
Confirming Pages

1

 EXTENDED LEARNING MODULE G

 Student Learning Outcomes
 1. Explain the primary difference between the traditional technology approach and

the object-oriented technology approach.

 2. List and describe the five primary object-oriented concepts.

 3. Explain how classes and objects are related.

 4. Discuss the three fundamental principles of object-oriented technologies.

 5. Describe two types of object-oriented technologies.

 O B J E C T- O R I E N T E D T E C H N O L O G I E S

haa7685x_modG_G.1-G.23.indd 1haa7685x_modG_G.1-G.23.indd 1 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.2 Extended Learning Module G

 Introduction
 The explosion of object-oriented technologies is radically changing the way businesses
view and develop IT systems. As we discussed in Chapter 6, systems development is a
time-intensive task, but it can yield the powerful and innovative systems that propel orga-
nizations toward achieving their strategic goals and gaining competitive advantages. The
entire object-oriented genre aims at increasing both the efficiency and the effectiveness
of the systems development process, specifically component-based development (CBD),
making the task easier and the outcome more satisfactory.

 It’s difficult to find a business or IT department today that isn’t using some type of
object-oriented technology. Software developers everywhere are learning how to write
in object-oriented programming languages, create databases using object-oriented data-
base management systems, and design new systems using object-oriented analysis and
design techniques.

 By reading this module, you’ll gain an understanding of object-oriented technologies,
how they work, and in what ways they can be beneficial. Even though you may not plan
to be a systems developer, it’s still important that you learn the fundamentals of impor-
tant object-oriented concepts and technologies because you’ll certainly be involved in
analyzing, designing, and using object-oriented systems. Learning about object-oriented
concepts and technologies will help prepare you for your future role as a knowledge
worker in the information age. This module walks you through

 • The traditional technology approach
 • The object-oriented technology approach
 • The five primary concepts of object-oriented technologies: information,

procedures, classes, objects, and messages
 • The three fundamental principles of object-oriented technologies: inheritance,

encapsulation, and polymorphism
 • A detailed business case example
 • The three types of object-oriented technologies: object-oriented programming

languages, object-oriented databases, and object-oriented technologies and client/
server environments

 Traditional Technology Approach
 Let’s first take a look at the traditional technology approach to help you understand
the object-oriented approach. The traditional technology approach has two primary
views of any computer-based system— information and procedures —and it keeps these
two views separate and distinct at all times.

 INFORMATION VIEW

 The information view in the traditional technology approach includes all of the
 information stored within a system. You’re probably familiar with many terms that
describe information, including data, variables, and attributes. All these terms refer to the
same thing—information. For example, in a student grading system, information would
include Student Last Name, Student Address, and Final Course Grade. In Figure G.1 ,
you can see all the different types of information that might be required to build a student
grading system. When designing and developing this system, your focus in the informa-
tion view is only on the information itself and not on any of the procedures necessary to

LEARNING OUTCOME 1

haa7685x_modG_G.1-G.23.indd 2haa7685x_modG_G.1-G.23.indd 2 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Traditional Technology Approach G.3

maintain the information. For example, Final Course Grade is a function of Assignment
1 Grade, Assignment 2 Grade, and so on. But in the information view, you do not know
the relative weights of each grade that go into calculating the Final Course Grade. Those
weights and the appropriate computation are contained in the procedure view.

 PROCEDURE VIEW

 The procedure view in the traditional technology approach contains all of the proce-
dures within a system. A procedure manipulates or changes information. You’re prob-
ably familiar with many terms that describe procedures, including formulas, functions,
methods, and routines.

 There are four primary procedures, or ways, a system can manipulate information:
create, read, update, and delete. These four procedures are commonly referred to as
 CRUD (C reate, R ead, U pdate, D elete). Notice in Figure G.1 that the procedure view
maintains CRUD procedures for all the information except Final Course Grade, which is
maintained by a Calculate procedure.

 The primary problem with the traditional technology approach is that the two sepa-
rate views can lead to potential disconnects between the information and procedures.
It’s possible to have the correct information, for example, but not be able to do anything
with it because you don’t have the corresponding procedures. Likewise, you could have
the correct procedures but not be able to do anything with them because you don’t have
the corresponding information. In the first instance, it’s like having a workbook but no
spreadsheet software. In the second instance, it’s like having the spreadsheet software
but no information to work with.

 Such disconnects, if encountered in today’s digital world, would lead to numerous
problems. People on the move, not working in a central office, need access to both infor-
mation and procedures. Consumers can’t very well use a PDA or other handheld device
to participate in m-commerce if they can’t access both information (e.g., products they
would like to buy) and procedures (the necessary steps for ordering those products). At
home, when you use a universal remote control to program your VCR or DVD recording
device, the remote control is an object in the object-oriented world, and so is your VCR
and DVD recording device. By that we mean that each device contains both information
and procedures. Together, they create an object-oriented system—one that most of us
cannot imagine living without.

Student Grading

System

ProceduresInformation

CRUD Student Last Name
CRUD Student First Name
CRUD Student ID
CRUD Student Address
CRUD Assignment 1 Grade
CRUD Assignment 2 Grade
CRUD Mid-term Exam Grade
CRUD Final Exam Grade
Calculate Final Course Grade

Student Last Name
Student First Name
Student ID
Student Address
Assignment 1 Grade
Assignment 2 Grade
Mid-term Exam Grade
Final Exam Grade
Final Course Grade

 Figure G.1
Student Grading System:
Separate Information
and Procedure Views

haa7685x_modG_G.1-G.23.indd 3haa7685x_modG_G.1-G.23.indd 3 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.4 Extended Learning Module G

 Object-Oriented Technology Approach
 The object-oriented approach bridges the gap between information and procedures by
providing a holistic view of an information system. That is, an object-oriented approach
combines information and procedures into a single view.

 INFORMATION AND PROCEDURE VIEWS COMBINED

 Let’s take a look at the student grading system in Figure G.2 , the same student grad-
ing system that was shown in Figure G.1 , but now taking an object-oriented approach.
Notice the diagram in Figure G.2 represents a holistic or single view of the entire system
with the information in the middle and the procedures surrounding and bearing upon
the information.

