
T5-2 * Plug-In T5 Designing Database Applications

 Introduction
 Businesses rely on their database systems for accurate, up-to-date information.
Without those databases of mission critical information, most businesses would
be unable to perform their normal daily transactions, much less create summary
reports that help management make strategic decisions. To be useful, the infor-
mation must be accurate, complete, and organized in such a way that it can be
retrieved when needed and in the format required.

 The core units introduced the database, which maintains information about
various types of objects (inventory), events (transactions), people (employees), and
places (warehouses). A database management system (DBMS) is software through
which users and application programs interact with a database. The relational
database model is a type of database that stores its information in the form of logi-
cally related two-dimensional tables. This plug-in will build on the core units by
providing specific details about how to design a relational database application.

 Entities and Data Relationships
 There are numerous elements in a business environment that need to store infor-
mation, and those elements are related to one another in a variety of ways. Thus

 Designing Database
Applications

 P L U G - I N

T5
 LEARNING OUTCOMES

 1. Describe the purpose of the relational database model in a database management
system.

 2. List the relational database model’s basic components.
 3. Describe why entities and attributes are organized into tables.
 4. Describe how data redundancy is handled in the relational database model.
 5. Explain the need for an entity-relationship diagram in a database management

system.
 6. Describe the Chen model symbols used in entity-relationship modeling.
 7. Explain the purpose of normalization.
 8. Describe the first three normal forms typically used in normalization.

bal76744_plugint05_002-021.indd T5-2 2/21/08 11:54:29 AM

*

Plug-In T5 Designing Database Applications * T5-3

a database must contain not only the information but also information about the
relationships among the information.

 The idea behind a database is that the user, either a person working interactively
or an application program, has no need to worry about the way in which infor-
mation is physically stored on disk. A database management system translates
between the user’s request for information and the physical storage.

 A data model is a formal way to express data relationships to a database man-
agement system (DBMS). The underlying relationships in a database environment
are independent of the data model and therefore independent of the DBMS that
is being used. Before designing a database for any data model, data relationships
need to be defined. An entity relationship diagram (ERD) is a technique for docu-
menting the relationships between entities in a database environment.

 ENTITIES AND THEIR ATTRIBUTES

 An entity, sometimes called a table, is a person, place, thing, transaction, or event
about which information is stored. A customer is an entity, as is a merchandise
item. Entities are not necessarily tangible; for instance, an appointment to see the
doctor is an entity. Attributes, also called fields or columns, are characteristics or
properties of an entity instance. For example, a CUSTOMER entity can be described
by a Customer Number, First Name, Last Name, Street, City, State, Zip Code, Phone
Number, Credit Card No, and Credit Card Exp (refer to Figure T5.1).

 When entities in a database are represented, only the attributes are stored.
Each group of attributes models a single entity type in the real world, and values
assigned to these attributes represent instances of objects (entity occurrences) cor-
responding to the entity. For example, in Figure T5.2 , there are four instances of a
 CUSTOMER entity stored in a database. If there are 1,000 customers in the database,
then there will be 1,000 instances of CUSTOMER entities. Instances can sometimes
be referred to as records.

 Entity Identifiers

An entity identifier ensures that each entity instance has a unique attribute value
that distinguishes it from every other entity instance (an entity identifier is also
referred to as a primary key, which will be discussed later in the plug-in). The pri-
mary purpose for entering the information that describes an entity into a database
is to retrieve the information at some later date. This means there must be some
way of distinguishing one entity instance from another in order to retrieve the cor-
rect entity instance. An entity identifier ensures that each entity instance has a
unique attribute value that distinguishes it from every other entity instance.

Customer Number
First Name
Last Name
Street
City
State
Zip Code
Phone Number
Credit Card No
Credit Card Exp

CUSTOMER

Order Number
Customer Number
Order Date
Order Filled

ORDER

Item Number
Title
Distributor Number
Price
Release Date
Genre

ITEM

Distributor Number
Name
Street
City
State
Zip Code
Phone Number
Contact Name
Contact Phone

DISTRIBUTOR

Attributes

ENTITIES

FIGURE T5.1

 Entities and Attributes
Example

bal76744_plugint05_002-021.indd T5-3 2/21/08 11:54:30 AM

T5-4 * Plug-In T5 Designing Database Applications

 Assume, for example, that a local video
store, Mega-Video, has two customers
named John Smith. If an employee searches
for the items John Smith has ordered, which
John Smith will the DBMS retrieve? In this
case, both of them. Since there is no way
to distinguish between the two customers,
the result of the query will be inaccurate.
Mega-Video can solve the problem by cre-
ating an entity identifier.

 Some entities, such as ORDER, come
with natural identifiers, such as an Order
Number. Typically, a unique, randomly
generated number is assigned to entity
identifiers.

 A constraint is a rule to which some
elements in a database must adhere. All

entities must have a unique identifier that is a constraint. That is to say, when an
instance of an entity in a database is stored, the DBMS needs to ensure that the
new instance has a unique identifier. The enforcement of a variety of database con-
straints helps to maintain data consistency and accuracy.

 ATTRIBUTES

 There are several types of attributes, including:

 ■ Simple versus composite.

 ■ Single-valued versus multi-valued.

 ■ Stored versus derived.

 ■ Null-valued.

 Simple versus Composite

 Composite attributes can be divided into smaller subparts, which represent more
basic attributes that have their own meanings. A common example of a composite
attribute is Address (see Figure T5.3). Address can be broken down into a number of
subparts, such as Street, City, State, Zip Code. Street may be further broken down by
 Number, Street Name, and Apartment/Unit Number. Attributes that are not divis-
ible into subparts are called simple attributes.

 Single-Valued versus Multi-Valued

When creating a relational database, the attributes in the data model must be
single-valued. Single-valued means having only a single value of each attribute at
any given time. For example, a CUSTOMER entity allows only one Phone Number

FIGURE T5.2

 Customer Entity Instance

CUSTOMER #1111
Sam Smith
101 Main Street
Denver Colorado 80208
555-555-5555

CUSTOMER #1212
John Doe
101 Main Street
Vail Colorado 88888
666-666-6666

CUSTOMER #0001
Bill Miller
101 North Main Street
Englewood Colorado 80211
777-777-7777

CUSTOMER #0505
Jane Cook
101 South Main Street
Littleton Colorado 80126
444-444-4444

FIGURE T5.3

Composite Attributes
Address

State Zip
CodeCityStreet

A Composite Attribute

bal76744_plugint05_002-021.indd T5-4 2/21/08 11:54:31 AM

Plug-In T5 Designing Database Applications * T5-5

for each CUSTOMER. If a CUSTOMER has
more than one Phone Number and wants
them all included in the database, then the
 CUSTOMER entity cannot handle them.

