

2.8 Overview of Process and Methodology of
the Book 45

Summary 50

Further Reading 51

Chapter Review Questions 51

Exercises 51

Chapter 3 •
System Engineering 53

3.1 What Is a System? 54

3.2 What Is System Engineering? 55

vi

CONFIRMING PAGES



kun76256 book November 22, 2012 12:7

Contents vii

3.3 System Requirements Definition 58
3.3.1 Identifying Business Needs 58
3.3.2 Defining System Requirements 60

3.4 System Architectural Design 60
3.4.1 System Decomposition 61
3.4.2 Requirements Allocation 64
3.4.3 Architectural Design Diagrams 66
3.4.4 Specification of Subsystem Functions and

Interfaces 70

3.5 Subsystems Development 71
3.5.1 Object-Oriented Context Diagram 71
3.5.2 Usefulness of an Object-Oriented Context

Diagram 72
3.5.3 Collaboration of Engineering Teams 73

3.6 System Integration, Testing, and
Deployment 73

3.7 System Configuration Management 74

Summary 76

Further Reading 76

Chapter Review Questions 76

Exercises 76

• Part II •
Analysis and Architectural
Design 79

Chapter 4 •
Software Requirements Elicitation 80

4.1 What Is Requirements Elicitation? 81

4.2 Importance of Requirements Elicitation 82

4.3 Challenges of Requirements Elicitation 83

4.4 Types of Requirement 85

4.5 Steps for Requirements Elicitation 86
4.5.1 Collecting Information 87
4.5.2 Constructing Analysis Models 91
4.5.3 Deriving Requirements and

Constraints 92
4.5.4 Requirements Specification Standards 97
4.5.5 Conducting Feasibility Study 97
4.5.6 Reviewing Requirements Specification 99

4.6 Applying Agile Principles 100

4.7 Requirements Management and Tools 101

Summary 102

Further Reading 103

Chapter Review Questions 103

Exercises 103

Chapter 5 •
Domain Modeling 105

5.1 What Is Domain Modeling? 105

5.2 Why Domain Modeling? 106

5.3 Object-Orientation and Class Diagram 107
5.3.1 Extensional and Intentional

Definitions 107
5.3.2 Class and Object 108
5.3.3 Object and Attribute 110
5.3.4 Association 110
5.3.5 Multiplicity and Role 111
5.3.6 Aggregation 113
5.3.7 Inheritance 114
5.3.8 Inheritance and Polymorphism 114
5.3.9 Association Class 115

5.4 Steps for Domain Modeling 117
5.4.1 Collecting Application Domain

Information 118
5.4.2 Brainstorming 119
5.4.3 Classifying Brainstorming Results 120
5.4.4 Visualizing the Domain Model 124
5.4.5 Domain Model Review Checklist 129

5.5 Putting It Together 130

5.6 Guidelines for Domain Modeling 133

5.7 Applying Agile Principles 134

5.8 Tool Support for Domain Modeling 135

Summary 137

Further Reading 137

Chapter Review Questions 138

Exercises 138

Chapter 6 •
Architectural Design 139

6.1 What Is Architectural Design? 140

6.2 The Importance of Architectural
Design 140

CONFIRMING PAGES



kun76256 book November 22, 2012 12:7

viii Contents

6.3 Architectural Design Process 141
6.3.1 Determine Architectural Design

Objectives 142
6.3.2 Determine System Type 143
6.3.3 Applying Architectural Styles 147
6.3.4 Perform Custom Architectural Design 157
6.3.5 Specify Subsystem Functions and

Interfaces 157
6.3.6 Review the Architectural Design 158

6.4 Architectural Style and Package Diagram 158

6.5 Applying Software Design Principles 160
6.5.1 What Are Software Design

Principles? 161
6.5.2 Design for Change 161
6.5.3 Separation of Concerns 162
6.5.4 Information Hiding 163
6.5.5 High Cohesion 164
6.5.6 Low Coupling 165
6.5.7 Keep It Simple and Stupid 166