 When you build an object-oriented system you think of the procedures and informa-
tion together as such a single interlocking unit (object). For knowledge workers deal-
ing with a system like the student grading system, a diagram such as Figure G.2 reveals
which types of information are in the system and which kinds of procedures in the sys-
tem can be performed on the information. Knowledge workers using the object-oriented
approach (as pictured in Figure G.2), looking at both information and procedures com-
bined, find it easier to perform the following three important tasks:

 1. Understand the entire system.
 2. Determine if any key information is missing that would be required in order to

perform all the procedures.
 3. Determine if any key procedures are missing which are required to manipulate

the information.

 When implemented, an object-oriented system allows various users to access infor-
mation and modify it according to the procedures. For example, if your instructor—
using a PDA—wanted to compute the Final Course Grade for everyone in your class,

 Figure G.2
 Student Grading System:
Combined Information
and Procedures

Read Update

Create

Calculate Final
Course Grade

Delete

Final Course Grade

Mid-Term Exam Grade

Assignment 2 Grade

Assignment 1 Grade

Student Address

Student ID

Student First Name

Student Last Name

Final Exam Grade

Information

Student Grading System

Procedures

haa7685x_modG_G.1-G.23.indd 4haa7685x_modG_G.1-G.23.indd 4 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Five Primary Concepts of Object-Oriented Technologies G.5

the system would pass to your instructor all the necessary information for each student
(Assignment 1 Grade, Assignment 2 Grade, etc.) as well as the procedure Calculate Final
Course Grade. Once your instructor verified the Final Course Grade for each student,
his/her PDA would pass the results back to the main system, which would be housed
somewhere in your school’s IT system.

 OBJECT-ORIENTED APPROACH AND THE REAL WORLD

 The object-oriented approach not only makes a knowledge worker’s job easier but also
improves overall systems development because the approach more closely models the
real world. In the real world, you actually view a given business process as a combination
of information and the procedures you need to act on that information. Have you ever
purchased a product that required “some assembly,” such as a mountain bike or a gas
grill? Upon opening the box and spreading out the contents you probably immediately
reached for the instruction booklet. In the instructions you found a detailed set of steps
concerning assembly along with a description of the various parts, both the information
and procedures provided together, which is similar to an object-oriented approach. You
didn’t find the set of instructions (procedures) in a separate booklet from the description
of the parts; they were combined together because this makes logical sense.

 If you viewed only the procedures in the student grading system example, would they
make any sense? Probably not. It would be difficult for you to understand the proce-
dures without understanding the information. For example, it would be impossible for
you to understand the Calculate Final Course Grade procedure if you didn’t know what
type of information was used in this calculation.

 Let’s take a look at an inventory tracking process, a good example of how the object-
oriented approach models the real world. In any business process such as tracking
inventory, you can identify several key pieces of required information, in this case, Part
Number, Part Name, Part Manufacturer, Quantity on Hand, Reorder Point, and Cost.
At the same time, you can also identify how the information needs to be manipulated to
perform the process, operations such as Calculate Quantity to Order, Add a New Part,
Update a Part Cost, and so on, all examples of procedures, in the case of an inventory
system. In short, information and procedures are integrated in the track inventory pro-
cess. This is logical and effective. Object-oriented concepts mirror a real-world view in
which information and procedures are necessarily combined together.

 Five Primary Concepts
of Object-Oriented Technologies

 There are five basic object-oriented concepts that you as a knowledge worker should
understand. We introduced you to two of these in the previous section— information
and procedures. Although we’ve already discussed these concepts, we’ll briefly review
them in this section. The remaining three basic object-oriented concepts are classes,
objects, and messages.

 INFORMATION

 Information comprises key characteristics stored within a system. You’re already famil-
iar with the different types of information stored in the student grading system such as
 Student Last Name and Final Course Grade, so let’s take a look at information stored in a
different system. Imagine you’re building a member tracking system for an athletic club.

LEARNING OUTCOME 2

haa7685x_modG_G.1-G.23.indd 5haa7685x_modG_G.1-G.23.indd 5 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.6 Extended Learning Module G

What types of information would the system need in order to track different members?
The answer to this can be any key characteristic you can think of related to a member
including Member Name, Member ID, Address, Phone, Weight, Height, Membership Type,
and so forth. These are all examples of different types of information the member track-
ing system could store.

 PROCEDURES

 As we said earlier, a procedure manipulates or changes information. Again, you’re already
familiar with the procedures in the student grading system, including CRUD Student
Last Name and Calculate Final Course Grade. Let’s define some different procedures
required to build the member tracking system for an athletic club. What types of proce-
dures does the system need? The answer to this can once again be anything you think
you’ll need in order to manipulate the member information, including CRUD Member
Name and CRUD Member ID. It’s also important to understand that procedures are
used not only for CRUD on information, but also to perform other functions or opera-
tions. In the member tracking system, other procedures might include Schedule Personal
Trainer, Cancel Membership, Schedule a Workout Time, and so on.

 CLASSES

 A class contains information and procedures and acts as a template to create objects. A
class is the combination of information and procedures as displayed in Figure G.3 . It
sometimes helps to think of classes as similar to a definition in a dictionary. Let’s return
to our member tracking system. If you look up the definition of the word member in a
dictionary, you’ll find out what a member is and perhaps what a member’s role is. A
class does exactly the same thing. If you look at the class Member in Figure G.3 , you can
quickly understand all the information required to describe a member and many of the
procedures the Member class can perform including Calculate Membership Costs and
 Reserve Equipment.

LEARNING OUTCOME 3

Class: Member

Procedures

Read Update

Create

Schedule
Personal
Trainer

Calculate
Member-
ship
Costs

Reserve
Equipment

Delete

Information

Height

Weight

Phone

Address

Member ID

Member Name

Membership Type

E-mail Address

 Figure G.3
Class Member

haa7685x_modG_G.1-G.23.indd 6haa7685x_modG_G.1-G.23.indd 6 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Five Primary Concepts of Object-Oriented Technologies G.7

 MULTIPLE CLASSES So far, for the sake of simplicity, for both the student grading
 system and the member tracking system, we’ve identified everything as only a single
class. Classes become a little more difficult to handle when you start to think of having
50 or 500 different classes in a single system.

