
Confirming Pages

1

 EXTENDED LEARNING MODULE M

 Student Learning Outcomes
 1. Explain the value of using VBA with Excel.

 2. Define a macro.

 3. Build a simple macro using a Sub procedure and a Function procedure.

 4. Describe an object.

 5. Explain the difference between a comment, a variable, and a constant.

 6. List the various Visual Basic Application data types and operators.

 7. Describe and build a macro that uses the If-Then-Else, For-Next, Do-Until,

Do-While, and Select Case structures.

 P R O G R A M M I N G I N E X C E L
W I T H V B A

haa7685x_modM_M.1-M.28.indd 1haa7685x_modM_M.1-M.28.indd 1 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.2 Extended Learning Module M

 Introduction
 VBA, which stands for Visual Basic for Applications, is a programming language devel-
oped by Microsoft. Excel, along with the other members of Microsoft Office, includes the
VBA language. VBA extends and customizes Excel, allowing you to do things that Excel
itself is not able to do, such as calculating values in cells based on user input values.

 Excel VBA is a programming application that allows you to use Visual Basic code to
run the many features of Excel, thereby allowing you to customize your Excel applica-
tions. Units of VBA code are often referred to as macros. Although this module covers
more formal terminology, the term macro will be used as a general way to refer to any
VBA code. It is not essential to make a further software purchase in order to learn the
elements of Visual Basic programming. Excel VBA comes free with Excel (97, 2000,
2002, 2003, etc.) and provides a great deal of the functionality (which happens to be the
topic of this module).

 One of the great advantages of Excel VBA is the macro recorder. The macro recorder
is a software tool that lets you record a sequence of commands in Excel and save them as
a macro. This is invaluable if you are struggling with some programming syntax. Just get
the recorder to do it for you and then view the code to see how it is done.

 Why VBA?
 Excel programming terminology can be a bit confusing. For example, VBA is a program-
ming language, but it also serves as a macro language. A macro language is a program-
ming language that includes built-in commands that mimic the functionality available
from menus and dialog boxes within an application. What do you call something written
in VBA and executed in Excel? Is it a macro or is it a program? Excel’s Help system
often refers to VBA procedures as macros. A macro is a set of actions recorded or writ-
ten by a user. For instance, you can create a macro that always prints your name in bold
on a spreadsheet. You can name it PrintName and then reuse the PrintName macro in
any spreadsheet. This term means that a series of steps is completed automatically. For
example, if you write a macro that adds a background color to some cells and then prints
the worksheet, you have automated those two steps.

 People use Excel for thousands of different tasks, such as:

 • Budgeting and forecasting
 • Analyzing data
 • Creating invoices and other forms
 • Developing charts from data

 One thing virtually every user has in common is the need to automate some aspect
of Excel. For example, you might create a VBA macro to format and print a month-end
sales report. You can execute the macro with a single command, triggering Excel to auto-
matically perform many time-consuming tasks, such as inserting your name at the top of
every spreadsheet you create, specifying which rows are to be repeated at the top of each
printed page, adding information in the footer area, and so on.

 In your day-to-day use of Excel, if you carry out the same sequence of commands
repetitively, you can save a lot of time and effort by automating those steps using macros.
If you are setting up an application for other users who don’t know much about Excel,
you can use macros to create buttons and dialog boxes to guide them through your appli-
cation as well as automate the processes involved.

LEARNING OUTCOME 1

LEARNING OUTCOME 2

haa7685x_modM_M.1-M.28.indd 2haa7685x_modM_M.1-M.28.indd 2 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

Why VBA? M.3

 If you are able to perform an operation manually, you can use the macro recorder
to capture that operation. This is a very quick and easy process and requires no prior
knowledge of the VBA language.

 You can also use VBA to create your own worksheet functions. Excel comes with
hundreds of built-in functions, such as SUM and IF, which you can use in cell formulas.
However, if you have a complex calculation that you use frequently that is not included
in the set of standard Excel functions (such as a tax calculation or a specialized scientific
formula), you can write your own user-defined function.

 Here are some common uses for VBA macros:

 • Inserting text —If you often need to enter your name into worksheets, you can
create a macro to do the typing for you.

 • Automating a task —If you’re a sales manager and need to prepare a month-end
sales report, you can develop a VBA macro to do it for you.

 • Automating repetitive tasks —If you need to perform the same action on 12
different Excel workbooks, you can record a macro while you perform the task
on the first workbook and then let the macro repeat your action on the other
workbooks.

 • Creating a custom command —If you often issue the same sequence of Excel
menu commands, you can save yourself some time by developing a macro that
combines these commands into a custom command, which you can execute with
a single keystroke or button click.

 • Creating a custom toolbar button —You can customize the Excel toolbars with
your own buttons that execute the macros you write.

 • Creating a custom menu command —You can customize Excel’s menus with your
own commands that execute macros you write.

 • Creating a simplified front end —In almost any office, you can find people who
don’t really understand how to use computers. Using VBA, you can make it easy
for these users to extend their capabilities.

 • Developing new worksheet functions —Although Excel includes numerous built-in
functions (such as SUM and AVERAGE), you can create custom worksheet
functions that can greatly simplify your formulas.

 • Creating complete, macro-driven applications —If you’re willing to spend some
time, you can use VBA to create large-scale applications, complete with custom
dialog boxes, onscreen help, and lots of other enhancements.

 VBA IN A NUTSHELL

 We will go into much more detail throughout this module; however, here is a brief sum-
mary of what VBA is all about:

 • You perform actions in VBA by writing (or recording) code in a VBA macro. You
view and edit VBA macros using the Visual Basic Editor (VBE).

 • A VBA macro consists of Sub procedures. A Sub procedure is computer code
that performs some action on or with objects. The following example shows a
simple Sub procedure called Demo. This Sub procedure displays the result of
1 plus 1.

 Sub Demo()
 Sum = 1 + 1
 MsgBox “The answer is “ & Sum
 End Sub

LEARNING OUTCOME 3

haa7685x_modM_M.1-M.28.indd 3haa7685x_modM_M.1-M.28.indd 3 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.4 Extended Learning Module M

 • A VBA macro can also have Function procedures. A Function procedure is a
VBA macro that returns a single value. You can call it from another VBA macro or
even use it as a function in a worksheet formula. Here is an example of a Function
procedure (named AddTwo) that accepts two numbers (called arguments) and
returns the sum of those values:

 Function AddTwo(arg1, arg2)
 AddTwo = arg1 + arg2
 End Function

 • VBA manipulates objects. An object in VBA is an item available for you to control
in your code. Excel provides more than 100 objects that you can manipulate.
Examples of objects include a workbook, a worksheet, a cell range, a chart, and a
shape. Figure M.1 provides more information about objects and a few examples.