6.6 Guidelines for Architectural Design 166

6.7 Architectural Design and Design Patterns 167

6.8 Applying Agile Principles 167

Summary 168

Further Reading 168

Chapter Review Questions 169

Exercises 169

• Part III •
Modeling and Design of Interactive
Systems 171

Chapter 7 •
Deriving Use Cases from Requirements 172

7.1 What Is An Actor? 173

7.2 What Is a Use Case? 173

7.3 Business Process, Operation, and Action 174

7.4 Steps for Deriving Use Cases from
Requirements 176
7.4.1 Identifying Use Cases 177
7.4.2 Specifying Use Case Scopes 184
7.4.3 Visualizing Use Case Contexts 186
7.4.4 Reviewing Use Case Specifications 190
7.4.5 Allocating the Use Cases to Iterations 191

7.5 Guidelines for Use Case Derivation 192

7.6 Applying Agile Principles 195

7.7 Tool Support for Use Case Modeling 196

Summary 198

Further Reading 198

Chapter Review Questions 199

Exercises 199

Chapter 8 •
Actor-System Interaction Modeling 200

8.1 What Is Actor-System Interaction
Modeling? 201

8.2 Importance of Actor-System
Interaction Modeling 202

8.3 Steps for Actor-System Interaction
Modeling 202
8.3.1 Initializing a Two-Column Table 202
8.3.2 Specifying Actor-System Interaction

Steps 203
8.3.3 Reviewing Actor-System Interaction

Specifications 204

8.4 Specifying Alternative Flows 204

8.5 Using User Interface Prototypes 204

8.6 Do Not Show Exception Handling 208

8.7 Use Case Precondition and Postcondition 209

8.8 Including Other Use Cases 210

8.9 Continuing with Other Use Cases 210

8.10 Commonly Seen Problems 211

8.11 Applying Agile Principles 213

Summary 214

Further Reading 214

Chapter Review Questions 215

Exercises 215

Chapter 9 •
Object Interaction Modeling 216

9.1 What Is Object Interaction Modeling? 216

9.2 UML Sequence Diagram 218
9.2.1 Notions and Notations 218
9.2.2 Representing Instances of a Class 218
9.2.3 Sequence Diagrams Illustrated 220

CONFIRMING PAGES



kun76256 book November 22, 2012 12:7

Contents ix

9.2.4 Sequence Diagram for Analysis and
Design 222

9.2.5 Using the Notations Correctly 224

9.3 Steps for Object Interaction Modeling 225
9.3.1 Collecting Information About Business

Processes 226
9.3.2 Identifying Nontrivial Steps 227
9.3.3 Writing Scenarios for Nontrivial

Steps 228
9.3.4 Constructing Scenario Tables 230
9.3.5 Scenarios: How to Write Them 232
9.3.6 Deriving Sequence Diagrams from Scenario

Tables 236
9.3.7 Object Interaction Modeling Review

Checklist 245

9.4 Applying Agile Principles 246

9.5 Tool Support for Object Interaction
Modeling 248

Summary 249

Further Reading 249

Chapter Review Questions 249

Exercises 249

Chapter 10 •
Applying Responsibility-Assignment
Patterns 251
10.1 What Are Design Patterns? 252

10.2 Why Design Patterns? 253

10.3 Situation-Specific and
Responsibility-Assignment Patterns 253

10.4 Pattern Specification 255

10.5 The Controller Pattern 255
10.5.1 A Motivating Example 255
10.5.2 What Is a Controller? 258
10.5.3 Applying the Controller Pattern 258
10.5.4 Types of Controller 261
10.5.5 Keeping Track of Use Case State 261
10.5.6 Bloated Controller 263
10.5.7 Comparing Different Designs 264
10.5.8 When Does One Apply the Controller

Pattern? 265
10.5.9 Guidelines for Using Controller 265

10.6 The Expert Pattern 267
10.6.1 The Information Expert 267

10.6.2 Applying the Expert Pattern 267
10.6.3 Expert Pattern Involving More Than One

Object 269
10.6.4 When Does One Apply the Expert

Pattern? 269
10.6.5 Guidelines for Using Expert 270

10.7 The Creator Pattern 270
10.7.1 What Is a Creator? 270
10.7.2 Applying the Creator Pattern 271
10.7.3 Benefits of the Creator Pattern 272
10.7.4 When Does One Apply the Creator

Pattern? 273

Summary 273

Further Reading 274

Chapter Review Questions 274

Exercises 275

Chapter 11 •
Deriving a Design Class Diagram 276
11.1 What Is a Design Class Diagram? 277