 Almost all object-oriented IT systems have multiple classes, instead of just one. It’s
easy to see why. Imagine if you put all the information for the member tracking sys-
tem into a single class. This class would be enormous. Just think of all the different
types of information it might contain. There could be equipment preferences, workout
length and frequency, nutritional habits, and length of membership, to name just a few.
If all this information was in a single class, the class would quickly become unmanage-
able. Determining which types of information belonged to which procedures would be
impossible. Breaking down the information and procedures for ease of use and under-
standability, or practicing information decomposition, is a better way to structure your
information system. Practicing information decomposition makes IT specialists’ and
knowledge workers’ jobs easier because the information and associated procedures are
in understandable pieces. There certainly isn’t anything stopping you from putting all
the information and procedures for the entire system into a single class, but this is a bad
system design and would lead to multiple system problems.

 OBJECTS

 An object is an instance of a class. To put it another way, an object is an actual item rep-
resenting the class.

 Let’s take a look at the two objects (Alana and Samuel) of the class Member repre-
sented in Figure G.4 . Can you describe the primary difference between the Member class
diagram in Figure G.3 and the Member object diagrams in Figure G.4 ? Sure, you noticed
the Member object diagrams contain the information representing the actual members
that the system tracks. Using Figure G.4 , you can describe the first object, Alana. Alana
Smith is a yearly member who lives at 112 Baker Street. You can also describe the

Read Update

Create Delete

Information

Object: Alana of Class Member

Procedures

E-mail Address:
asmith@aa.com

Height: 5'5"

Weight: 125

Phone: 456-1234

Address: 112 Baker Street

Member ID: 5467

Member Name: Alana Smith

Membership Type: Yearly

Schedule
Personal
Trainer

Calculate
Member-
ship
Costs

Reserve
Equipment

Read Update

Create Delete

Information

Object: Samuel of Class Member

Procedures

E-mail Address:
sscola@aa.com

Height: 5'9"

Weight: 180

Phone: 555-5555

Address: 3A 16th Street

Member ID: 1234

Member Name: Samuel Scola

Membership Type: Monthly

Schedule
Personal
Trainer

Calculate
Member-
ship
Costs

Reserve
Equipment

 Figure G.4
Alana and Samuel: Two
Instances (Objects) of
Class Member

haa7685x_modG_G.1-G.23.indd 7haa7685x_modG_G.1-G.23.indd 7 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.8 Extended Learning Module G

second object, Samuel. Samuel Scola is a monthly member who lives at 3A 16th Street.
Every member the system tracks is a separate object, and every member object is an
instance of (or created from) the class Member. Alana and Samuel are both examples
of objects of the class Member. Each of their respective objects contains information
unique to them and also the necessary procedures for manipulating that information.

 Remember that classes are a template of information and procedures to create objects.
Essentially, the class is a blank template that defines all the different types of information
the system can store about an object and the procedures to manipulate that information.
Once you create an object from the class, you can fill in the template with the actual
information. For example, the Member class can give you a high-level definition of a
member object, such as Member Name, but it can’t tell you the actual name of the mem-
ber. The class will tell you only that it can store information for the member’s name. The
object stores the actual information and can tell you that the member’s name is Alana
(or Samuel). It also gives you the ability to manipulate that information with the CRUD
Member Name procedure.

 MESSAGES

 Now that you know something about objects, you may be wondering if objects somehow
need to communicate with each other and, if so, how. These are important questions,
and once you start asking them you’re quickly becoming an object-oriented expert.

 Indeed, an object can send a message to another object asking it to perform a certain
procedure. Messages are how objects communicate with each other. In general, systems
are created by developing many different classes that work together to perform tasks.
Let’s refer back to our student grading system. If you build this system, you might have
one class representing students, a second class representing courses, and a third class
representing instructors. Objects from each of the classes communicate with each other
in order to enter the student’s course grades. The student object passes a request to
enroll in courses to the course object. The instructor object passes a request to teach
specific courses to the course object. The instructor object also passes the student’s final
course grades to the course object. Combining these three classes together via such mes-
saging gives you a fully functioning student grading system.

 HOW THE FIVE PRIMARY CONCEPTS INTERACT

 Let’s review information, procedures, classes, objects, and messages as important object-
oriented concepts and how they relate to each other:

 • Information and procedures create classes.
 • Classes create objects.
 • Objects communicate with other objects via messages.

 Now, remembering from Chapter 1 that people are the key IT resource, let’s reinforce
your understanding of these relationships by thinking of the individuals who build the sys-
tems and the individuals who use the systems. This should solidify your perspective on
how the object-oriented concepts relate to one another.

 System developers are the individuals who build the system and are responsible for
building the classes which contain information and procedures. System users are the
individuals who use the system and are responsible for inputting the actual information,
or creating the objects. If you think about the member tracking system, you can easily
identify which individuals are responsible for the different tasks. The system developer
would be responsible for building the Member class and the associated information and
procedures. The athletic club employee, or system user, would be responsible for creat-
ing the objects, or inputting the actual member information.

haa7685x_modG_G.1-G.23.indd 8haa7685x_modG_G.1-G.23.indd 8 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Real-World Object-Oriented Examples G.9

 Because you now understand the important concepts of information, procedures,
classes, objects, and messages, you’ve mastered the basics of object-oriented technolo-
gies. Next, let’s look at some real-world examples of object-oriented systems.

 Real-World Object-Oriented Examples
 A home stereo system is a perfect analogy for an object-oriented system (see Figure G.5).
If you created classes to represent all the stereo components, they could include some or
all of the following classes:

 • Amplifier
 • CD/DVD player
 • Equalizer
 • Speakers
 • CDs
 • DVDs

 Think about the information items stored in the CD class. Title, Artist, Date Recorded,
and Number of Songs would be a few. Can you determine how many objects would be
created from the CD class? The number would vary depending on how many CDs you
owned. Consider the amplifier object—what would you say is its primary procedure?
That would be Set Volume.

 In order for the system to work, objects are created from each class, and each of the
objects works with specific information and procedures. The information for the CD/
DVD player, for example, could include the Manufacturer Name, Model Number, or
 Play Speed. The procedures for the CD/DVD player could include Play, Fast Forward,
Rewind, Skip, or Stop. If you called the Play procedure for the CD/DVD player object
(using a remote control), do you think you would be able to hear music? No, not instantly.
The CD/DVD player could play the CD only if it first sent a message to the amplifier
object concerning which song to play, which in turn would send a message (and your
music selection) to the speaker object to play the music.