LEARNING OUTCOME 4

VBA Function Explanation Example

Objects • Objects are arranged in
a hierarchy.

Application.Workbooks (“Book1.xls”)
Application.Workbooks (“Book1.xls”).Worksheets (“Sheet1”)

• Objects can act as
containers for other
objects.

• At the top of the object
hierarchy is Excel.

• Excel itself is an object
called Application, and
it contains other objects
such as Workbook
objects.

• The Workbooks
collection is contained in
the Application object.

• The Workbook object
can contain other
objects, such as
Worksheet objects and
Chart objects.

Methods • Objects have methods. Worksheets(“Sheet1”).Range (“A1”).ClearContents

• A method is an action
Excel performs within an
object.

• One of the methods
for a Range object is
ClearContents, which
clears the contents of
the range.

 Figure M.1
VBA Added Terminology
and Examples

haa7685x_modM_M.1-M.28.indd 4haa7685x_modM_M.1-M.28.indd 4 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

The Visual Basic Editor M.5

 • You can assign values to variables. A variable is a place to store a piece of
information. You can use variables in your VBA macro to store such things as
values, text, or property settings (such as a font color or alignment). To assign
the value in cell A1 on Sheet1 to a variable called Interest, you could use the
following VBA statement:

 Interest = Worksheets(“Sheet1”).Range(“A1”).Value

 The Visual Basic Editor
 The Visual Basic Editor (VBE) is a separate application where you write and edit your
Visual Basic macros. You can’t run the VBE separately; Excel must be running in order
for the VBE to operate.

 The quickest way to activate the VBE is to press Alt + F11 when Excel is active. To
return to Excel, press Alt + F11 again. (Alt + F11 acts as a toggle between the Excel appli-
cation interface and the VBE.) You can also activate the VBE by using the menus within
Excel. To do this, choose Tools, then Macro, and then choose Visual Basic Editor.

 THE VBE TOOLS

 Figure M.2 shows the VBE program window, with some of the key interface elements
identified. Chances are your VBE program window won’t look exactly like the window
shown in Figure M.2 . This window is highly customizable—you can hide, resize, dock,
rearrange, and so on in the window. The VBE has even more parts than are shown in
 Figure M.2 , but for the sake of simplicity this module will talk only about what is cur-
rently visible.

 Figure M.2
VBE Program Window

Menu Bar

Project Explorer
Window

Code Window

Properties Window

Immediate Window

Toolbar

haa7685x_modM_M.1-M.28.indd 5haa7685x_modM_M.1-M.28.indd 5 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.6 Extended Learning Module M

 MENU BAR The VBE menu bar works like every other menu bar you’ve encountered.
It contains commands that you use to do things with the various components in the
VBE. You will also find that many of the menu commands have shortcut keys associated
with them.

 The VBE also features shortcut menus. You can right-click virtually anything in the
VBE and get a shortcut menu of common commands.

 TOOLBAR The Standard toolbar, which is directly under the menu bar by default (see
 Figure M.2), is one of four VBE toolbars available. VBE toolbars work just like those in
Excel—you can customize them, move them around, display other toolbars, and so on.
Choose View, then the Toolbars command to work with VBE toolbars.

 PROJECT EXPLORER WINDOW The Project Explorer window displays a tree dia-
gram that consists of every workbook currently open in Excel (see Figure M.2). If the
Project Explorer window is not visible, press Ctrl + R or choose View, then the Project
Explorer command. To hide the Project Explorer window, click the Close button in the
title bar (or right-click anywhere in the Project Explorer window and select Hide from
the shortcut menu).

 CODE WINDOW A Code window contains VBA code. Every object in a project has
an associated Code window. To view an object’s Code window, double-click the object
in the Project Explorer window. For example, to view the Code window for the Sheet1
object, double-click Sheet1 in the Project Explorer window. Unless you’ve added some
VBA code, the Code window will be empty (see Figure M.2). To close the code window,
right-click and then select “hide” or click on the close button.

 THE PROPERTIES WINDOW The Properties window shows you the properties that
can be changed for the currently active object in the Project Explorer window. For exam-
ple, the ScrollArea property in Figure M.2 has been set to A1:D10 to restrict users to that
area of the worksheet. Use View/Properties Window or press F4 to show the window. To
close the code window, right-click and then select “hide” or click on the close button.

 THE IMMEDIATE WINDOW The Immediate window may or may not be visible (see
 Figure M.2). If it isn’t visible, press Ctrl + G or choose the View, then the Immediate
Window command. To close the Immediate window, click the Close button in the title bar
(or right-click anywhere in the Immediate window and select Hide from the shortcut menu).
The Immediate window is most useful for executing VBA statements directly and for debug-
ging your code.

 WORKING WITH THE PROJECT EXPLORER

 When you’re working in the VBE, each Excel workbook that’s open is a project. You
can think of a project as a collection of objects arranged as an outline. You can expand
a project by clicking the plus sign (+) at the left of the project’s name in the Project
Explorer window. To contract a project click the minus sign (–) to the left of a project’s
name. Figure M.2 shows a Project Explorer window with three projects listed (Sheet1,
Sheet2, and Sheet3).

 Every project expands to show at least one node called Microsoft Excel Objects. This
node expands to show an item for each sheet in the workbook (each sheet is considered
an object), and another object called ThisWorkbook (which represents the Workbook
object as displayed in Figure M.2). If the project has any VBA macros, the project listing
also shows a Modules node.

haa7685x_modM_M.1-M.28.indd 6haa7685x_modM_M.1-M.28.indd 6 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

The Visual Basic Editor M.7

 ADDING A NEW VBA MODULE Follow these steps to add a new VBA module to a
project:

 1. Create a new workbook in Excel.
 2. Press Alt + F11 to activate the VBE.
 3. Select the project’s name (typically it will be named ThisWorkbook) in the Project

Explorer window.
 4. Choose Insert and then Module or you can use the shortcut, by using the right

mouse click, choosing Insert, and then Module.

 As a note, when you record a macro (which will be discussed shortly), Excel auto-
matically inserts a VBA module (by default it is named Module1) to hold the recorded
code.

 REMOVING A VBA MODULE If you need to remove a VBA module from a project,
follow these steps:

 1. Select the module’s name in the Project Explorer window.
 2. Choose File, and then Remove ModuleName (where ModuleName is the name

of the module).