11.2 Usefulness of a Design Class Diagram 278

11.3 Steps for Deriving a Design Class
Diagram 279
11.3.1 Identifying Classes 279
11.3.2 Identifying Methods 281
11.3.3 Identifying Attributes 282
11.3.4 Relationships between Classes 284
11.3.5 Identifying Relationships 285
11.3.6 Design Class Diagram Review

Checklist 288

11.4 Organize Classes with Package Diagram 288

11.5 Applying Agile Principles 291

11.6 Tool Support for Design Class Diagram 292

Summary 292

Further Reading 292

Chapter Review Questions 292

Exercises 292

Chapter 12 •
User Interface Design 293
12.1 What Is User Interface Design? 294

12.2 Why Is User Interface Design Important? 295

CONFIRMING PAGES



kun76256 book November 22, 2012 12:7

x Contents

12.3 Graphical User Interface Widgets 296
12.3.1 Container Widgets 297
12.3.2 Input, Output, and Information

Presentation Widgets 298
12.3.3 Guidelines for Using GUI Widgets 298

12.4 User Interface Design Process 300
12.4.1 Case Study: User Interface Design for a

Diagram Editor 301
12.4.2 Identifying Major System Displays 302
12.4.3 Producing a Draft Layout Design 304
12.4.4 Specifying Interaction Behavior 306
12.4.5 Constructing a Prototype 307
12.4.6 Evaluating the User Interface Design

with Users 308
12.4.7 User Interface Design Review

Checklist 310

12.5 Designing User Support Capabilities 310

12.6 Guidelines for User Interface Design 311

12.7 Applying Agile Principles 313

12.8 Tool Support for User Interface
Design 314

Summary 315

Further Reading 315

Chapter Review Questions 315

Exercises 315

• Part IV •
Modeling and Design of Other Types
of Systems 317

Chapter 13 •
Object State Modeling for Event-Driven
Systems 318
13.1 What Is Object State Modeling? 319

13.2 Why Object State Modeling? 319

13.3 Basic Definitions 320

13.4 Steps for Object State Modeling 321
13.4.1 Collecting and Classifying State

Behavior Information 322
13.4.2 Constructing a Domain Model to Show

the Context 325

13.4.3 Constructing State Transition
Tables 327

13.4.4 Usefulness of the State Transition
Table 329

13.4.5 Converting State Transition Table to
Analysis State Diagram 330

13.4.6 Converting Analysis State Diagram to
Design State Diagram 333

13.4.7 State Modeling Review Checklists 334

13.5 The State Pattern 334
13.5.1 Conventional Approaches 334
13.5.2 What Is State Pattern? 335
13.5.3 Applying State Pattern 337

13.6 Real-Time Systems Modeling
and Design 339
13.6.1 The Transformational Schema 339
13.6.2 Timed State Machine 342
13.6.3 Interrupt Handling 343

13.7 Applying Agile Principles 344

13.8 Tool Support for Object State Modeling 345

Summary 345

Further Reading 346

Chapter Review Questions 346

Exercises 346

Chapter 14 •
Activity Modeling for Transformational
Systems 349
14.1 What Is Activity Modeling? 350

14.2 Why Activity Modeling? 351

14.3 Activity Modeling: Technical
Background 351
14.3.1 Flowchart 352
14.3.2 Petri Net 352
14.3.3 Data Flow Diagram 353

14.4 UML Activity Diagram 355

14.5 Steps for Activity Modeling 356
14.5.1 Identifying Activities and

Workflows 357
14.5.2 Producing a Preliminary Activity

Diagram 360
14.5.3 Introducing Branching, Forking, and

Joining 362

CONFIRMING PAGES



kun76256 book November 22, 2012 12:7

Contents xi

14.5.4 Refining Complex Activities 362
14.5.5 Activity Modeling Review

Checklist 363

14.6 Relationships to Other Diagrams 363

14.7 Applying Agile Principles 364

14.8 Tool Support for Activity Modeling 365

Summary 365

Further Reading 365

Chapter Review Questions 366

Exercises 366

Chapter 15 •
Modeling and Design of Rule-Based
Systems 367
15.1 What Is a Decision Table? 368