 A home stereo system is a true example of a real-world object-oriented system. Each
component must work together in order for the system to function. Thus, each compo-
nent in a home stereo system really is an object. As an object, each component works
with only certain information and performs only certain procedures. If one component
needs another procedure performed, it must send a message to another object (or com-
ponent) that can perform that procedure.

 Figure G.5
Home Stereo System

haa7685x_modG_G.1-G.23.indd 9haa7685x_modG_G.1-G.23.indd 9 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.10 Extended Learning Module G

 Another real-world object-oriented system is that of an automobile. The steering
wheel, tires, and engine are different components or objects that work together in order
to accomplish the common goal of driving. In an automobile, there are actually hundreds
of objects working together, including the horn, thermostat, air conditioner, anti-lock
brake system, headlights, and all the others.

 A computer is another example of several different components or objects working
together and sending messages to each other in order to accomplish a common task.
(See Extended Learning Module A for how computer components work together and
send messages to each other.) The keyboard, monitor, mouse and operating system
all work together to run your applications. When you print a document in Word, for
example, your printer receives a message to print the document, various instructions
and information including how many copies to print and whether to print in portrait or
landscape, and the actual document to be printed. Your printer doesn’t determine which
document to print (that’s a procedure handled by your software); it simply prints the
document sent to it via a message.

 Three Fundamental Principles
of Object-Oriented Technologies

 Businesses of all types can gain huge IT-enabled competitive advantages in the market-
place by using object-oriented technologies. These advantages derive from the three fun-
damental principles of object-oriented technologies:

 1. Inheritance
 2. Encapsulation
 3. Polymorphism

 INHERITANCE

 One of the most powerful principles of object-oriented technologies is inheritance.
 Inheritance is the ability to define superclass and subclass relationships among classes.
Generalization (parent) and specialization (child) relationships are another way of think-
ing about superclass and subclass relationships. Take a moment and review Figure G.6
and determine which class is the superclass and which classes are the subclasses. The Car
class is the superclass and the Bronco and Porsche classes are the subclasses. Another
way to state this relationship is that the Bronco and Porsche subclasses inherit all of the
information and procedures of the Car superclass. For example, the CRUD procedures
are not defined in the Bronco and Porsche subclasses because they are inherited from
the Car superclass.

 Defining inheritance is simply a matter of defining generic (generalization) and spe-
cific (specialization) information and procedures. Generic information and procedures
apply to all subclasses, which will inherit the information and procedures from the
superclass in which they are defined. Specific information and procedures apply only to
a particular subclass.

 For example, notice that the Car superclass in Figure G.6 contains generic informa-
tion and procedures that are shared (inherited) by both the Bronco and Porsche sub-
classes. Both the Bronco and Porsche subclasses have a Model, Year, Price, and Color,
and both can Honk Horn, Brake, and Drive.

 The subclasses contain specific information and procedures that are unique to each
particular subclass. The Bronco subclass contains information for Four-Wheel Drive and

LEARNING OUTCOME 4

haa7685x_modG_G.1-G.23.indd 10haa7685x_modG_G.1-G.23.indd 10 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Three Fundamental Principles of Object-Oriented Technologies G.11

the Porsche subclass contains a procedure to Drive over 140 mph. These unique features
are stored in the subclass because they are not generic enough to store in the Car super-
class. If you stored the procedure for Drive over 140 mph in the Car superclass, then
every subclass of Car would inherit this procedure. This would be a mistake since there
are many types of cars that can’t drive over 140 mph. Hence, you must store this unique
feature at the subclass level.

 Inheritance, or the ability to define superclass and subclass relationships, is a unique
feature of object-oriented technologies, and the primary benefit of inheritance is reuse.
Consider our car example. If you decided to add a piece of information called Mileage
(i.e., miles per gallon) to the mix, you would develop it in only one place, the Car super-
class, and it would automatically be inherited by every subclass. The Mileage information

Load
Eight

People

Shift to
Four-Wheel

Drive

Tow
Trailer

Four-Wheel

Drive

Trailer

Hitch

Information

Drive over
140 mph

Lower
Roof

Convertible

Information

Read Update

Create

Drive

Honk
Horn

Brake

DeleteModel Year

Price Color

Information

Class: Car

Procedures

Class: Bronco

Procedures

Class: Porsche

Procedures

 Figure G.6
Inheritance

haa7685x_modG_G.1-G.23.indd 11haa7685x_modG_G.1-G.23.indd 11 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.12 Extended Learning Module G

is reused by all the subclasses, along with any associated procedure(s). Thus, a business
benefit from the inheritance principle is the ability to easily expand and maintain a
system.

 If you were using a traditional approach to developing and maintaining this system,
the Mileage information and procedures would have to be developed in each of the Car,
Bronco, and Porsche classes because the traditional approach does not support the
concept of inheritance (and thus reuse). If you had 50 subclasses of the Car superclass,
you would have to spend a great deal of time and energy (both scarce organizational
resources) to build the Mileage information and procedures into all 50 subclasses. Using
the object-oriented approach, you build them only once in the superclass and all 50 sub-
classes automatically inherit the information and procedures.

 Another example of how inheritance makes it easy to expand a system would be if
you decided to add a new subclass, Volkswagen Beetle, to the system. If you placed this
subclass within the Car superclass, it would automatically inherit all the information and
procedures already developed in the Car superclass. All you would need to do is develop
any unique information and procedures that the Volkswagen Beetle class requires. If
you added a Volkswagen Beetle class using a traditional approach, you’d have to build
in every single piece of information and every procedure including Model, Year, Price,
CRUD, Honk Horn, and so on. As you can see, inheritance is a valuable principle for
businesses in terms of saving money, time, and effort when developing and maintaining
information systems.

 ENCAPSULATION

 Encapsulation means information hiding. This concept has a simple definition and
provides tremendous benefits when you’re building an information system. Let’s take a
look at how object-oriented technologies encapsulate information.

 Objects are sometimes referred to as black boxes, in that the information inside an
object is hidden and all that can be viewed is the object. Imagine you’re in a park and
you see a dog. You can instantly determine the dog is an object of the class Dog. You
don’t know all of the information about the dog, however. You can’t tell the dog’s name,
weight, height, or other characteristics just by looking at it. Hence, the actual informa-
tion stored in the object is hidden, or encapsulated, but this doesn’t prevent you from
seeing the dog and being able to communicate with the dog.