 The existence of more than one Phone
Number turns the Phone Number attri-
bute into a multi-valued attribute. Multi-
valued means having the potential to con-
tain more than one value for an attribute
at any given time. An entity in a relational
database cannot have multi-valued attri-
butes. Those attributes must be handled
by creating another entity to hold them.

 In the case of the multiple Phone Num -
ber (s), a PHONE NUMBER entity needs
to be created. Each instance of the entity
would include the Customer Number of
the person to whom the Phone Number
belonged along with the Phone Number. If
a customer had two Phone Number (s), then
there would be two instances of the PHONE
NUMBER entity for the CUSTOMER (see
 Figure T5.4).

 Multi-valued attributes can cause prob-
lems with the meaning of data in the data-
base, significantly slow down searching, and
place unnecessary restrictions on the amount of data that can be stored. Relational
databases do not allow multi-valued attributes for this reason. For example, an
 EMPLOYEE entity with attributes for the Name(s) and Birthdate(s) of dependents
would be considered multi-valued.

 When searching a multi-valued attribute, a DBMS must search each value in the
attribute, most likely scanning the contents of the attribute sequentially. A sequen-
tial search is the slowest type of search available.

 Generally, a multi-valued attribute is a major hint that another entity is needed.
The only way to handle multiple values of the same attribute is to create an entity
for which multiple instances can be stored, one for each value of the attribute. In
the case of the EMPLOYEE entity, a DEPENDENT entity that could be related to
the EMPLOYEE entity needs to be created. There would be one occurrence of the
 DEPENDENT entity related to an occurrence of the EMPLOYEE entity for each
of an employee’s dependents. In this way, there is no limit to the number of an
employee’s dependents. In addition, each occurrence of the DEPENDENT entity
would contain the Name and Birthdate of only one dependent, eliminating any
confusion about which Name was associated with which Birthdate, as suggested
in Figure T5.5 . Searching would also be faster because the DBMS could use quicker
search techniques on the individual DEPENDENT entity occurrences, without
resorting to the slow sequential search.

 Stored versus Derived

If an attribute can be calculated using the value of another attribute, it is called a
 derived attribute. The attribute that is used to derive the attribute is called a stored
attribute. Derived attributes are not stored in the file, but can be derived when
needed from the stored attributes. One example of a derived and stored attribute
is a person’s age. If the database has a stored attribute such as the person’s Date
of Birth, then you can create a derived attribute called Age from taking the Current
Date (this is pulled from the system the database is running on) and subtracting the
 Date of Birth to get the age.

PHONE NUMBER 1111

777-777-7777

PHONE NUMBER 1111

555-555-5555

PHONE NUMBER 2222

444-444-4444

CUSTOMER 1111
Sam Smith
101 Main Street
Denver Colorado 80208

CUSTOMER 2222
John Doe
101 Main Street
Vail Colorado 88888

FIGURE T5.4

Customer Entity and Phone
Number Entity

bal76744_plugint05_002-021.indd T5-5 2/21/08 11:54:31 AM

T5-6 * Plug-In T5 Designing Database Applications

 Null-Valued

There are cases where an attribute does
not have an applicable value for an attri-
bute. For these situations, the null-valued
attribute is created. A person who does
not have a mobile phone would have null
stored at the value for the Mobile Phone
Number attribute. Null can also be used
in situations where the attribute value is
unknown. There are two cases where this
can occur, one where it is known that the
attribute is valued, but the value is miss-
ing, for example Hair Color. Every person
has a hair color, but the information may
be missing. Another situation is if Mobile
Phone Number is null, it is not known if the
person does not have a mobile phone or if
that information is just missing.

 Documenting Logical
Data Relationships
 The two most commonly used styles of
ERD notation are Chen, named after

the originator of entity-relationship modeling, Dr. Peter Chen, and Information
Engineering, which grew out of work by James Martin and Clive Finkelstein. It does
not matter which is used, as long as everyone who is using the diagram understands
the notation.

 The Chen model uses rectangles to represent entities. Each entity’s name
appears in the rectangle and is expressed in the singular, as in CUSTOMER. The
original Chen model did not provide a method for showing attributes on the ERD
itself. However, many people have extended the model to include the attributes in
ovals as illustrated in Figure T5.6 .

 BASIC DATA RELATIONSHIPS

 The relationships that are stored in a database are between instances of entities.
For example, a Mega-Video customer is related to the ITEM (s) he or she ORDER (s).
Each instance of the CUSTOMER entity is related to instances of the specific ITEM
ordered (see Figure T5.7). This is a purely conceptual representation of what is in

the database and is completely unre-
lated to the physical storage of the data.

 When data relationships are docu-
mented, such as drawing an ERD, types of
relationships among entities are shown,
displaying the possible relationships that
are allowable in the database. Unless a
relationship is mandatory, there is no
requirement that every instance of an
entity be involved in the documented rela-
tionships. For example, Mega-Video could
store information about a CUSTOMER
without the customer having any current
 ORDER (s) to which it is related.

DEPENDENT #1002
Bill Smith
101 Main Street
Denver Colorado 80208
11/4/1994

DEPENDENT #1001
Sue Smith
101 Main Street
Denver Colorado 80208
5/14/1990

DEPENDENT #2001
Jane Doe
101 Main Street
Vail Colorado 88888
5/16/2000

EMPLOYEE #1000
Sam Smith
101 Main Street
Denver Colorado 80208
555-555-5555

EMPLOYEE #2000
John Doe
101 Main Street
Vail Colorado 88888
666-666-6666

FIGURE T5.5

Employee Entity and
Dependent Entity

FIGURE T5.6

Chen Model with
Attributes

CUSTOMER StreetCredit Card
Exp.

Credit Card
No. Zip

Code State
City

Last Name
First Name

Customer
Number

bal76744_plugint05_002-021.indd T5-6 2/21/08 11:54:32 AM

Plug-In T5 Designing Database Applications * T5-7

 Once the basic entities and their attri-
butes in a database environment have
been defined, the next task is to identify
the relationships among those entities.
There are three basic types of relation-
ships: (1) one-to-one, (2) one-to-many,
and (3) many-to-many.

 One-to-One

A one-to-one (1:1) relationship is between
two entities in which an instance of entity
A can be related to only one instance of
entity B and entity B can be related to
only one instance of entity A. Consider an
airport in a small town and the town in
which the airport is located, both of which
are described in a database of small town
airports (this would not be true for some
major metropolitan cities, such as New
York City with two major airports). Each of
these might be represented as an instance of a different type of entity. As shown in
 Figure T5.8 , the relationships between the two instances can then be expressed as
“The airport is located in one and only one town and the town contains one and
only one airport.” The Chen method, as displayed in Figure T5.8 , uses rectangles to
document entities, a diamond to represent the relationship, and numbers to show
the type of relationship (in this example 1:1).