15.2 Usefulness of Decision Table 369

15.3 Systematic Decision Table Construction 370

15.4 Progressive Decision Table Construction 371

15.5 Checking for Desired Properties 373

15.6 Decision Table Consolidation 374

15.7 Generating Code from a Decision
Table 375

15.8 Applying the Interpreter Pattern 375
15.8.1 Defining a Business Rule

Grammar 376
15.8.2 Representing Rules in a Class

Diagram 376
15.8.3 Constructing a Parser and a Variable

Look Up Context 377
15.8.4 Interpreting Business Rules 378
15.8.5 Updating Rules Dynamically 378
15.8.6 Merits of the Interpretation

Approach 379

15.9 Using a Decision Table in Test-Driven
Development 379

15.10 Decision Trees 380

15.11 Applying Agile Principles 380

Summary 381

Further Reading 382

Chapter Review Questions 382

Exercises 382

• Part V •
Applying Situation-Specific
Patterns 385

Chapter 16 •
Applying Patterns to Design a State Diagram
Editor 386
16.1 Process for Applying Patterns 387

16.2 Case Study: State Diagram Editor 390

16.3 Working with Complex Structures 391
16.3.1 Representing Recursive Whole-Part

Structures 391
16.3.2 Providing Layout Choices with

Strategy 395
16.3.3 Accessing Complex Structures with

Iterator 395
16.3.4 Analyzing Complex Structures with

Visitor 398
16.3.5 Storing and Restoring Object State with

Memento 402

16.4 Creating and Constructing Complex
Objects 404
16.4.1 Creating Families of Products 404
16.4.2 Building Large Complex Objects 407
16.4.3 Reusing Objects with Flyweight 410

16.5 Designing Graphical User Interface and
Display 411
16.5.1 Keeping Track of Editing States 411
16.5.2 Responding to Editing Events 412
16.5.3 Converting One Interface to

Another 414
16.5.4 Providing Context-Dependent

Help 418
16.5.5 Enhancing Display Capability with a

Decorator 420

16.6 Applying Agile Principles 423

Summary 424

Further Reading 424

Chapter Review Questions 425

Exercises 425

CONFIRMING PAGES



kun76256 book November 22, 2012 12:7

xii Contents

Chapter 17 •
Applying Patterns to Design a Persistence
Framework 426
17.1 Problems with Direct Database Access 427

17.2 Hiding Persistence Storage with
Bridge 428

17.3 Encapsulating Database Requests as
Commands 431

17.4 Hiding Network Access with Remote
Proxy 435

17.5 Sharing Common Code with Template
Method 439

17.6 Retrieving Different Objects with
Factory Method 442

17.7 Reducing Number of Classes with
Prototype 444

17.8 Applying Agile Principles 447

Summary 447

Further Reading 448

Chapter Review Questions 448

Exercises 448

• Part VI •
Implementation and
Quality Assurance 449

Chapter 18 •
Implementation Considerations 450
18.1 Coding Standards 450

18.1.1 What Are Coding Standards? 451
18.1.2 Why Coding Standards? 455
18.1.3 Code Review Checklist 455
18.1.4 Guidelines for Practicing Coding

Standards 456

18.2 Organizing the Implementation Artifacts 457

18.3 Generating Code from Design 459
18.3.1 Implementing Classes and

Interfaces 459
18.3.2 From Sequence Diagram to Method

Code Skeleton 460

18.3.3 Implementing Association
Relationships 460

18.4 Assigning Implementation Work to
Team Members 461

18.5 Pair Programming 462

18.6 Test-Driven Development 463
18.6.1 Test-Driven Development

Workflow 463
18.6.2 Merits of Test-Driven

Development 465
18.6.3 Potential Problems 466

18.7 Applying Agile Principles 466

18.8 Tool Support for Implementation 467

Summary 467

Further Reading 468

Chapter Review Questions 468

Exercises 468

Chapter 19 •
Software Quality Assurance 469
19.1 Benefits of Software Quality

Assurance 469

19.2 Software Quality Attributes 470

19.3 Quality Measurements and Metrics 472
19.3.1 Usefulness of Quality Measurements

and Metrics 475
19.3.2 Conventional Quality Metrics 476
19.3.3 Reusing Conventional Metrics

for Object-Oriented Software 480
19.3.4 Object-Oriented Quality Metrics 481

19.4 Software Verification and Validation
Techniques 484
19.4.1 Inspection 484
19.4.2 Walkthrough 485
19.4.3 Peer Review 486