 Let’s take a look at an example of encapsulation. If you order AT&T digital cable, you
receive a remote control that is used as the interface to the digital cable box. An interface
is any device that calls procedures, such as a keyboard, mouse, or touch screen. Not
long ago, AT&T changed its entire digital cable system including the menu colors, item
locations, and cable features. Suddenly, when a user turned on the television everything
on the digital cable menu looked completely different. However, the remote control, or
system interface, continued to work exactly the same as it did before the system changed.
The same buttons on the remote control were used to turn the TV on and off, to adjust
the volume up and down, and to select different menu items. Since the remote control
didn’t change, customers could use their system exactly the same way as they did before.
The only change the users had to deal with was getting used to the new look and feel of
the improved digital cable system.

 AT&T used encapsulation to hide the digital cable system changes from its users so as
not to bother them with them. The system changed significantly but, because the user’s
remote control, or interface, continued to work exactly the same, the users were unaf-
fected. The users continued to receive the same high-quality service from AT&T. This
is a great example of the benefits to a company and its customers from encapsulation.

haa7685x_modG_G.1-G.23.indd 12haa7685x_modG_G.1-G.23.indd 12 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Three Fundamental Principles of Object-Oriented Technologies G.13

 POLYMORPHISM

 Polymorphism, like so many technical words, though it looks and sounds intimidating,
has a very simple meaning. Polymorphism means “to have many forms.” What do you
think of when you hear the word bark? A dog’s bark? A tree’s bark? A small ship? This
is true polymorphism, having the ability to use the same word to mean different things.

 Let’s take a look at Figure G.7 for an example of polymorphism. Notice that the
Rectangle, Square, and Circle classes all contain procedures called Calculate Area.
Actually, the Calculate Area procedure is different for each class. The formula to calcu-
late the area of a rectangle (Length × Width) is different from the formula to calculate the
area of a square (Side × Side). This is an example of polymorphism because each class
has an identically named procedure that performs different calculations.

 If you build a procedure using a traditional technology, you must ensure that the pro-
cedure has a unique name. Consider our previous example of cars. If you have 50 dif-
ferent models of cars in the system, each must have a unique name for the Honk Horn
procedure such as Porsche Honk Horn, Bronco Honk Horn, Beetle Honk Horn, and so
on. Further, each model of car may have variations (e.g., Beetle XL and Beetle Sportster);
these must also have different names for each procedure for honking a horn. Using an
object-oriented approach removes the problem of defining complex naming structures
and increases productivity.

Read Update

Create

Calculate
Area

Delete

Information

Class: Circle

Procedures

Diameter

Read Update

Create

Calculate
Area

Delete

Information

Class: Square

Procedures

Side

Read Update

Create

Calculate
Area

Delete

Information

Class: Rectangle

Procedures

WidthLength

 Figure G.7
Polymorphism

haa7685x_modG_G.1-G.23.indd 13haa7685x_modG_G.1-G.23.indd 13 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.14 Extended Learning Module G

 Putting It All Together:
A Business Example

 Let’s assume you’re starting your own business, Ice Blue Snowboards (see Figure G.8).
Your business manufactures and sells snowboards, bindings, boots, and apparel. To pre-
pare for the launch of the business, you researched similar businesses to discover any
problems they’ve encountered so you can avoid making the same mistakes. The follow-
ing is a list of common competitor problems:

 • Eighteen months to get a new product to market
 • Inventory control
 • Scalability and expandability

Let’s take a detailed look at each problem and discuss how using an object-oriented
approach will help you minimize or eliminate these problems.

 EIGHTEEN MONTHS TO GET A NEW PRODUCT TO MARKET

 For your business to be competitive, you must be able to get your new products on the
market. Having a fast time-to-market is critical for the success of your new business.
Eighteen months is simply too long for you to wait to get a new product on the market.
Using an object-oriented approach will help you reduce this critical time-to-market fac-
tor. The typical high-level processes for developing new products include the following:

 1. Generating and accepting the idea
 2. Manufacturing the product
 3. Updating all current systems to support the new product
 4. Implementing the new product

Each time they develop a new product, much of the 18 months it takes your competitors
to get the product on the market is taken up with the first two activities—generating and
accepting the idea and manufacturing the product. But most businesses, using the tradi-
tional approach, also spend a lot of time—several months—updating all current systems
to support the new product. Using an object-oriented approach you can significantly
reduce the amount of time it takes Ice Blue Snowboards to update all its current systems
to support the new product. Let’s see how.

 First, you would create a superclass called Snowboard. The Snowboard superclass
would be responsible for tracking all snowboard information including Price, Model,
Features, Discounts, and so on. The Snowboard superclass would also be responsible

 Figure G.8
 Ice Blue Snowboards

haa7685x_modG_G.1-G.23.indd 14haa7685x_modG_G.1-G.23.indd 14 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Putting It All Together: A Business Example G.15

for establishing all the procedures associated with marketing and selling snowboards
including advertising and promoting in magazines and competitor pricing analysis.

 Second, you would design an interface enabling all your employees to perform all
these procedures. This interface would encapsulate the information and procedures in
the Snowboard superclass and allow you the flexibility to change things without affect-
ing the productivity of your employees.

 Third, you would practice inheritance. You would create a subclass for each particu-
lar type of snowboard. Defining subclasses, or using inheritance, saves you a great deal of
time and energy because each subclass inherits all the information and procedures from
the superclass. The only work required to create a subclass will be defining the unique
information or procedures associated with the subclass. After creating each class, once
again you can reuse the classes across all your business applications. Finally, you would
create objects that communicate with all of the other objects across every system in your
business.

 Figure G.9 is an example of your snowboard business case class diagram. This figure
assumes your business offers an electronic catalog on the Internet listing all the snow-
boarding products you sell. By creating a Catalog object whose primary procedure is to

 Figure G.9
 Snowboard Business Case
Class Diagram

Class: Snowboard

Procedures

All Mountain
Style

Extra
Wide

Automatic
Wax

Information

Class: IceBlueModel

Procedures

Autographed

Update

Create

Information

Model

Price

Delete

Read

Class: Catalog

Procedures

Read

Create

Information
Delete

Update

haa7685x_modG_G.1-G.23.indd 15haa7685x_modG_G.1-G.23.indd 15 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.16 Extended Learning Module G

update the electronic catalog, you won’t be required to change anything when adding a
new product to the catalog. The Catalog object already understands how products are
added and listed in the catalog. The new product object simply sends a message to the
Catalog object to execute the Update procedure in the Catalog object. The new product
will be added to the catalog without any need for system modification.