 You can remove VBA modules, but there is no way to remove the other code
modules—those for the Sheet objects, or ThisWorkbook.

 CREATING A MODULE In general, a VBA module can hold several types of code:

 • Sub procedures —A set of programming instructions that performs some action
(we described this earlier and will go into more detail shortly).

 • Function procedures —A set of programming instructions that returns a single
value. This is similar in concept to a worksheet function such as SUM described
earlier; more detail will be provided shortly.

 • Declarations —One or more information statements that you provide to VBA. For
example, you can declare the data type for variables you plan to use, or set some
other module options. Although declarations are mentioned (as they relate to
modules), it is beyond the scope of this module to go into any more detail.

 A single VBA module can store any number of Sub procedures, Function procedures,
and declarations. How you organize a VBA module is completely up to you. Some peo-
ple prefer to keep all their VBA code for an application in a single VBA module; others
like to split up the code into several different modules. It’s a personal choice.

 VBA MODULE CODE

 Before you can do anything meaningful, you must have some VBA code in the VBA
module. You can get VBA code into a VBA macro in two ways:

 1. Entering the code directly by typing it.
 2. Using the Excel macro recorder to record your actions and convert them to VBA

code.

 ENTERING CODE DIRECTLY You can type code directly into the module. You can
select, copy, cut, paste, and do other things to the text. When you are entering your code
directly, you use the Tab key to indent some of the lines to make your code easier to
read. This isn’t necessary but it’s a good habit to acquire. A single line of VBA code can
become very long. Therefore, you may want to use the line continuation character to

haa7685x_modM_M.1-M.28.indd 7haa7685x_modM_M.1-M.28.indd 7 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.8 Extended Learning Module M

break up lengthy lines of code. To continue a single line of code from one line to the next,
end the first line with a space followed by an underscore (_), then continue the statement
on the next line. Here’s an example of a single line of code split into three lines:

 Selection.Sort Key1: = Range(“A1”), _
 Order1: = xlAscending, Header: = xlGuess, _
 Orientation: = xlTopToBottom

 This statement would perform exactly the same way if it were entered in a single line
(with no line continuation characters). Notice that the second and third lines of this state-
ment are indented. Indenting makes it clear that these lines are not separate statements.

 The Visual Basic Editor (VBE) has multiple levels of undo and redo. Therefore, if
you deleted a statement that you shouldn’t have, use the Undo button on the toolbar
until the statement comes back. After undoing, you can use the Redo button to perform
the changes you’ve undone.

 OK, it’s time to enter some real code. Try the following steps:

 1. Create a new workbook in Excel.
 2. Press Alt + F11 to activate the VBE.
 3. Click the new workbook’s name in the Project Explorer window.
 4. Choose Insert, then Module to insert a VBA module into the project.
 5. Type the following code into the Code window (see Figure M.3):

 Sub NameDemo()
 Msg = “Is your name” & Application.UserName & “?”
 Ans = MsgBox(Msg, vbYesNo)
 If Ans = vbNo Then MsgBox “Oh, never mind.”
 If Ans = vbYes Then MsgBox “Just checking!”
 End Sub

 Figure M.3
The Code Window

haa7685x_modM_M.1-M.28.indd 8haa7685x_modM_M.1-M.28.indd 8 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

The Visual Basic Editor M.9

 6. Make sure the cursor is located anywhere within the text you typed.
 7. Press F5 to execute the procedure (F5 is a shortcut for the Run, Run Sub/

UserForm command).
 8. If you entered the code correctly, Excel executes the procedure and you can

respond to the dialog box shown in Figure M.4 .

 When you enter the code listed in Step 5, you might notice that the VBE makes some
adjustments to the text you enter. For example, after you type the Sub statement, the
VBE automatically inserts the End Sub statement. And if you omit the space before or
after an equal sign, the VBE inserts the space for you. Also, the VBE changes the color
and capitalization of some text. This is all perfectly normal, so don’t Undo any of this.

 If you followed the previous steps, you’ve just written a VBA Sub procedure, or rather
a macro. This macro, albeit simple, uses the following concepts:

 • Defining a Sub procedure (the first line).
 • Assigning values to variables (Msg and Ans).
 • Concatenating (i.e., joining) a string (using the & operator).
 • Using a built-in VBA function (MsgBox).
 • Using built-in VBA constants (vbYesNo, vbNo, and vbYes).
 • Using an If-Then construct (twice).
 • Ending a Sub procedure (the last line).

 The concepts mentioned in the bullet list above will be described in detail later in this
module.

 This is a good time to save what you have been working on. When you save an
Excel workbook, any macro that you have created automatically gets saved within the
workbook, so there is nothing different or new you need to do other than clicking on
 File, Save.

 Figure M.4
Run Code Execution

haa7685x_modM_M.1-M.28.indd 9haa7685x_modM_M.1-M.28.indd 9 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.10 Extended Learning Module M

 USING THE MACRO RECORDER Another way you can get code into a VBA macro
is by recording your actions using the Excel macro recorder. There is no way you can
record the NameDemo procedure shown in the preceding section since you can record
only things that you can do directly in Excel. Displaying a message box is not in Excel’s
normal repertoire. The macro recorder is useful, but in many cases you’ll probably have
to enter at least some code manually.

 Here’s a step-by-step example that shows you how to record a macro that turns off the
cell gridlines in a worksheet. Follow these steps:

 1. Activate a worksheet in the workbook.
 2. Choose Tools, then Macro, and then Record New Macro.
 3. Excel displays its Record Macro dialog box.
 4. Click OK to accept the defaults.

 5. Excel automatically inserts a new VBA module into the project that
corresponds to the active workbook.

 6. From this point on, Excel converts your actions into VBA code—while
recording, Excel displays the word Recording in the status bar (see Figure M.5).

 7. Excel displays a miniature floating toolbar that contains two toolbar buttons:
 Stop Recording and Relative Reference (see Figure M.5).

 8. Choose Tools, then Options. Excel displays its Options dialog box.
 9. Click the View tab.

 10. Remove the check mark from the Gridlines option. If the worksheet you’re
using has no gridlines, put a check mark next to the Gridlines option.

 11. Click OK to close the dialog box.
 12. Click the Stop Recording button on the miniature toolbar—Excel stops

recording your actions.