 This is a true one-to-one relationship because at no time can a single AIRPORT
be related to more than one TOWN and no TOWN can be related to more than one
 AIRPORT. Although there are municipalities that have more than one AIRPORT, the
 TOWN(s) in this database are too small for that to happen.

 True one-to-one relationships are rare in business. For example, assume that
Mega-Video decides to start dealing with a new distributor of DVDs. At first, the
company orders only one specialty title from the new distributor. The instance of
the DISTRIBUTOR entity in the database is related to just the one merchandise
 ITEM instance. This would then appear to be a one-to-one relationship. Over time,
Mega-Video may choose to order more titles from the new distributor, which would
violate the rule that the distributor must be related to no more than one merchan-
dise item. Therefore, this is not a true one-to-one relationship (this is an example of
a one-to-many relationship, which is discussed next).

 What if Mega-Video created a special CREDIT CARD entity to hold data about
the credit cards that CUSTOMER(s) used to secure their rentals? Each CUSTOMER
has only one credit card on file with the store. There would therefore seem to be a
one-to-one relationship between the instance of a CUSTOMER(s) entity and the
instance of the CREDIT CARD entity. In this case, it is a single entity. The Credit
Card Number, the Type of Credit Card, and the Credit Card Expiration Date can all
become attributes of the CUSTOMER(s) entity. Given that only one credit card is
stored for each customer, the attributes are not multi-valued; no separate entity is
needed.

 One-to-Many

A one-to-many (1:M) relationship is between two enti-
ties, in which an instance of entity A can be related to
zero, one, or more instances of entity B and entity B
can be related to only one instance of entity A. This
is the most common type of relationship. In fact,

CUSTOMER #1111
Sam Smith
101 Main Street
Denver Colorado 80208
555-555-5555

CUSTOMER #1111
11/4/2008
$25.50

CUSTOMER #0505
11/7/2008
$10.50

CUSTOMER #0505
Jane Cook
101 South Main Street
Littleton Colorado 80126
444-444-4444

CUSTOMER #0505
12/24/2008
$11.50

CUSTOMER #1111
12/18/2008
$20.00

FIGURE T5.7

Entity Relationships

TOWN Has
1 1

AIRPORT

FIGURE T5.8

A One-to-One
Relationship

bal76744_plugint05_002-021.indd T5-7 2/21/08 11:54:32 AM

T5-8 * Plug-In T5 Designing Database Applications

most relational databases are constructed from the rare one-to-one relationship
and numerous one-to-many relationships. Mega-Video typically ORDER(s) many
 ITEM(s) (in this scenario, an item is a DVD title) from each DISTRIBUTOR and a
given ITEM comes from only one DISTRIBUTOR as Figure T5.9 demonstrates.
Similarly, a CUSTOMER places many ORDER(s), but an ORDER comes from only
one CUSTOMER.

 When specifying data relationships, there needs to be an indication of the pos-
sible relationships, but an indication is not necessary that all instances of all enti-
ties participate in every documented relationship. There is no requirement that a
 DISTRIBUTOR be related to any merchandise ITEM, much less one or more mer-
chandise ITEM(s). It might not make much sense to have a DISTRIBUTOR in the
database from whom the company did not ORDER, but there is nothing to prevent
data about that DISTRIBUTOR from being stored. You will notice that there is an
M:N relationship between ORDER and ITEM, which we will discuss next.

 Many-to-Many

A many-to-many (M:N) relationship is between two entities in which an instance
of entity A can be related to zero, one, or more instances of entity B and entity B
can be related to zero, one, or more instances of entity A. There is a many-to-many
relationship between a Mega-Video ORDER and the merchandise ITEM carried by
the store (refer to Figure T5.10). A CUSTOMER can ORDER many ITEM(s) and each
 ITEM(s) can be ORDER(ed) from many CUSTOMERs.

 Many-to-many relationships bring two major problems to a database’s design.
These issues and the way in which they are solved are discussed in the section
“Dealing with Many-to-Many Relationships.”

 RELATIONSHIP CONNECTIVITY AND CARDINALITY

 Cardinality expresses the specific number of entity occurrences associated with
one occurrence of the related entity. In the Chen model, the cardinality is indicated
by placing numbers beside the entities in the format of (x, y). The first number in
the cardinality represents the minimum value and the second number stands for
the maximum value.

 The data relationships discussed thus far have defined those relationships
by starting each with “zero,” indicating that the car-
dinality in a given instance of an entity in a relation-
ship is optional. Mega-Video can store data about a
 CUSTOMER in its database before the CUSTOMER
places an ORDER. An instance of the CUSTOMER

 FIGURE T5.9

 A One-to-Many
Relationship

CUSTOMER Has
1 M

ORDER Contains

Supplied

M N

M

1

ITEM

DISTRIBUTOR

 FIGURE T5.10

 A Many-to-Many
Relationship

ORDER Has
M N

ITEM

bal76744_plugint05_002-021.indd T5-8 2/21/08 11:54:33 AM

Plug-In T5 Designing Database Applications * T5-9

entity does not have to be related to any instances of the
 ORDER entity, meaning there is an optional cardinality.

 However, the reverse is not true for the Mega-Video
database. An ORDER must be related to a CUSTOMER.
Without a CUSTOMER, an ORDER cannot exist. As a
result, an ORDER is an example of a weak entity, one that cannot exist in the data-
base unless a related instance of another entity is present and related to it. An
instance of the CUSTOMER entity can be related to zero, one, or more orders. An
instance of the ORDER entity must be related to one and only one CUSTOMER,
having a cardinality of (1, 1). The “zero” option is not available to a weak entity.
The relationship between an instance of the ORDER entity and the CUSTOMER is a
mandatory relationship, as illustrated in Figure T5.11 .

 Identifying weak entities and their associated mandatory relationships is impor-
tant for maintaining the consistency and integrity of the database. Consider the
effect of storing an ORDER without knowing the CUSTOMER to which it belongs.
There would be no way to ship the ITEM to the CUSTOMER, causing a company to
lose business.

 In contrast, a merchandise ITEM can exist in a database without indicating the
 DISTRIBUTOR from which it comes (assuming that there is only one source per
item). Data about a new ITEM can be stored before a DISTRIBUTOR is selected.
In this case, the relationship between a DISTRIBUTOR and an ITEM is actually
zero-to-many.