 The keys to reducing the time-to-market for your products, from an IT system point
of view, are many. You want to create superclasses that contain generic information and
procedures that all subclasses can inherit and reuse. You want to develop interfaces that
support the concept of information hiding so your employees aren’t constantly faced
with the task of relearning how to use a system. Reducing your time-to-market is a criti-
cal competitive advantage.

 INVENTORY CONTROL

 Controlling inventory is always a challenge for business. Businesses need to have suf-
ficient inventory on hand to meet current production needs while minimizing the asso-
ciated expenses of storing the inventory, transporting the inventory, and maintaining
the inventory. This is a supply chain management problem (see Chapter 2). Managing
the supply chain is fundamental to the success of any business, small or large. If you
neglect to manage your supply chain, then you’ll find your business hit by high storage
costs, by the inability to manufacture products because of low inventories, or by lost
inventory.

 To define and efficiently implement a supply chain management system, you would
define such superclass objects as Shipping, Distribution, and Vehicle. Creating shipping,
distribution, and vehicle objects allows you to control your inventory. Shipping objects
know their origin, their destinations, and their primary goal of arriving at the destination
on time with the lowest expense. Distribution objects designate which modes of trans-
portation will be used to ship the inventory. Vehicle objects move the inventory. Using
these three objects will help your business track and maintain correct inventory levels.

 SCALABILITY AND EXPANDABILITY

 Scalability refers to how well your system can adapt to the increased demands of addi-
tional users, more information to handle, and the need for faster processing speeds.
When a system grows, the size of the database that stores the information grows. As the
database grows, the system tends to perform procedures more slowly. Expandability
refers to how easy it is to add features and functions to a system. If you design a system
without thinking about its expandability, you’ll run into major problems when your busi-
ness starts to grow.

 Take a look at Figure G.10 . Can you explain why the ExpertSnowModel class was
unable to be placed in a superclass/subclass relationship with the Snowboard class? As
we discussed, it’s important to take advantage of inheritance as it saves time and effort
when developing a system. The reason the ExpertSnowModel class can’t inherit the
functionality from the Snowboard class is because of the procedure called Deep Powder
Specific. Deep Powder Specific is a procedure that doesn’t apply to all types of snowboards.
Snowboards are designed for powder, ice, and all mountain terrain. For this reason, the
ExpertSnowModel class can’t be designated as a Snowboard subclass. If you did place
the ExpertSnowModel class as a subclass of Snowboard, then an ExpertSnowModel
would be able to perform the Deep Powder Specific procedure, a rather large system error.
Defining superclasses that are too specific and thus not being able to take advantage of
inheritance is a common mistake associated with object-oriented systems.

haa7685x_modG_G.1-G.23.indd 16haa7685x_modG_G.1-G.23.indd 16 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Types of Object-Oriented Technologies G.17

 Did you notice anything else wrong with the class diagram? The ExpertSnowModel
class doesn’t contain any information. This indicates a disconnect between the informa-
tion and procedures. The ExpertSnowModel class contains the Create, Read, Update,
and Delete procedures, but what are these procedures going to manipulate if there isn’t
any information? This would be a typical error using the traditional technology approach
because information and procedures are viewed separately. Using the object-oriented
approach, you notice this disconnect right away.

 Types of Object-Oriented Technologies
 Many technologies in use today support object-oriented concepts and techniques. Many
more of these technologies are being developed every day as the business world con-
tinues to rush toward the use of objects. As a knowledge worker, it’s important that you
have some general knowledge of the different types of object-oriented technologies avail-
able and used throughout IT departments.

LEARNING OUTCOME 5

Class: Snowboard

Procedures

All Mountain
Style

Extra
Wide

Automatic
Wax

Information

Class: IceBlueModel

Procedures

Autographed

Update

Create

Information

Model

Price

Delete

Read

Deep Powder
Specific

Class: ExpertSnowModel

Procedures

Read

Create

Information
Delete

Update

 Figure G.10
Scalable Systems

haa7685x_modG_G.1-G.23.indd 17haa7685x_modG_G.1-G.23.indd 17 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.18 Extended Learning Module G

 OBJECT-ORIENTED PROGRAMMING LANGUAGES

 In general, programs are what make computers work. A program is a set of instructions
that, when executed, cause a computer to behave in a specific manner. A program is
almost like a recipe. It contains ingredients and directions (information and procedures)
that tell the computer how to perform different tasks. Microsoft Word and Excel are both
examples of programs.

 A programming language is the tool developers use to write a program. Just as
English, French, and Italian are different languages you can use to write a term paper,
Java and C + + are two different types of languages you can use to write a program. An
 object-oriented programming language is a programming language used to develop
object-oriented systems. Programming languages that are not object-oriented cannot
handle classes, objects, messages, inheritance, or encapsulation. Currently, there are
close to 100 different object-oriented programming languages available. The most pop-
ular of them today are Java, C + + , Smalltalk, C#, VB.NET, and ASP.NET.

 OBJECT-ORIENTED DATABASE SYSTEMS

 Relational databases (the most popular, which you learned about in Chapter 3) orga-
nize information into fields, records, and files (or relations). Object-oriented databases
work with traditional database information and also with complex data types such as
diagrams, schematic drawings, video, and sound and text documents.

 The relational database model, although it may allow you to store and view such data
types, does not include good mechanisms for allowing you to manipulate and change
information within those data types. For example, you can include a CAD drawing of a
part as a field in a relational database, but it’s literally impossible to work with any spe-
cific information in the drawing (such as cuts, specific components, and the ordering of
assembly) without having that information also stored in other fields.

 Another feature of object-oriented databases is that you are not restricted to two-
dimensional tables. This gives you greater flexibility in storing and defining procedures
that work with complex data types. In fact, most of today’s multimedia applications rely
on the use of objects and object-oriented databases.

 Most other database models also restrict you to working with specific data types:
alphabetic, numeric, decimal, currency, date, and so on. In an object-oriented database
environment, you can create and work with data types that may be unique to a specific
business process. For example, if you had an object that included an address you could
easily design this field to include a street address and a unit number. You could then
define a procedure that requires the entry of both pieces of information. This is an exam-
ple of a unique data type that requires not only a street address but also a unit number.