 Figure M.5
Recording Message and
Stop Recording Button

Relative
Reference
Button

Stop
Recording
Button

Recording

haa7685x_modM_M.1-M.28.indd 10haa7685x_modM_M.1-M.28.indd 10 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

The Visual Basic Editor M.11

 To view this newly recorded macro, press Alt + F11 to activate the VBE. Locate the
workbook’s name in the Project Explorer window. You’ll see that the project has a new
module listed. The name of the module depends on whether you had any other mod-
ules in the workbook when you started recording the macro. If you didn’t, the module
will be named Module1. You can double-click the module to open the Code window.
 Figure M.6 displays the code for this example.

 Now let’s give this macro a try:

 1. Activate a worksheet that has
gridlines displayed.

 2. Choose Tools, then Macro,
and then choose Macros, or
press Alt + F8.

 3. Select Macro1 (see
 Figure M.7).

 4. Click the Run button.
 5. Excel executes the macro,

and the gridlines disappear.

 You can execute any number of
commands and perform a variety
of actions while the macro recorder
is running. Excel translates your
mouse actions and keystrokes to
VBA code.

 Figure M.6
Module1 Macro Code

 Figure M.7
Macro Dialog Box

haa7685x_modM_M.1-M.28.indd 11haa7685x_modM_M.1-M.28.indd 11 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.12 Extended Learning Module M

The preceding macro is a great demonstration of the macro recorder, but really isn’t
all that practical. To make it truly functional, activate the module, and change the state-
ment to this (refer to Figure M.8):

 ActiveWindow.DisplayGridlines = _

 Not ActiveWindow.DisplayGridlines

This modification makes the macro serve as a toggle. If gridlines are displayed, the
macro turns them off. If gridlines are not displayed, the macro turns them on. Now
run the macro within the spreadsheet itself by closing the VBA window and pressing
 Alt + F8, then the Run button.

 Another way to execute a macro is to press its shortcut key. Before you can use this
method, you must assign a shortcut key to the macro.

 You have the opportunity to assign a shortcut key in the Record Macro dialog box
when you begin recording a macro. If you create the procedure without using the macro
recorder, you can assign a shortcut key (or change an existing shortcut key) using the
following procedure:

 1. Choose Tools, then Macro, and then Macros.
 2. Select the Macro1 Sub procedure name (that was created in the previous step)

from the list box.
 3. Click the Options button.
 4. Click the Shortcut Key option and enter a letter in the box labeled Ctrl + .

The letter you enter corresponds to the key combination you want to use for
executing the macro.

 5. Click OK to close the Macro Options dialog box.

 After you’ve assigned a shortcut key, you can press that key combination to execute
the macro.

 Figure M.8
Display Gridlines Macro

haa7685x_modM_M.1-M.28.indd 12haa7685x_modM_M.1-M.28.indd 12 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

VBA Building Blocks M.13

 VBA Building Blocks
 VBA is easy to learn but can be considered a serious programming language. It can be
used to perform complex tasks such as automatically getting up-to-date financial infor-
mation from the Internet and calculating option prices, and can be used in scientific
applications.

 There are many ways to write a macro using Excel VBA. You can write or record mac-
ros using modules or procedures, or you can develop user-defined functions. These are
some of the simple-to-understand building blocks to learn within the VBA structure.

 CODE MODULES

 All macros reside in code modules like the one on the right of the VBE window (refer
back to Figure M.2). There are two types of code modules—(1) standard modules and
(2) class modules. The one you see in Figure M.2 is a standard module. You can use
class modules to create your own objects (which is beyond our scope here).

 You can add as many code modules to your workbook as you like. Each module can
contain many macros. For a small application, you would probably keep all your macros
in one module. For larger projects, you can organize your code better by filing unrelated
macros in separate modules.

 PROCEDURES

 In VBA, macros are referred to as procedures. There are two types of procedures—(1) Sub
procedures and (2) Function procedures. The macro recorder can produce only Sub
procedures.

haa7685x_modM_M.1-M.28.indd 13haa7685x_modM_M.1-M.28.indd 13 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.14 Extended Learning Module M

 SUB PROCEDURES Sub procedures (sometimes referred to as subroutines) start
with the keyword Sub followed by the name of the procedure and opening and closing
parentheses. The end of a Sub procedure is marked by the keywords End Sub. By con-
vention, the code within the Sub procedure is indented to make it stand out from the
start and end of the Sub procedure, so that the code is easier to read. Here is an example
of a Sub procedure:

 Sub MonthNames()
 ‘
 ‘ MonthNames Macro
 ‘ Macro recorded 12/20/2004 by Amy Phillips
 ‘
 Range(“B1”).Select
 ActiveCell.FormulaR1C1 = “Jan”
 Range(“C1”).Select
 ActiveCell.FormulaR1C1 = “Feb”
 Range(“D1”).Select
 ActiveCell.FormulaR1C1 = “Mar”
 Range(“E1”).Select
 ActiveCell.FormulaR1C1 = “Apr”
 Range(“F1”).Select
 ActiveCell.FormulaR1C1 = “May”
 Range(“G1”).Select
 ActiveCell.FormulaR1C1 = “Jun”
 Range(Selection, Selection.End(xlToLeft)).Select
 Selection.Font.Italic = True
 Selection.Font.Bold = True
 Range(“A2”).Select
 End Sub

 If you look at the code in MonthNames Sub procedure, you will see that cells are
being selected and then the month names are assigned to the active cell formula. You can
edit some parts of the code, so if you had spelled a month abbreviation incorrectly, you
could fix it; or you could identify and remove the line that sets the font to bold; or you
could select and delete an entire macro.

 As a note, any lines starting with a single quote are comment lines, which are ignored
by VBA (which will be discussed in more detail in the next section). They are added to
provide documentation.

 FUNCTION PROCEDURES Excel has hundreds of built-in worksheet Function proce-
dures (or simply referred to as functions) that you can use in cell formulas. You can select
an empty worksheet cell and choose the Insert, and then the Function command to see
a list of those functions. Among the most frequently used functions are SUM, IF, and
 VLOOKUP. If the function you need is not already in Excel, you can write your own
 user defined function (or UDF) using VBA.

 UDFs can reduce the complexity of a worksheet. It is possible to reduce a calculation
that requires many cells down to a single function call in one cell. UDFs can also increase
productivity when many users have to repeatedly use the same calculation procedures.
You can set up a library of functions tailored to your needs.

haa7685x_modM_M.1-M.28.indd 14haa7685x_modM_M.1-M.28.indd 14 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

Elements of VBA Programming M.15

Unlike manual operations, UDFs cannot be recorded. You have to write them from
scratch using a standard module in the VBE. If necessary, you can insert a standard
 module by right-clicking in the Project Explorer window and choosing Insert, then
 Module. Consider the following:

 Function CentigradeToFahrenheit(Centigrade)
 CentigradeToFahrenheit = Centigrade * 9 / 5 + 32
 End Function

 This function illustrates an important concept about functions: how to return
the value that makes functions so important. Notice that the single line of code that
makes up this Function procedure is a formula. Here, you create a function called
 CentigradeToFahrenheit() that converts degrees Centigrade to degrees Fahrenheit.