 Documenting Relationships—The Chen Method

As briefly described earlier, the Chen method uses diamonds for relationships and
lines to show the type of relationship between entities. Figure T5.12 displays the
relationship between a Mega-Video CUSTOMER and an ORDER. The number “1”
next to the CUSTOMER entity indicates that an ORDER
belongs to at most one CUSTOMER. The letter “M” next
to the ORDER entity indicates that a CUSTOMER can
place one or more ORDER(s). The word within the rela-
tionship diamond gives some indication of the mean-
ing of the relationship.

 There is one major limitation to the Chen method of drawing ERDs—there is
no obvious way to indicate weak entities and mandatory relationships. An ORDER
should not exist in the database without a CUSTOMER. ORDER is a weak entity and
its relationship with a CUSTOMER is mandatory.

 Some database designers have added a new symbol to the Chen method for a
weak entity, a double-bordered rectangle, as shown in Figure T5.13 . Whenever a
weak entity is introduced into an ERD, it indicates that the relationship between
that entity and at least one of its parents is mandatory.

 DEALING WITH MANY-TO-MANY RELATIONSHIPS

 There are problems associated with many-to-many relationships. One problem
is straightforward—the relational data model cannot handle many-to-many rela-
tionships directly; it is limited to one-to-one and one-to-many relationships. This
means that the many-to-many relationships need to be replaced with a collection
of one-to-many relationships in a relational DBMS.

 A second problem is a bit more subtle. To understand it, consider the relation-
ship between an ORDER Mega-Video places with
a DISTRIBUTOR and the merchandise ITEM in the
 ORDER. There is a many-to-many relationship between
the ORDER and the ITEM because each ORDER can

 FIGURE T5.11

 A Weak Entity and a
Mandatory Relationship

CUSTOMER Places
1 M

(1,1) (0,N)
ORDER

 FIGURE T5.12

 Chen Method Weak Entity
Symbol

CUSTOMER Has
1 M

ORDER

 FIGURE T5.13

 Chen Method with
Relationship

CUSTOMER Has
1 M

ORDER

bal76744_plugint05_002-021.indd T5-9 2/21/08 11:54:33 AM

T5-10 * Plug-In T5 Designing Database Applications

be for many ITEM(s) and, over time, each ITEM can appear on many ORDER(s).
Whenever Mega-Video places an ORDER for an ITEM, the number of copies of
the ITEM varies, depending on the perceived demand for the ITEM at the time the
 ORDER is placed. Now the question: Where should we store the Quantity being
ordered? It cannot be part of the ORDER entity because the Quantity depends on
which item is being ordered. Similarly, the Quantity cannot be part of the ITEM
entity because the Quantity depends on the specific ORDER. To solve this you
would need to create a composite entity, which is discussed in the next section.

 Composite Entities

Entities that exist to represent the relationship between two other entities are
known as composite entities. As an example of how composite entities work, con-
sider the relationship between an ORDER placed by a CUSTOMER and the ITEM(s)
in the ORDER. There is a many-to-many relationship between an ITEM and an
 ORDER: An ORDER can contain many ITEM(s) and over time, the same ITEM can
appear on many ORDER(s) (refer back to Figure T5.9).

 What is needed is an entity that displays a specific title that appears on a specific
order. In Figure T5.14 , there are three ORDER instances and three merchandise
 ITEM instances. The first ORDER for Customer Number 1111 (Order Number 1000)
contains only one ITEM (Item Number 9244). The second ORDER for Customer
Number 1111 (Order Number 1001) contains a second copy of Item Number 9244,
but ordered on a different date. Order Number 1002, which belongs to Customer
Number 1211, has two ITEM(s) (Item Number 9250 and Item Number 9255).

 Therefore, a composite entity called ORDER LINE (think of it as a line item on
a packing slip) is created to represent the relationship between an ORDER and an
 ITEM. Figure T5.15 demonstrates the Chen notation for ERDs; the symbol for a
composite entity is the combination of a rectangle and a diamond.

 Each ITEM is related to one ORDER LINE instance for each ORDER on which
it appears. Each ORDER LINE instance is related to one and only one ORDER; it
is also related to one and only one ITEM. As a result, the relationship between an
 ORDER and its ORDER LINE is one-to-many (one order has one or more line items)
and the relationship between an ITEM and the ORDER LINE on which it appears
is one-to-many (one item appears in zero, one, or more line items). The presence

 FIGURE T5.14

 Composite Entity Example

Order Number 1000
Customer Number 1111
11/1/2008
$19.95

Customer Number 1111
Item Number 9244

Item Number 9244
The Last Samurai
$9.95

Order Number 1001
Customer Number 1111
11/10/2008
$19.95

Customer Number 1111
Item Number 9244

Customer Number 1211
Item Number 9255

Item Number 9255
Something’s Gotta Give
$7.95

Order Number 1002
Customer Number 1211
12/11/2008
$34.90

Customer Number 1211
Item Number 9250

Item Number 9250
Lord of the Rings
$9.95

bal76744_plugint05_002-021.indd T5-10 2/21/08 11:54:34 AM

Plug-In T5 Designing Database Applications * T5-11

of the composite entity has removed the original many-to-many relationship and
turned it into two one-to-many relationships.

 SCHEMAS

 A schema is a completed entity relationship diagram representing the overall, logi-
cal plan of a database. This is the way in which the people responsible for maintain-
ing the database will view the design. Users (both interactive users and application
programs) may work with only a portion of the logical schema. In addition, both
the logical schema and the users’ views of the data are at the same time distinct
from the physical storage.

 The underlying physical storage, which is managed by the DBMS, is known as
the physical schema. It is for the most part determined by the DBMS (only very large
DBMSs give any control over physical storage). The benefit of this arrangement is
that both database designers and users do not need to be concerned about physi-
cal storage, greatly simplifying access to the database and making it much easier to
make modifications.

 The Relational Data Model
 Once the ERD is completed, it can be translated from a conceptual logical schema
into the formal data model required by the DBMS. Most database installations are
based on the relational data model.

 The relational data model is the result of the work of one person, Edgar (E. E)
Codd. During the 1960s, Dr. Codd, trained as a mathematician, began working with
existing data models. His experience led him to believe that these were clumsy and
unnatural ways of representing data relationships. He therefore went back to math-
ematical set theory and focused on the construct known as a relation. Dr. Codd
extended that concept to produce the relational database model, which he intro-
duced in a historic seminal paper in 1970.

 UNDERSTANDING RELATIONS

 In mathematical set theory, a relation is the definition of a table with columns
(e.g., attributes) and rows (e.g., records). The word “table” is used synonymously
with “entity.” The definition specifies what will be contained in each column
of the table, but does not include information. When rows of information are
included, an instance of a relation is created, such as the CUSTOMER relation in
 Figure T5.16 .