 OBJECT-ORIENTED TECHNOLOGIES
AND CLIENT/SERVER ENVIRONMENTS

 Client/server is the emerging blueprint for organizational networks, and most organiza-
tions are choosing to develop client/server networks through object-oriented technologies.
A client/server network is a network in which one or more computers are servers and
provide services to the other computers, which are called clients. Spreading objects across
a client/server network makes logical sense: Client workstations contain objects with local
procedures for working with local information, and servers contain objects with global
procedures for working with global information.

 In Figure G.11 , the server handles the entire data management function, the client
handles the entire presentation function, and both share in processing the logic or

haa7685x_modG_G.1-G.23.indd 18haa7685x_modG_G.1-G.23.indd 18 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Types of Object-Oriented Technologies G.19

 business rules. So the server object contains procedures for retrieving and storing
information (data management) and for processing some of the logic or business rules.
Likewise, the client object contains procedures for some of the logic or business rules
and for presenting information (the presentation function). To demonstrate, assume you
are the manager of the manufacturing division in an organization and need to give pay
raises to each of your employees. For assigning pay raises, you also have to follow several
rules—some for just your division and some for all organizational employees.

 In an object-oriented environment, your client workstation contains an object for
assigning pay raises to manufacturing division employees according to manufactur-
ing division rules. The server contains an object for assigning pay raises according to
organizational rules and for retrieving information from and saving information to the
database.

CLIENT SIDE SERVER SIDE

1. Enter
request for
employee

information 3. Retrieve
employee

information

4. Return
requested

information

5. Execute
business rules

for determining
employee pay

raises

6. Format and
present

employee and
pay raise

information

7. Submit
proposed pay raise

for processing

8. Request to process
proposed pay raise

9. Execute business rules
for pay raises for
any organizational

employee

10. Return modified
pay raise

11. Format
and present

modified
pay raise

12. Submit
finalized pay

raise for
processing

13. Request to process
finalized pay raise

2. Request
employee information

14. Update
database to

reflect
employee
pay raise

EMPLOYEE
DATABASE

You

 Figure G.11
Object-Oriented
Technologies and Client/
Server—The Perfect
Match

haa7685x_modG_G.1-G.23.indd 19haa7685x_modG_G.1-G.23.indd 19 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.20 Extended Learning Module G

 Let’s review how this would actually work. First, your client object, or Manufacturing
Employee object, asks you for an employee and sends a message to the server object, or
Organizational Employee object, to retrieve that employee’s information from the data-
base. Your client object then executes the rules for determining a pay raise for a manufac-
turing employee, displays that information to you, and sends the proposed pay raise to
the server object. The server object then executes the organizational rules for assigning
a pay raise and returns the modified pay raises to your client object. Your client object
then displays that information to you and allows you to submit the finalized pay raises
for processing to the server object. Finally, the server object updates the Employee data-
base to reflect the employee’s pay raise.

 It’s possible that while you are assigning pay raises to employees of your manufactur-
ing division, various managers of other departments could be assigning pay raises for
their employees. In this instance, you and any other managers essentially share the server
object—another example of reuse.

 THE FUTURE OF OBJECT-ORIENTED TECHNOLOGIES

 The number of object-oriented development tools out there increases daily and thus
understanding object-oriented concepts becomes ever more critical. In the future,
object-oriented tools will perform tasks and provide functionality that we haven’t even
thought of yet. We hope this module has provided you with a solid understanding of
object-oriented technologies and concepts behind them to prepare you for your job as a
knowledge worker.

 SUMMARY: STUDENT LEARNING OUTCOMES REVISITED

 1. Explain the primary difference between the
traditional technology approach and the object-
oriented technology approach. The primary
difference between the traditional technology
approach and the object-oriented technology
approach is the way information and procedures
are viewed and developed. The traditional

technology approach has two primary views of
any system—information and procedures—and it
keeps these two views separate and distinct at all
times. The primary problem with this approach
is that the separate views allow for information
disconnects. For example, you might have all of
the required information but not have the correct
procedures to manipulate the information. The
 object-oriented approach combines information
and procedures into a single view.

 2. List and describe the five primary object-
oriented concepts. The five primary object-
oriented concepts are

 1. Information is any key characteristic stored
within a system.

 2. Procedure manipulates or changes
information.

 3. Class contains information and procedures
and acts as a template to create objects
(instances of a class).

 4. Object is an instance of a class.
 5. Messages are how objects communicate with

each other. One object can send a message to
another object asking it to perform a certain
procedure.

In general, the combination of information and
procedures creates a class. A class creates objects,
and objects communicate with other objects via
messages. A system usually contains many classes,
and many objects can be created from a single class.

 3. Explain how classes and objects are related.
Classes contain information and procedures and

haa7685x_modG_G.1-G.23.indd 20haa7685x_modG_G.1-G.23.indd 20 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Short-Answer Questions G.21

are used as a template to create objects. The class
is basically a blank template, which defines all
of the different types of information the system
can store about an object. An object can only be
created from a class. Once you create an object
from a class, you can fill in the template with the
actual object information.

 4. Discuss the three fundamental principles
of object-oriented technologies. The three
fundamental principles of object-oriented
technologies are the following:

 • Inheritance is the ability to define superclass
and subclass relationships among classes.
The subclass inherits all the information and
procedures from its superclass. Other names
for superclass/subclass relationships include
parent/child relationships and generalization/
specification relationships.

 • Encapsulation means information hiding.
A remote control is used to control AT&T’s
digital cable. The remote control hides the
system information from the knowledge workers.

 • Polymorphism simply means to have many
forms. Basically, polymorphism provides you

with the ability to use the same word and have
it mean different things. The word bark is an
example of polymorphism. Bark can refer to a
dog’s bark or tree bark. The same word for a
procedure can be used to mean different things
in different classes.

 5. Describe two types of object-oriented
technologies. One type of object-oriented
technology is an object-oriented programming
language. An object-oriented programming

language is a programming language used to
develop object-oriented systems. For example,
just as English, French, and Italian are different
languages you can use to write a paper, Java and
C + + are two different languages you can use to
write a program. An object-oriented programming
language must be used in order to develop an
object-oriented system.