19.5 Verification and Validation in the Life
Cycle 487

19.6 Software Quality Assurance
Functions 490
19.6.1 Definition of Processes and

Standards 490
19.6.2 Quality Management 494
19.6.3 Process Improvement 495

CONFIRMING PAGES



kun76256 book November 22, 2012 12:7

Contents xiii

19.7 Applying Agile Principles 497

19.8 Tool Support for SQA 499

Summary 499

Further Reading 499

Chapter Review Questions 499

Exercises 499

Chapter 20 •
Software Testing 501
20.1 What Is Software Testing? 502

20.2 Why Software Testing? 503

20.3 Conventional Black-Box Testing 504
20.3.1 Functional Testing: An Example 504
20.3.2 Equivalence Partitioning 505
20.3.3 Boundary Value Analysis 507
20.3.4 Cause-Effect Analysis 509

20.4 Conventional White-Box Testing 510
20.4.1 Basis Path Testing 510
20.4.2 Cyclomatic Complexity 511
20.4.3 Flow Graph Test Coverage

Criteria 512
20.4.4 Testing Loops 512
20.4.5 Data Flow Testing 514
20.4.6 Coverage Criteria for Data Flow

Testing 515
20.4.7 Interprocedural Data Flow

Testing 515

20.5 Test Coverage 516

20.6 A Generic Software Testing Process 517

20.7 Object-Oriented Software Testing 518
20.7.1 Use Case--Based Testing 518
20.7.2 Object State Testing with

ClassBench 520
20.7.3 Testing Class Hierarchy 523
20.7.4 Testing Exception-Handling

Capabilities 524

20.8 Testing Web Applications 525
20.8.1 Object-Oriented Model for Web

Application Testing 525
20.8.2 Static Analysis Using the

Object-Oriented Model 526
20.8.3 Test Case Generation Using the

Object-Oriented Model 527

20.8.4 Web Application Testing with
HttpUnit 527

20.9 Testing for Nonfunctional
Requirements 527
20.9.1 Performance and Stress Testings 527
20.9.2 Testing for Security 528
20.9.3 Testing User Interface 529

20.10 Software Testing in the Life Cycle 529

20.11 Regression Testing 532

20.12 When to Stop Testing? 533

20.13 Applying Agile Principles 534

20.14 Tool Support for Testing 534

Summary 535

Further Reading 535

Chapter Review Questions 535

Exercises 535

• Part VII •
Maintenance and
Configuration Management 537

Chapter 21 •
Software Maintenance 538
21.1 What Is Software Maintenance? 539

21.2 Factors That Mandate Change 539

21.3 Lehman’s Laws of System Evolution 540

21.4 Types of Software Maintenance 541

21.5 Software Maintenance Process and
Activities 542
21.5.1 Maintenance Process Models 542
21.5.2 Program Understanding 543
21.5.3 Change Identification and

Analysis 544
21.5.4 Configuration Change Control 547
21.5.5 Change Implementation, Testing, and

Delivery 547

21.6 Reverse-Engineering 547
21.6.1 Reverse-Engineering Workflow 548
21.6.2 Usefulness of Reverse-Engineering 548
21.6.3 Reverse-Engineering: A Case

Study 549

CONFIRMING PAGES



kun76256 book November 22, 2012 12:7

xiv Contents

21.7 Software Reengineering 549
21.7.1 Objectives of Reengineering 550
21.7.2 Software Reengineering Process 551
21.7.3 Software Reengineering: A Case

Study 551

21.8 Patterns for Software Maintenance 553
21.8.1 Simplifying Client Interface with

Facade 553
21.8.2 Simplifying Component Interaction with

Mediator 553
21.8.3 Other Patterns for Software

Maintenance 555

21.9 Applying Agile Principles 555

21.10 Tool Support for Software Maintenance 557

Summary 560

Further Reading 560

Chapter Review Questions 560

Exercises 561

Chapter 22 •
Software Configuration Management 562
22.1 The Baselines of a Software Life Cycle 563

22.2 What Is Software Configuration
Management? 564

22.3 Why Software Configuration
Management? 565

22.4 Software Configuration Management
Functions 565
22.4.1 Software Configuration

Identification 566
22.4.2 Software Configuration Change

Control 568
22.4.3 Software Configuration Auditing 569
22.4.4 Software Configuration Status