CUSTOMER Places
1 M

ORDER Has

Contains

1 M

M

1

ORDER
LINE

ITEM

 FIGURE T5.15

 ERD of Composite Entity

bal76744_plugint05_002-021.indd T5-11 2/21/08 11:54:34 AM

T5-12 * Plug-In T5 Designing Database Applications

 At first glance, a relation looks much
like a portion of a spreadsheet. Since it
has its underpinnings in mathematical set
theory, a relation has some very specific
characteristics that distinguish it from
other ways of looking at information. Each
of these characteristics forms the basis of
a constraint that will be enforced by the
DBMS.

 Columns and Column Characteristics

Two or more tables within the same relational schema may have columns with the
same names; in fact, in some circumstances, this is highly desirable. But a single
table must have unique column names. When the same column name appears
in more than one table and tables that contain that column are used in the same
operation (e.g., query), the name of the column must be qualified by preceding it
with the name of the table and a period, as in:

 CUSTOMER.(Customer Number, First Name, Last Name, Phone Number)

Note the proper notation is to capitalize the table name (e.g., CUSTOMER) and all
columns are in title case (Customer Number) surrounded by parenthesis.

 Rows and Row Characteristics

A row in a relation has the following properties:

 ■ Only one value at the intersection of a column and row—a relation does not
allow multi-valued attributes.

 ■ Uniqueness—there are no duplicate rows in a relation.

 ■ A primary key—a primary key is a field (or group of fields) that uniquely identi-
fies a given entity in a table.

 Primary Key

A primary key makes it possible to uniquely identify every row in a table. The pri-
mary key is important to define in order to retrieve every single piece of informa-
tion put into a database.

 As far as a relational database is concerned, there are only three pieces of infor-
mation to retrieve for any specific bit of information: (1) the name of the table,
(2) the name of the column, and (3) the primary key of the row. If primary keys are
unique for every row, then the results will be exactly what was searched for. If they
are not unique, then the data being retrieved will be a row with the primary key
value, which may not be the row containing the data being searched.

 The proper notation to use when documenting the name of the table, the col-
umn name, and primary key is as follows:

 CUSTOMER(Customer Number, First Name, Last Name, Phone Number)

Again, notice that the table name is capitalized, the primary key is underlined, and
it is the first attribute listed containing the column names.

 Along with being unique, a primary key must not contain the value null. Null is a
special database value meaning “unknown.” It is not the same as a zero or a blank. If
one row has a null primary key, then the data structure is all right. The minute a sec-
ond one is introduced, the property of uniqueness is lost. The presence of nulls in
any primary key column is forbidden. This constraint, known as entity integrity, will
be enforced by a DBMS whenever information is entered or modified. Entity integ-
rity is a constraint on a relation that states that no part of a primary key can be null.

 FIGURE T5.16

 A Sample Customer
Relation

Customer

Customer Number First Name Last Name Phone Number

 0001 Bill Miller 777-777-7777

 0505 Jane Cook 444-444-4444

 1111 Sam Smith 555-555-5555

 1212 John Doe 666-666-6666

bal76744_plugint05_002-021.indd T5-12 2/21/08 11:54:35 AM

Plug-In T5 Designing Database Applications * T5-13

 Selecting a primary key can be a challenge. Some entities have natural primary
keys, such as purchase order numbers, as previously mentioned. Primary keys are
often arbitrary, unique identifiers, such as those a company attaches to the orders
it sends to vendors. Two qualities of all primary keys are:

 1. A primary key should contain some value that can never be null.

 2. A primary key should never change.

 REPRESENTING DATA RELATIONSHIPS

 The use of identifiers in more than one relation was mentioned in the preceding
section. This is the way in which relational databases represent relationships bet-
ween entities.

 Each table in Figure T5.17 is directly analogous to the entity by the same name in
the Mega-Video ERD. The CUSTOMER table is identified by a Customer Number, a
randomly generated unique primary key. The ORDER table is identified by an Order
Number, another arbitrary unique primary key assigned by Mega-Video. The table
 ORDER LINE tells the company which ITEM(s) are part of which ORDER. This table
requires a concatenated primary key because multiple ITEM(s) can appear on mul-
tiple ORDER(s). The selection of this primary key, however, has more significance
than simply identifying each row; it also represents a relationship between the
 ORDER LINES, the ORDER on which they appear, and the ITEM(s) being ordered.
The ITEM table is identified by an Item Number, an arbitrary unique primary key.

 The Item Number column in the ORDER LINE table is the same as the primary
key of the ITEM table. This indicates a one-to-many relationship between the two
tables. Similarly, there is also a one-to-many relationship between the ORDER and
 ORDER LINE tables because the Order Number column in the ORDER LINE table is
the same as the primary key of the ORDER table.

 When a table contains a column that is the same as the primary key of another
table, the column is called a foreign key. A foreign key is a primary key of one table
that appears as an attribute in another table and acts to provide a logical relation-
ship between the two tables. The matching of foreign keys to primary keys repre-
sents data relationships in a relational database.

 FIGURE T5.17

 Relations from the
Mega-Video Database

CUSTOMER

ORDER LINE

ITEM

ORDER

Customer Number

Primary
key

Primary
key

Primary
key

Foreign key

First Name Last Name Phone

Item Number

Title

Quantity Shipped?Order Number

Distributor Number PriceItem Number

Order Number Customer Number Order Date

1111 Sam

Jane

Smith

1000 1111

11111001

1002

1000

1001

1002

1002

9244 1 Y

Y

Y

Y

1

1

1

002 $9.95

9.95

7.95

9244

9250

9244 The Last Samurai

Lord of the Rings

Something's Gotta Give

9250

9255

9255

Foreign key

Foreign key

Cook

555-555-5555

444-444-44440505

0505

11/1/2006

12/11/2006

11/10/2006

002

004

bal76744_plugint05_002-021.indd T5-13 2/21/08 11:54:37 AM

T5-14 * Plug-In T5 Designing Database Applications

 Foreign keys may be a part of a concatenated primary key or they may not be
part of their table’s primary key at all. Consider a pair of Mega-Video CUSTOMER
and ORDER relations:

 CUSTOMER(Customer Number, First Name, Last Name, Phone Number)

 ORDER(Order Number, Customer Number, Order Date)

 The Customer Number column in the ORDER table is a foreign key that matches
the primary key of the CUSTOMER table. It represents the one-to-many relation-
ship between CUSTOMER(s) and the ORDER(s) they place. However, the Customer
Number is not part of the primary key of the ORDER table; it is a nonkey attribute
that is nonetheless a foreign key, which is represented by using the double under-
line notation.