 Connect to the Web site that supports this text (www.mhhe.com/haag select XLM/M)
and download the file called XLMM_UDF.xls. In the worksheet, column A contains
degrees Centigrade, and column B uses the CentigradeToFahrenheit() Function proce-
dure to calculate the corresponding temperature in degrees Fahrenheit. You can see the
formula in cell B2 by looking at the Formula bar.

 Remember that the key difference between a Sub procedure and a Function proce-
dure is that a Function procedure returns a value. CentigradeToFahrenheit() calculates a
numeric value, which is returned to the worksheet cell where CentigradeToFahrenheit()
is used.

 You need to open the VBE in order to review the Function procedure macro:

 1. Choose Tools on the Menu bar.
 2. Select Macro, then Visual Basic Editor, or Alt + F11.

 Take a look at the Function procedure macro (double-click on Module1). Normally
Function procedures have one or more input parameters. CentigradeToFahrenheit() has
one input parameter called Centigrade, which is used to calculate the return value. When
you enter the formula, = CentigradeToFahrenheit(A2), the value in cell A2 is passed to
 CentigradeToFahrenheit() through the input parameter Centigrade. For example, if the
value of Centigrade is 0 (zero), CentigradeToFahrenheit() sets its own name equal to the
calculated result, which is 32. The result is passed back to cell B2. The same process
occurs in each cell that contains a reference to CentigradeToFahrenheit().

 Elements of VBA Programming
 VBA uses many elements common to all programming languages, such as: comments,
variables, constants, data types, and others. If you’ve programmed using other computer
languages, some of this material will be familiar. If this is your first experience program-
ming, it should be an enjoyable exercise.

 COMMENTS

 A comment is the simplest type of VBA statement. Because VBA ignores these state-
ments, they can consist of anything you want. You can insert a comment to remind your-
self why you did something or to clarify a piece of code you wrote.

LEARNING OUTCOME 5

haa7685x_modM_M.1-M.28.indd 15haa7685x_modM_M.1-M.28.indd 15 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.16 Extended Learning Module M

You begin a comment with a single quote (‘). VBA ignores any text that follows a
single quote in a line of code. You can use a complete line for your comment or insert
your comment at the end of a line of code. The following example shows a VBA proce-
dure with three comments:

 Sub CommentsExample()
 ‘ This procedure is a demonstration
 x = 0 ’ x represents zero
 ‘ The next line of code will display the result
 MsgBox x
 End Sub

VARIABLES AND CONSTANTS

 VBA’s main purpose is to manipulate data. VBA stores the data in your computer’s
memory, where some data, such as worksheet ranges, reside in objects and other data are
stored in variables or constants that you create.

 VARIABLES As defined earlier, a variable is the name of a storage location. You have
lots of flexibility in naming your variables, so make the variable names as descriptive as
possible. You assign a value to a variable using the equal sign operator. Here are a few
examples that use variable names. The variable names are on the left side of the equal
signs (note that the last example uses two variables):

 x = 1
 InterestRate = 0.075
 LoanPayoffAmount = 243089
 DataEntered = False
 x = x + 1
 UserName = “Amy Phillips”
 DateStarted = #12/20/2004#
 MyNum = YourNum * 1.25

 VBA enforces a few rules regarding variable names:

 • You can use letters, numbers, and some punctuation characters, but the first
character must be a letter.

 • You cannot use any spaces or periods in a variable name.
 • VBA does not distinguish between uppercase and lowercase letters.
 • You cannot use the #, $, %, &, ‘, or ! characters in a variable name.
 • Variable names can be no longer than 254 characters (although it is not

recommended to use more than 20 characters because they become hard to read).

 To make variable names more readable, programmers often use mixed case (for exam-
ple, InterestRate) or the underscore character (Interest_Rate). VBA has many reserved
words that you can’t use for variable names or procedure names, for example:

 • Built-in VBA function names such as Ucase and Sqr.
 • VBA language words such as Sub, With, and For.

 If you attempt to use one of these names as a variable, you may get a compile error
(i.e., your macro won’t run). So, if an assignment statement produces an error message,
double check and make sure that the variable name isn’t a reserved word.

haa7685x_modM_M.1-M.28.indd 16haa7685x_modM_M.1-M.28.indd 16 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

Elements of VBA Programming M.17

 CONSTANTS A variable’s value may (and usually does) change while your procedure
is executing. Sometimes, you need to refer to a value or string that never changes, in
other words, a constant. A constant is a named element whose value doesn’t change.
Here are a few examples that declare constants by using the Const statement:

 Const NumQuarters As Integer = 4
 Const Rate = .0725, Period = 12
 Const ModName As String = “Budget Macros”

 Using constants in place of hard-coded values or strings (i.e., something other than
a value) is an excellent programming practice. For example, if your procedure needs to
refer to a specific value (such as an interest rate) several times, it’s better to declare the
value as a constant and refer to its name rather than the value. This makes your code
more readable and easier to change; should the need for changes arise, you have to
change only one statement rather than several.

 DATA TYPES Data types are the manner in which data types are stored in memory—
for example, as integers, real numbers, or strings. VBA has a variety of built-in data
types. Figure M.9 lists the most common types of data that VBA can handle.

 STRINGS Excel and VBA can work with both numbers and text. Text is often referred
to as a string. There are two types of strings in VBA:

 1. Fixed-length strings are declared with a specified number of characters (the
maximum length is about 65,526 characters).