Accounting 570

22.5 Configuration Management in an Agile
Project 570

22.6 Software Configuration Management
Tools 570

Summary 572

Further Reading 573

Chapter Review Questions 573

Exercises 573

• Part VIII •
Project Management and Software
Security 575

Chapter 23 •
Software Project Management 576
23.1 Project Organization 577

23.1.1 Project Format 578
23.1.2 Team Structure 579

23.2 Effort Estimation Methods 580
23.2.1 The Function Point Method 581
23.2.2 The COCOMO II Model 583
23.2.3 The Delphi Estimation Method 588
23.2.4 Agile Estimation 589

23.3 Project Planning and Scheduling 591
23.3.1 PERT Chart 591
23.3.2 Gantt Chart and Staff Allocation 593
23.3.3 Agile Planning 594

23.4 Risk Management 595
23.4.1 Risk Identification 596
23.4.2 Risk Analysis and Prioritizing 597
23.4.3 Risk Management Planning 599
23.4.4 Risk Resolution and Monitoring 599

23.5 Process Improvement 599

23.6 Applying Agile Principles 601

23.7 Tool Support for Project Management 602

Summary 603

Further Reading 603

Chapter Review Questions 604

Exercises 604

Chapter 24 •
Software Security 606
24.1 What Is Software Security? 607

24.2 Security Requirements 608

24.3 Secure Software Design Principles 609

24.4 Secure Software Design Patterns 610

24.5 Seven Best Practices of Software Security 612

24.6 Risk Analysis with an Attack Tree 613

CONFIRMING PAGES



kun76256 book November 22, 2012 12:7

Contents xv

24.7 Software Security in the Life Cycle 614
24.7.1 Security in the Planning Phase 615
24.7.2 Security in the Iterative Phase 623

24.8 Applying Agile Principles 627

24.9 Tool Support for Software Security 628

Summary 629

Further Reading 629

Chapter Review Questions 630

Exercises 630

• Appendices •
A Personal Software Process: Estimation,

Planning, and Quality Assurance 631
A.1 Effort Estimation in PSP 631

A.2 Software Quality Assurance in PSP 632

A.3 Design and Quality 633

B Java Technologies 634
B.1 Getting Started with Database

Connectivity 634
B.1.1 What Is Database Connectivity? 634
B.1.2 Setting Up Data Sources 634
B.1.3 Accessing Databases from a

Program 635

B.2 Getting Started with Swing 636
B.2.1 Creating Main Window with JFrame 637
B.2.2 Using Layout Managers to Arrange

Components 638
B.2.3 Processing Button Events with Action

Listener 640
B.2.4 Implementing Drawing Capabilities 640

B.3 Getting Started with Java Server
Pages 642
B.3.1 What Are Java Server Pages? 642
B.3.2 JSP Workflow 642
B.3.3 Installing a Web Server with a JSP

Container 643
B.3.4 Using Java Server Pages 643

C Software Tools 647
C.1 NetBeans 647

C.2 Using JUnit 648

C.3 Running JUnit in NetBeans 652

C.4 The Emma Coverage Tool 652

C.5 The Cobertura Coverage Tool 653

C.6 Web Application Testing with HttpUnit 655
C.6.1 Configure an IDE to Use HttpUnit 655
C.6.2 Implementing Test Cases in

HttpUnit 655

C.7 Using CVS and Subversion in NetBeans 656
C.7.1 Creating a CVS Remote

Repository 656
C.7.2 Setting Up Subversion in NetBeans 658
C.7.3 Checking Out Files from a

Repository 659
C.7.4 Editing Sources and Viewing

Changes 661
C.7.5 Viewing File Status 662
C.7.6 Comparing File Revisions 662
C.7.7 Merging Changes from Repository 662
C.7.8 Resolving Conflicts 663
C.7.9 Updating Local Copies 663
C.7.10 Committing Local Files to a

Repository 663
C.7.11 Importing Files into a Repository 664

D Project Descriptions 665
D.1 Car Rental System 665

D.2 National Trade Show Service System 666

D.3 Study Abroad Management System 667

D.4 UML Class Diagram Editor 669

D.5 Radio Communication Simulator 670

D.6 Object State Testing Environment 672

References 675

Index 682

CONFIRMING PAGES