 Technically, foreign keys need not have values unless they are part of a concate-
nated primary key; they can be null. However, in this particular database, Mega-
Video would be in serious trouble if a Customer Number was null, since there would
be no way to know which CUSTOMER placed an ORDER.

 A relational DBMS uses the relationships indicated by matching data between pri-
mary and foreign keys. Assume that a Mega-Video employee wanted to see what Titles
had been ordered with Order Number 1002. First, the DBMS identifies the rows in
the ORDER LINE table that contain an Order Number of 1002. Then, it takes the Item
Number(s) from the rows and matches them to the Item Number(s) in the ITEM table.
In the rows where there are matches, the DBMS finally retrieves the associated Title.

 Foreign Keys and Primary Keys in the Same Table

Foreign keys do not necessarily need to reference a primary key in a different table;
they need only reference a primary key. As an example, consider the following
employee relation:

 EMPLOYEE(Employee Number, First Name, Last Name, Department, Manager
Number)

 A manager is also an employee. Therefore, the Manager Number, although
named differently from the Employee Number, is actually a foreign key that refer-
ences the primary key of its own table. The DBMS will therefore always ensure that
whenever a user enters a Manager Number, that manager already exists in the table
as an employee. Having a foreign key reference a primary key in the same table is
relatively rare.

 Referential Integrity

The procedure described in the preceding section works very well unless there is no
 Order Number in the ORDER table to match a row in the ORDER LINE table. This is
undesirable since there is no way to ship the ordered ITEM because there is no way
to find out which CUSTOMER placed the ORDER.

 The relational data model enforces a constraint called referential integrity, which
states that every non-null foreign key value must match an existing primary key
value. Of all the constraints in a relational database, this is probably the most impor-
tant because it ensures the consistency of the cross-references among tables.

 Referential integrity constraints stored in the database are enforced automati-
cally by the DBMS. As with all other constraints, each time a user enters or modifies
data, the DBMS checks the constraints and verifies that they are met. If the con-
straints are violated, the data modification will not be allowed.

 The Data Dictionary

The data dictionary is a file that stores definitions of information types, identifies
the primary and foreign keys, and maintains the relationships among the tables.

bal76744_plugint05_002-021.indd T5-14 2/21/08 11:54:38 AM

Plug-In T5 Designing Database Applications * T5-15

The structure of a relational database is stored in the database’s data dictionary,
or catalog. The data dictionary is made up of a set of relations, identical in proper-
ties to the relations used to hold information. No user can modify the data diction-
ary tables directly. Data manipulation language commands (e.g., Structured Query
Language) that create and remove database structural elements work by modifying
rows in data dictionary tables.

 The following types of information are typically found in a data dictionary:

 ■ Definitions of the columns that make up each table.

 ■ Integrity constraints placed on relations.

 ■ Security information (which user has the right to perform which operation of
which table).

 When a user attempts to access information in any way, a relational DBMS first
goes to the data dictionary to determine whether the database elements the user
has requested are actually part of the schema. In addition, the DBMS verifies that
the user has the access rights to whatever he or she is requesting.

 When a user attempts to modify information, the DBMS goes to the data dic-
tionary to look for integrity constraints that may have been placed on the relation
(see Figure T5.18). If the information has met the constraints, the modification is
permitted. Otherwise, the DBMS returns an error message and does not allow the
change. All access to a relational database is through the data dictionary.

 RELATIONSHIPS AND BUSINESS RULES

 In many ways, database design is as much an art as a science. The “correct” design
for a specific business depends on the business rules; what is correct for one orga-
nization may not be correct for another.

 Assume there is more than one store when creating a database for a retail estab-
lishment. One of the elements being modeled in the database is an employee’s
schedule. Before that can be done, the question of the relationship between an
employee and a store needs to be answered: Is it one-to-many or many-to-many?
Does an employee always work at only one store, in which case the relationship
is one-to-many, or can an employee split his or her time between more than one
store, producing a many-to-many relationship? This is not a matter of right or
wrong database design, but an issue of how the business operates. These types of
questions must be answered before you design a database.

 Normalization
 Normalization is the process of placing attributes into tables that avoids the prob-
lems associated with poor database design. Given any group of entities and attri-
butes, there is a large number of ways to group them into relations.

 There are at least two ways to approach normalization. The first is to work from
an ERD. If the diagram is drawn correctly, then there are some simple rules to use to
translate it into relations that will avoid most relational design problems. The draw-
back to this approach is that it can be difficult to determine whether the design is
correct. The second approach is to use the theoretical concepts behind good design
to create relations. This is a bit more difficult than working from an ERD, but often
results in a better design.

 NORMAL FORMS

 Normal forms are the theoretical rules that the design of a relation must meet. Each
normal form represents an increasingly stringent set of rules. Theoretically, the
higher the normal form, the better the design of the relation.

bal76744_plugint05_002-021.indd T5-15 2/21/08 11:54:38 AM

T5-16 * Plug-In T5 Designing Database Applications

 FI
G

U
R

E
 T

5.
18

 Da
ta

 D
ic

tio
na

ry
 E

xa
m

pl
e

Ta
bl

e

Re
fe

re
nc

ed

N
am

e
A

ttr
ib

ut
e

N
am

e
Co

nt
en

ts

Ty
pe

Le

ng
th

Fo

rm
at

Ra

ng
e

Re
q’

d
Ke

y
Ta

bl
e

CU
ST

O
M

ER

Cu
st

om
er

 N
um

be
r

Cu
st

om
er

 N
um

be
r

VC
HA

R
10

X(

10
)

Y

PK

Fi

rs
t N

am
e

Fi
rs

t N
am

e
VC

HA
R2

12

X(

12
)

Y

La

st
 N

am
e

La
st

 N
am

e
VC

HA
R2

15

X(

15
)

Y

St

re
et

St

re
et

 A
dd

re
ss

VC

HA
R2

20

X(

20
)

Y

Ci

ty

Ci
ty

VC

HA
R2

20

X(

20
)

Y

St

at
e

St
at

e
VC

HA
R2

 2

X(

2)

Y

Zi

p
Co

de

ZI
P

Co
de

N

UM
BE

R
 5

99

99
9

Y

Cr

ed
it

Ca
rd

 N
o

Cr
ed

it
Ca

rd
 N

um
be

r
N

UM
BE

R
15

X(

15
)