 2. Variable-length strings theoretically can hold as many as 2 billion characters.

LEARNING OUTCOME 6

Data Type Bytes Used Range of Values

Boolean 2 True or False

Integer 2 −32,768 to 32,767

Long 4 −2,147,483 to 2,147,483,647

Single 4 −3.402823E38 to 1.401298E45

Double (negative) 8 −1.79769313486232E308 to
−4.94065645841247E-324

Double (positive) 8 4.94065645841247E-324 to
1.79769313486232E308

Currency 8 −922,337,203,685,477.5808 to
922,337,203,685,477.5807

Date 8 1/1/100 to 12/31/9999

String 1 per char Varies

Object 4 Any defined object

Variant Varies Any data type

User defined Varies Varies

 Figure M.9
VBA Built-in Data Types

haa7685x_modM_M.1-M.28.indd 17haa7685x_modM_M.1-M.28.indd 17 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.18 Extended Learning Module M

So far you have been creating variables simply by using them. This is referred to as
implicit variable declaration. Most computer languages require us to employ explicit
variable declaration. This means that you must define the names of all the variables you
are going to use, before you use them in your code. VBA allows both types of declara-
tion. If you want to declare a variable explicitly, you do so using a Dim statement. When
declaring a string variable with a Dim statement, you can specify the maximum length if
you know it (it’s a fixed-length string) or let VBA handle it dynamically (it’s a variable-
length string). The following example declares the MyString variable as a string with a
maximum length of 50 characters (use an asterisk to specify the number of characters,
up to the 65,526 character limit). YourString is also declared as a string but its length is
unspecified (which is typically what is recommended that you use):

 Dim MyString As String * 50
 Dim YourString As String

DATES Although you can use a string variable to store dates, it is recommended that
you use the Date data type. If you do, you will be able to perform calculations with the
dates. For example, you might need to calculate the number of days between two dates.
This would be impossible if you used strings to hold your dates.

 A variable defined as a date can hold dates ranging from January 1, 0100, to December
31, 9999. That’s a span of nearly 10,000 years. You can also use the date data type to
work with time data.

Here are a few examples that declare variables and constants as a Date data type (note
that in VBA, dates and times are placed between two hash marks, i.e., the # symbols):

 Dim Today As Date
 Dim StartTime As Date
 Const FirstDay As Date = #1/1/2005#
 Const Noon = #12:00:00#

 Date variables display dates according to your system’s short date format, and display
times according to your system’s time format (either 12- or 24-hour). Therefore, the
VBA-displayed date or time format may vary, depending on the settings for the system
on which the application is running.

 ASSIGNMENT STATEMENTS

 An assignment statement is a VBA statement that assigns the result of an expression to a
variable or an object. Excel’s Help system defines the term expression as:
 a combination of keywords, operators, variables, and constants that yields a string,
number, or object. An expression can be used to perform a calculation, manipulate
characters, or test data.

Much of your work in VBA involves developing (and sometimes debugging) expres-
sions. If you know how to create formulas in Excel, you’ll have no trouble creating expres-
sions. With a worksheet formula, Excel displays the result in a cell. A VBA expression,
on the other hand, can be assigned to a variable. Here are a few assignment statement
examples (the expressions are to the right of the equal sign):

 x = 1
 x = x + 1
 x = (y * 2) / (z * 2)
 HouseCost = 375000
 FileOpen = True
 Range(“TheYear”).Value = 2005

haa7685x_modM_M.1-M.28.indd 18haa7685x_modM_M.1-M.28.indd 18 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

Elements of VBA Programming M.19

OPERATORS

 Operators play a major role in VBA. Besides the equal sign operator (=), VBA provides
several other operators, as presented in Figure M.10 .

 The precedence order for operators in VBA is exactly the same as in Excel formulas.
Exponentiation has the highest precedence. Multiplication and division come next, fol-
lowed by addition and subtraction. You can use parentheses to change the natural prece-
dence order, making whatever’s sandwiched in parentheses come before any operator.

 Figure M.10
VBA Operators

Operator Operator Symbol

Addition +

Multiplication *

Division /

Subtraction -

Exponentiation ^

String concatenation &

Integer division (the result
is always an integer)

\

Modulo arithmetic (returns
the remainder of a
division operation) Mod

Logical Operator What It Does

Not Negation on an expression

And Conjunction on two expressions

Or Disjunction on two expressions

XoR Exclusion on two expressions

Eqv Equivalence on two expressions

Imp Implication on two expressions

haa7685x_modM_M.1-M.28.indd 19haa7685x_modM_M.1-M.28.indd 19 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.20 Extended Learning Module M

 Decisions, Decisions, Decisions
 Some VBA procedures start at the code’s beginning and progress line by line to the end,
never deviating from this top-to-bottom flow. Macros that you record always work like
this. In many cases, however, you need to control the flow of your code by skipping over
some statements, executing some statements multiple times, and testing conditions to
determine what the procedure does next.

 VBA is indeed a structured language. It offers standard structured decision con-
structs such as If-Then and Select Case structures, and For-Next, Do-Until, and Do-While
loops.

 THE IF-THEN STRUCTURE

 The If-Then statement is VBA’s most important control structure. The If-Then structure
has this basic syntax:

 If condition Then statements [Else elsestatements]

 Use the If-Then structure when you want to execute one or more statements condi-
tionally. The optional Else clause, if included, lets you execute one or more statements
if the condition you’re testing is not true. When a condition is true, VBA executes the
conditional statements and the If-Then ends.

OK, let’s apply this concept to a spreadsheet scenario. If you had a worksheet that
needed to calculate a discount rate based on quantity, you would want to use an If-Then
structure to help us out. Here’s an example that does just that. This procedure uses the
value from cell A2 (i.e., Cells(2, 1).Value), assigns it to the variable Quantity, and then
displays the appropriate discount in cell B2 (i.e., Cells(2, 2).Value), based on the quan-
tity the user enters:

 Sub ShowDiscount()
 Dim Quantity As Integer
 Dim Discount As Double
 Quantity = Cells(2, 1).Value
 If Quantity > 0 Then Discount = 0.1
 If Quantity > = 25 Then Discount = 0.15
 If Quantity > = 50 Then Discount = 0.2
 If Quantity > = 75 Then Discount = 0.25
 Cells(2, 2).Value = Discount
 End Sub

 Notice that each If-Then statement in this Sub procedure is executed and the value
for Discount can change as the statements are executed. However, the procedure ulti-
mately displays the correct value for Discount.