 A second type of object-oriented technology
is an object-oriented database system. Object-

oriented databases work with traditional
database information and also with complex
data types such as diagrams, schematic
drawings, video, sound, and text documents.

 KEY TERMS AND CONCEPTS

 Class, G.6
 Client/server network, G.18
 CRUD, G.3
 Encapsulation, G.12
 Expandability, G.16
 Information decomposition, G.7
 Information view, G.2
 Inheritance, G.10
 Interface, G.12
 Message, G.8
 Object, G.7

 Object-oriented approach, G.4
 Object-oriented database, G.18
 Object-oriented programming language, G.18
 Polymorphism, G.13
 Procedure, G.3
 Procedure view, G.3
 Program, G.18
 Programming language, G.18
 Scalability, G.16
 Traditional technology approach, G.2

 SHORT-ANSWER QUESTIONS

 1. What is an example of a real-world object-
oriented system?

 2. What are classes?
 3. Why would you use information

decomposition?
 4. What is an instance of a class?
 5. How do objects and classes relate?

 6. How do superclasses and subclasses
relate?

 7. What is polymorphism?
 8. Why is scalability important when building a

system?
 9. What is a benefit of using the object-oriented

approach?

haa7685x_modG_G.1-G.23.indd 21haa7685x_modG_G.1-G.23.indd 21 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

G.22 Extended Learning Module G

 10. What is another term for a superclass/subclass
relationship?

 11. Why is expandability important when building
a system?

 12. What is another term used to describe
information hiding?

 ASSIGNMENTS AND EXERCISES

 1. CLASSES IN THE CLASSROOM Take a look
around your classroom and on a piece of
paper list 20 different objects located in the
classroom. Objects might include desks, chairs,
lights, students, and so forth. If you were
going to build a classroom inventory tracking
system, how many classes would you need
to define in order to track all the objects?
What would be the name of each class? What
information and procedures would be stored in
each class? On a separate sheet of paper, draw
a class diagram displaying all the classes along
with the different types of information and
procedures they contain. Be sure to try to take
advantage of inheritance. Take both sheets of
paper and match each object to an appropriate
class. If all of the objects match to a class, you
created a successful system. Chances are every
student’s class diagram is probably going to be
different because there is no right or wrong
answer to this exercise, so be creative and have
fun defining your classes. Be sure to look at
some of the other students’ diagrams to see
how they defined their classes.

 2. TREES-R-US You’ve been hired to build an
inventory tracking system for the Trees-R-Us
landscaping company. Trees-R-Us is excited
about the use of inheritance in object-oriented
systems and wants to see how you’re going
to use it in the system. Trees-R-Us has already
defined the Tree, Grass, Flowers, Fence,
Equipment, and Plant classes. Your job is to
define all of the information and procedures
for each class and the inheritance structure
of the classes, or the superclass and subclass
relationships. Please provide a class diagram
that displays all the classes for the Trees-R-Us
inventory tracking system and be sure to
include inheritance. Again, there is no right or
wrong answer for this exercise, so be creative
and look at some of the other students’ class
diagrams to see how they defined their classes.

 3. OBJECT-ORIENTED CONCEPTS AND A REAL-
WORLD SYSTEM Create a list of a computer
and all its parts. Be sure to include the monitor,
keyboard, mouse, hard drive, disk drive,
memory, CD/DVD drive, software, and printer.
Write a brief explanation answering each of
the following:

 • What types of information are associated
with the computer?

 • What types of procedures are associated
with the computer?

 • What parts of the computer, if any, represent
the classes?

 • What parts of the computer, if any, represent
the objects?

 • How many classes are there?
 • How many objects are there?
 • How are messages used?
 • How do all the components work together

to create a complete system?

 4. UNDERSTANDING OBJECT-ORIENTED
CONCEPTS AND TERMINOLOGY Create a
brief presentation explaining the primary
differences between each of the following:

 • Traditional technology approach and object-
oriented technology approach

 • Information and procedures
 • Classes and objects
 • Messages and interfaces
 • Encapsulation and inheritance
 • Generalization and specialization

 Feel free to use any of the figures located in
this module. You can find them on the Web site
that supports this text at www.mhhe.com/haag.

 5. EXPLAINING OBJECT-ORIENTED TECHNOLOGIES
TO YOUR MANAGER Assume you’re working
for a large oil and gas company. Your current
manager has very little experience with object-
oriented technologies and has asked you to
write a paper describing, in generic terms,
each of the following object-oriented concepts.

haa7685x_modG_G.1-G.23.indd 22haa7685x_modG_G.1-G.23.indd 22 12/15/11 5:41 PM12/15/11 5:41 PM

Confirming Pages

Photo Credits G.23

Be sure to include explanations of how using
these object-oriented concepts will contribute
to building and implementing successful
information systems.

 • Encapsulation
 • Polymorphism
 • Inheritance

 6. CLASSES AT THE VIDEO STORE Consider your
local video rental store. What would be three
important classes? How many different objects
do you think there are for each class? On a
separate sheet of paper, draw a class diagram
displaying all the classes along with the
different types of information and procedures
they contain. Do you think video rental stores
in general use object-oriented systems? Why or
why not?

 7. RESEARCHING JAVA Java is a popular object-
oriented programming language. It was
developed by Sun Microsystems in the early to
mid-1990s. Connect to Information Week at
 www.informationweek.com and search on the
term “Java.” Find a case study that interests
you about a company that has used Java to
implement an object-oriented system. Prepare
a short report for your class detailing that
case study. Now, do some more research on
the Web. Although Java is currently a popular
object-oriented programming language,
there are some new ones on the horizon that
will compete against it. Find one such new
and emerging object-oriented programming
language. What is it? How is it designed to
compete with Java? Who provides it?

 P H O T O C R E D I T S
 Fig. G.5a, p. 10, PRNewsFoto/Cambridge SoundWorks/AP/Wide

World Photos
 Fig. G.5b, p. 10, Weinberg/Clark/Getty Images

 Fig. G.5c, p. 10, © Nance Trueworthy
 Fig. G.8a, p. 16, © David Madison Sports Images, 2005
 Fig. G.8c, p. 16, © David Madison Sports Images, 2005

haa7685x_modG_G.1-G.23.indd 23haa7685x_modG_G.1-G.23.indd 23 12/15/11 5:41 PM12/15/11 5:41 PM