Y

Cr

ed
it

Ca
rd

 E
xp

Cr

ed
it

Ca
rd

DA

TE

 8

M
M

/D
D/

YY
YY

Ex
pi

ra
tio

n
Da

te

O
RD

ER

Or
de

r N
um

be
r

Or
de

r N
um

be
r

N
UM

BE
R

 5

99
99

9
1-

99
99

9
Y

PK

Cu

st
om

er
 N

um
be

r
Cu

st
om

er
 N

um
be

r
VC

HA
R

10

X(
10

)

Y
FK

CU

ST
OM

ER

Or

de
r D

at
e

Or
de

r D
at

e
DA

TE

 8

M
M

/D
D/

YY
YY

Y

Or

de
r F

ill
ed

Or

de
r F

ill
ed

DA

TE

 8

M
M

/D
D/

YY
YY

Y

O
RD

ER
 L

IN
E

Or
de

r N
um

be
r

Or
de

r N
um

be
r

N
UM

BE
R

 5

99
99

9
1-

99
99

9
Y

FK

OR
DE

R

Ite

m
 N

um
be

r
Ite

m
 N

um
be

r
N

UM
BE

R
 5

99

99
9

1-
99

99
9

Y
FK

IT

EM

Qu

an
tit

y
Qu

an
tit

y
N

UM
BE

R
 3

99

9
 1

-9
99

Y

Pr

ic
e

Se
lli

ng
 P

ric
e

N
UM

BE
R

 5

$9
99

.9
9

Y

Sh

ip
pe

d
Sh

ip
pe

d
VC

HA
R2

 1

X

Y/

N

Y

IT
EM

Ite

m
 N

um
be

r
Ite

m
 N

um
be

r
N

um
be

r
 5

99

99
9

1-
99

99
9

Y
PK

Ti

tle

Ti
tle

VC

HA
R2

25

X(

25
)

Y

Di

st
rib

ut
or

Di

st
rib

ut
or

VC

HA
R2

20

X(

20
)

Y

Pr

ic
e

Pr
ic

e
N

um
be

r
 5

$9

99
.9

9

Y

bal76744_plugint05_002-021.indd T5-16 2/21/08 11:54:39 AM

Plug-In T5 Designing Database Applications * T5-17

 As illustrated in Figure T5.19 , there are
six nested normal forms, indicating that
if a relation is in one of the higher, inner
normal forms, it is also in all of the normal
forms surrounding it. In most cases, if rela-
tions are in third normal form (3NF), then
most of the problems common to bad rela-
tional designs are avoided. Boyce-Codd
(BCNF) and fourth normal form (4NF)
handle special situations that arise only
occasionally. Fifth normal form (5NF) is a
complex set of criteria that are extremely
difficult to work with. It is very difficult to
verify that a relation is in 5NF. Most prac-
titioners do not bother with 5NF, knowing
that if their relations are in 3NF (or 4NF if
the situation warrants), then their designs
are generally problem-free. BCNF, 4NF,
and 5NF are beyond the scope of this plug-
in; therefore they will not be discussed
beyond what is mentioned in this section.

 First Normal Form (1NF)

First normal form (1NF) is where each field in a table contains different informa-
tion. For example, in the column labeled “Customer,” only customer names or
numbers are permitted. A table is in first normal form (1NF) if the data are stored in
a two-dimensional table with no repeating groups.

 Although first normal form relations have no repeating groups, they are full of
other problems. Expressed in the notation for relations that have been used in this
plug-in, the relation notation would look like the following:

 ORDER(Customer Number, First Name, Last Name, Street, City, State, ZIP,
Phone, Order Number, Order Date, Item Number, Title, Price, Shipped)

 The first thing is to determine the primary key for this table. The Customer
Number alone will not be sufficient because the customer number repeats for every
item ordered by the customer. The Item Number will also not suffice, because it is
repeated for every order on which it appears. The Order Number cannot be used
because it is repeated for every item on the order. The only solution is a concatenated
key, in this example the combination of the Order Number and the Item Number.

 Given that the primary key is made up of the Order Number and the Item Number,
there are two important things that cannot be done with this relation:

 ■ Data about a customer cannot be added until the customer places at least one
order because without an order and an item on that order, there is no complete
primary key.

 ■ Data about a merchandise item cannot be added without that item being
ordered. There must be an Order Number to complete the primary key.

 First normal form relations can also present problems when deleting data.
Consider, for example, what happens if a customer cancels the order of a single item:

 ■ In cases where the deleted item was the only item on the order, all data about the
order is lost.

 ■ In cases where the order was the only order on which the item appeared, data
about the item is lost.

 ■ In cases where the deleted item was the only item ordered by a customer, all
data about the customer is lost.

 FIGURE T5.19

 Normal Forms

Boyce-Codd Normal Form (BCNF)

Fifth Normal
Form (5NF)

Fourth Normal Form (4NF)

Third Normal Form (3NF)

Second Normal Form (2NF)

First Normal Form (1NF)

bal76744_plugint05_002-021.indd T5-17 2/21/08 11:54:39 AM

T5-18 * Plug-In T5 Designing Database Applications

 There is a final type of inconsistency in the ORDER relation that is not related
to the primary key: a modification, or update, anomaly. The ORDER relation has
a great deal of unnecessary duplicated data, in particular, information about cus-
tomers. When a customer moves, then the customer’s data must be changed in
every row, for every item on every order ever placed by the customer. If every row is
not changed correctly, then data that should be the same are no longer the same.

 Second Normal Form (2NF)

Second normal form (2NF) is when the relation is in first normal form and all non-
key attributes are functionally dependent on the entire primary key. The solution
to anomalies in a first normal form relation is to break the relation down so that
there is one relation for each entity in the 1NF relation. The ORDER(s) relation, for
example, will break down into four relations (CUSTOMER, ORDER, ORDER LINE,
and ITEM). Such relations are in at least 2NF.

 Although second normal form eliminates problems from many relations, rela-
tions that are in second normal form still exhibit anomalies. Assume that each
DVD title that Mega-Video carries comes from one DISTRIBUTOR and that each
 DISTRIBUTOR has only one warehouse, which has only one Warehouse Phone
Number. The following relation is therefore in 2NF:

 ITEM (Item Number, Title, Distributor, Warehouse Phone Number)

 From each Item Number, there is only one value for the item’s Title, Distributor,
and Warehouse Phone Number. There is one insertion anomaly—data cannot be
inserted about a DISTRIBUTOR until an item from the DISTRIBUTOR is entered.
There is a deletion anomaly as well: if the only item from the DISTRIBUTOR is
deleted, the data about the DISTRIBUTOR is lost.