LEARNING OUTCOME 7

haa7685x_modM_M.1-M.28.indd 20haa7685x_modM_M.1-M.28.indd 20 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

Decisions, Decisions, Decisions M.21

The following procedure performs the same tasks by using the alternative ElseIf syn-
tax. In this case, the procedure ends immediately after executing the statements for a true
condition:

 Sub ShowDiscount2()
 Dim Quantity As Integer
 Dim Discount As Double
 Quantity = Cells(2, 1).Value
 If Quantity > 0 And Quantity < 25 Then
 Discount = 0.1
 ElseIf Quantity > = 25 And Quantity < 50 Then
 Discount = 0.15
 ElseIf Quantity > = 50 And Quantity < 75 Then
 Discount = 0.2
 ElseIf Quantity > = 75 Then Discount = 0.25
 End If
 Cells(2, 2).Value = Discount
 End Sub

 THE SELECT CASE STRUCTURE

The Select Case structure is useful for decisions involving three or more options (although
it also works with two options, providing an alternative to the If-Then structure). The
syntax for the Select Case structure is:

 Select Case TestExpression
 [Case expressionlist-n
 [statements-n]] . . .
 End Select

The following example shows how to use the Select Case structure (this also shows
another way to code the examples presented above):

 Sub ShowDiscount3()
 Dim Quantity As Integer
 Dim Discount As Double
 Quantity = Cells(2, 1).Value
 Select Case Quantity
 Case 0 To 24
 Discount = 0.1
 Case 25 To 49
 Discount = 0.15
 Case 50 To 74
 Discount = 0.2
 Case Is > = 75
 Discount = 0.25
 End Select
 Cells(2, 2).Value = Discount
 End Sub

 In this example, the Quantity variable is being evaluated. The Sub procedure is check-
ing for four different cases (0 to 24, 25 to 49, 50 to 74, and 75 or greater). Any number of
statements can follow each Case statement, and they all are executed if the case is true.

 When VBA executes a Select Case structure, the structure is exited as soon as VBA
finds a true case.

haa7685x_modM_M.1-M.28.indd 21haa7685x_modM_M.1-M.28.indd 21 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.22 Extended Learning Module M

 LOOPING

 The term looping refers to repeating a block of statements or code numerous times.
You may know how many times your macro needs to loop, or variables used in your
programs may determine this. There are several looping statements to choose from: the
 For-Next loop, the Do-While loop, and the Do-Until loop.

 FOR-NEXT LOOPS The simplest type of loop is a For-Next loop. Here’s the syntax
for this structure:

 For Counter = Start To End [Step n]
 [statements]
 Next [Counter]

 The looping is controlled by a counter variable, which starts at one value and stops at
another value. The statements between the For statement and the Next statement are the
statements that get repeated in the loop.

The following example shows a For-Next loop that doesn’t use the optional Step value.
This Sub procedure loops 100 times and uses the VBA Rnd function to enter a random
number into 100 cells:

 Sub FillRange()
 Dim Count As Integer
 For Count = 1 To 100
 ActiveCell.Offset(Count − 1, 0) = Rnd
 Next Count
 End Sub

 In this example, Count (the loop counter variable) starts with a value of 1 and increases
by 1 each time through the loop. Because you didn’t specify a Step value, VBA uses the
default value (which is 1). The Offset method uses the value of Count as an argument.
The first time through the loop, the procedure enters a number into the active cell offset
by zero rows. The second time through (Count = 2), the procedure enters a number
into the active cell offset by one row (Count –1), and so on.

 DO-WHILE LOOPS VBA supports another type of looping structure known as a
 Do-While loop. Unlike a For-Next loop, a Do-While loop continues until a specified con-
dition is met. Here’s the Do-While loop syntax:

 Do [While condition]
 [statements]
 Loop

 The following example uses a Do-While loop within a Sub procedure. This proce-
dure uses the active cell as a starting point and then travels down the column, multiply-
ing each cell’s value by 2. The loop continues until the procedure encounters an empty
cell.

 Sub DoWhileExample()
 Do While ActiveCell.Value <> Empty
 ActiveCell.Value = ActiveCell.Value * 2
 ActiveCell.Offset(1, 0).Select
 Loop
 End Sub

haa7685x_modM_M.1-M.28.indd 22haa7685x_modM_M.1-M.28.indd 22 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

Decisions, Decisions, Decisions M.23

 DO-UNTIL LOOP The Do-Until loop structure is similar to the Do-While structure.
The two structures differ in their handling of the tested condition. A macro continues to
execute a Do-While loop while the condition remains true. In a Do-Until loop, the macro
executes the loop until the condition is true. Here’s the Do-Until syntax:

 Do [Until condition]
 [statements]
 Loop

The following example is the same one presented for the Do-While loop but recoded
to use a Do-Until loop:

 Sub DoUntilExample()
 Do Until IsEmpty (ActiveCell.Value)
 ActiveCell.Value = ActiveCell.Value * 2
 ActiveCell.Offset(l, 0).Select
 Loop
 End Sub

haa7685x_modM_M.1-M.28.indd 23haa7685x_modM_M.1-M.28.indd 23 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.24 Extended Learning Module M

 Wrap It Up
 Figure M.11 displays a simple worksheet created to calculate the invoice amount of three
products based on several parameters. The lookup table in cells A5:D7 gives the price
of each product, the discount sales volume (above which a discount will be applied), and
the percent discount for units above the discount volume. Using normal spreadsheet for-
mulas, you would have to set up three lookup formulas together with some logical tests
to calculate the invoice amount.

 Let’s take what you have learned in the previous sections and put some of these con-
cepts to work. You can follow the steps below to create this exercise from scratch or you
can download the solution and follow along. To download the solution, connect to the
Web site that supports this text (www.mhhe.com/haag select XLM/M) and select the file
called XLMM_DiscountSales.xls.

 1. Open a new workbook.
 2. Create a worksheet with the same structure and data as you see in Figure M.11

(don’t worry about the aesthetics).
 3. Press Alt + F11 to activate the VBE.
 4. Click the new workbook’s name (it should be named ThisWorkbook) in the

Project Explorer window.

 Figure M.11
 VBA Example

haa7685x_modM_M.1-M.28.indd 24haa7685x_modM_M.1-M.28.indd 24 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

Wrap It Up M.25

 5. Choose Insert, then Module to insert a VBA module into the project.
 6. Type the following code into the Code window (refer to Figure M.12):

 Function InvoiceAmount(ByVal Product As String, _
 ByVal Volume As Integer) As Double
 Dim Table As Range
 Set Table = ThisWorkbook.Worksheets(“Sheet1”).Range(“A5:D7”)
 Dim Price As Integer
 Price = WorksheetFunction.VLookup(Product, Table, 2)
 Dim DiscountVolume As Integer
 DiscountVolume = WorksheetFunction.VLookup(Product, _
 Table, 3)
 Dim DiscountPercent As Double
 If Volume > DiscountVolume Then
 DiscountPercent = WorksheetFunction.VLookup(Product, _
 Table, 4)
 InvoiceAmount = Price * DiscountVolume + Price * _
 (1 − DiscountPercent) * (Volume − DiscountVolume)
 Else
 InvoiceAmount = Price * Volume
 End If
 End Function

 Before you continue, let’s review what all this code really means. The
 InvoiceAmount() function has three input parameters: Product is the name of
the product; Volume is the number of units sold, and Table is the lookup table.
The formula in cell C10 defines the values to be used for each input parameter.

 The range for the table is absolute so that copying the formula below cell C7
refers to the same range. The first calculation in the function uses the VLookup
function to find the product in the lookup table and return the corresponding

 Figure M.12
VBA Example Code

haa7685x_modM_M.1-M.28.indd 25haa7685x_modM_M.1-M.28.indd 25 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.26 Extended Learning Module M

value from the second column of the lookup table, which it assigns to the variable
 Price. In the next line of the function, the discount volume is found in the lookup
table and assigned to the variable DiscountVolume. The If test on the next line
compares the sales volume in Volume with DiscountVolume. If Volume is greater
than DiscountVolume, the calculations following, down to the Else statement, are
carried out. Otherwise, the calculation after the Else is carried out. If Volume is
greater than DiscountVolume, the percent discount rate is found in the lookup
table and assigned to the variable DiscountPercent. The invoice amount is then
calculated by applying the full price to the units up to DiscountVolume plus the
discounted price for units above DiscountVolume. Note the use of the underscore
character, preceded by a blank space, to indicate the continuation of the code on
the next line. The result is assigned to the name of the function, InvoiceAmount,
so that the value will be returned to the worksheet cell. If Volume is not greater
than DiscountVolume, the invoice amount is calculated by applying the price to
the units sold and the result is assigned to the name of the function.

 7. Return to the Excel spreadsheet, make cell C10 the active cell and type in the
formula = InvoiceAmount(A10, B10).

 8. Copy the formula to the remaining cells.
 9. If all your variables and functions are correct, the invoice amounts should look

like Figure M.13 .

 Congratulations, you have just completed your first VBA application!

 Figure M.13
 Example Figures

haa7685x_modM_M.1-M.28.indd 26haa7685x_modM_M.1-M.28.indd 26 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

Key Terms and Concepts M.27

 SUMMARY: STUDENT LEARNING OUTCOMES REVISITED

 1. Explain the value of using VBA with Excel.
Excel VBA is a programming application that
allows you to use Visual Basic code to customize
your Excel applications.

 2. Define a macro. A macro is a series of steps
that are completed automatically. For example,
you can write a macro that inserts your name
in a specific cell address and then prints the
worksheet.

 3. Build a simple macro using a Sub procedure
and a Function procedure. Building a Sub
procedure will perform only a procedure. Building
a Function procedure will return a value.

 4. Describe an object. Objects are items available
to control your code, such as a workbook, a
worksheet, a cell range, a chart, and a shape.

 5. Explain the difference between a comment,
a variable, and a constant. A comment is the
simplest type of VBA statement that is used to
clarify a piece of code you wrote. A variable is

a named element that stores things, typically a
value of something. A constant is a named element
whose value doesn’t change.

 6. List the various Visual Basic Application
data types and operators. There are many
different data types that are used in Visual Basic
Applications. The most common ones are:
Boolean, Integer, Long, Single, Double, Date,
String. The various operators used are + , - ,/,*,
AND, OR, NOT.

 7. Describe and build a macro that uses the If-

Then-Else, For-Next, Do-Until, Do-While, and
 Select Case structures. Use the If-Then structure
when you want to execute one or more statements
conditionally. Use the For-Next loop if you know
the iteration amount of the loop. Use a Do-While
loop while a specified condition is met. Use a Do-
Until loop until a condition is met. Use the Select
Case structure for decisions involving three or
more options.

 KEY TERMS AND CONCEPTS

 Constant, M.17
 Function procedure, M.4
 Looping, M.22
 Macro, M.2
 Macro language, M.2

 Object, M.4
 Sub procedure, M.3
 Variable, M.5
 Visual Basic Editor (VBE), M.5

haa7685x_modM_M.1-M.28.indd 27haa7685x_modM_M.1-M.28.indd 27 12/15/11 5:49 PM12/15/11 5:49 PM

Confirming Pages

M.28 Extended Learning Module M

 ASSIGNMENTS AND EXERCISES

 1. AUTOMATING REPETITIVE TASKS Once a week
you have to develop a new worksheet for
your department head that inserts enrollment
data. More specifically, most of the tasks
that you perform in creating the worksheet
are very repetitive since the structure of the
worksheet is always the same. You want to
automate the steps that are repetitious. Using
the Macro Recorder, create a macro that types
six month names as three letter abbreviations,
“Jan” to “Jun,” across the top of a worksheet,
starting in cell B1. Make each abbreviate bold,
italics, and centered within each cell. Call the
macro MonthNames and assign the macro the
shortcut key Ctrl + Shift + M. Save the workbook
as MonthNames.xls. Open a new worksheet,
and press Ctrl + Shift + M.

 2. CALCULATE TAX VALUES You are part of a
programming team developing point-of-sale
terminal software, but first you want to create
a prototype of the logic this software needs
to perform. For your prototype, you decide
to create a macro function in Excel that will
calculate the sales tax (4.9%) from the data
file, XLMM_SalesTax.xls.

 3. DETERMINE SHIPPING CHARGES Trans-Port
Inc., a distribution company located in
Denver, Colorado, needs some assistance in
computing the shipping charges for freight.
The shipping charge is calculated by the total
weight of the shipment. Any shipment with
a total weight of 500 or over is computed by
taking the total weight and multiplying it by
$1.00. Any shipment with a total weight of

100 pounds or more but less than 500 pounds
is calculated by taking the total weight and
multiplying it by .50. Anything shipped below
100 pounds is assessed a flat fee of $100.
The owner of Trans-Port, Inc., Jake Plummer,
has asked you to assist him in creating a
macro function that will automatically assign
shipping charges.

 4. ASSESS THE LETTER GRADE You are a
Teaching Assistant for the Information
Technology department at your school. One
of the professors, Dr. Hans Hultgren, has
asked you to review a grading spreadsheet
for him and write a macro function that will
take the numerical score of each student and
assign a letter grade. The grading scale is as
follows:

Numerical Range Letter Grade

90–100 A

80–89 B

70–79 C

65–69 D

<65 F

 Dr. Hultgren has suggested that you write a
macro that uses a Select Case statement. He
has provided you with some mocked-up data,
 XLMM_Grades.xls, to use as a prototype,
since giving you “real” grades is considered
unethical.

haa7685x_modM_M.1-M.28.indd 28haa7685x_modM_M.1-M.28.indd 28 12/15/11 5:49 PM12/15/11 5:49 PM