 Third Normal Form (3NF)

Third normal form (3NF) is when the relation is in second normal form and there
are no transitive dependencies. In terms of entities, the ITEM relation does contain
two entities: the merchandise ITEM and the DISTRIBUTOR. The relation needs to
be broken down into two smaller relations, both of which are now in 3NF:

 ITEM(Item Number, Distributor Number)

 DISTRIBUTOR(Distributor Number, Warehouse Phone Number)

 NORMALIZED RELATIONS AND DATABASE PERFORMANCE

 Normalizing the relations in a database separates entities into their own relations
and makes it possible to enter, modify, and delete data without disturbing entities
other than the one directly being modified. When relations are split so that rela-
tionships are represented by matching primary and foreign keys, DBMS is forced
to perform matching operations between relations whenever a query requires data
from more than one table. In a normalized database, data is stored about an ORDER
in one relation, data about a CUSTOMER in a second relation, and data about the
 ORDER LINE(s) in yet a third relation. The operation typically used to bring the
data into a single table to prepare an output, such as an invoice, is known as a join.
A join is an operation that combines two relations by matching rows based on val-
ues in columns in the two tables. The matching relationship is usually primary key
to foreign key.

 In theory, a join looks for rows with matching values between two tables and
creates a new row in a result table every time it finds a match. In practice, however,
performing a join involves manipulating more data than the simple combination of
the two tables being joined would suggest. Joins of large tables (those of more than
a few hundred rows) can significantly slow down the performance of a DBMS.

bal76744_plugint05_002-021.indd T5-18 2/21/08 11:54:40 AM

Plug-In T5 Designing Database Applications * T5-19

 P L U G - I N S U M M A R Y *
 A database management system, or DBMS, is considered a basic component of data

processing. The main advantage of using a DBMS is to enforce a logical and struc-
tured organization of the data. Additionally, using a DBMS provides a central store

of data that can be accessed by multiple users, from multiple locations. Data can be shared
among multiple applications, instead of new iterations of the same data being reproduced and
stored in new files for every new application.

 The principal type of database used is a relational DBMS. Designing a database requires
both a logical and physical design. The organization’s data model should reflect its key busi-
ness processes and decision-making requirements. Entity relationship diagrams and normal-
ization are processes used to design a relational database.

M A K I N G B U S I N E S S D E C I S I O N S*
 1. SportTech Events

 SportTech Events puts on athletic events for local high school athletes. The company
needs a database designed to keep track of the sponsor for the event and where the event
is located. Each event needs a description, date, and cost. Separate costs are negotiated
for each event. The company would also like to have a list of potential sponsors that in-
cludes each sponsor’s contact information such as the name, phone number, and address.
Each event will have a single sponsor, but a particular sponsor may sponsor more than one
event. Each location will need an ID, contact person, and phone number. A particular event
will use only one location, but a location may be used for multiple events. SportTech asks
you to create an ERD from the information described above, and then create a normaliza-
tion structure in 3NF.

 2. Course and Student Schedules
 Dick Scudder, the chairperson of the information technology department at the University of
Denver, needs to create a database to keep track of all the courses offered by the depart-
ment. In addition, Dick would like the database to include each instructor’s basic contact
information, such as ID number, name, office location, and phone number. Currently, Dick
has nine instructors (seven full-time faculty members and two adjuncts) in the department.

 For each course, Dick would like to keep track of the course ID, title, and number of credit
hours. When courses are offered, the section of the course receives an ID number, and with
that number, the department keeps track of which instructor is teaching the course.

 Finally, Dick needs to be able to keep track of the IT students and to know which courses
each student has taken. The information he would like to know about each student includes
ID number, name, and phone number. He also needs to know what grade the student re-
ceives in each course.

 Dick has asked you to create an ERD from the information described above, and then
create a normalization structure in 3NF.

 3. Foothills Athletics
 Foothills Athletics is an athletic facility offering services in the greater Highlands Ranch,
Colorado, area. All property owners living in Highlands Ranch are members of the Recreation
Function of the Highlands Ranch Community Association (HRCA). Foothills Athletics consists

Plug-In T5 Designing Database Applications * T5-19

bal76744_plugint05_002-021.indd T5-19 2/21/08 11:54:40 AM

T5-20 * Plug-In T5 Designing Database Applications

of a recreation facility where residents have the opportunity to participate in athletic activi-
ties, enroll their children in day camp or preschool, or participate in an HRCA program.

 Personnel: Foothills Athletics has a number of employees, primarily fitness course in-
structors and administrative personnel (e.g., billing clerks, equipment managers, etc.). Re-
cords are kept on each employee, past and present, detailing employee name, address,
phone number, date of hire, position, and status as either a current or former employee.
Employees are assigned a unique four-digit Employee ID number when they are hired.

 Members: When joining the Foothills Athletic center, individuals are assigned a unique
four-digit Member ID number. This information along with their name, address, phone
number, gender, birth date, and date of membership are recorded. At the time of enroll-
ment, each member decides on one of three available membership types along with a fixed
membership fee: Platinum ($400), Gold ($300), and Silver ($200). This is a one-time fee that
establishes a lifetime membership.

 Facilities and Equipment: Foothills Athletics has a variety of facilities and equipment
choices. Each facility has a unique room number and a size limitation associated with it.
Some of the rooms contain pieces of exercise equipment; all have a serial number (pro-
vided by its manufacturer) that is used for inventory purposes. In addition, for each piece
of equipment, purchase date and the date of its last maintenance are recorded. Each piece
of equipment belongs to a specific equipment type, such as stair master machine, and is
assigned a unique three-digit identification number. The description, the manufacturer’s
model number, and the recommended maintenance interval for that model of equipment
are also kept on file. Each equipment type is associated with a single manufacturer that
is referenced by a unique two-digit manufacturer ID number. Additional information main-
tained on each manufacturer is the company name, address, and phone number.

 The Task: You have been hired to assist Foothills Athletics with creating a database
structure that will incorporate all the features and business rules mentioned above. You
should start out developing an ERD and then proceed to create a normalization structure
in 3NF.

 4. On-the-Vine Vineyard
 On-the-Vine Vineyard, Inc., is one of California’s largest winemaking facilities in Sonoma
Valley, striving to make both a visit to the vineyard and the wine tasting an unforgettable
experience. On-the-Vine is a small, family-owned winery, specializing in limited production
of premium quality Chardonnay, Sauvignon Blanc, Merlot, Syrah, Zinfandel, Sangiovese,
Viognier, and Cabernet.

 The Employees: On-the-Vine currently employs over 12 full-time employees, with posi-
tions ranging from administrative assistant to winemaker. Among the employees, super-
visors have been appointed to manage the work of other employees. Each supervised
employee reports to only one supervisor. Each employee is assigned a unique identifica-
tion number. In addition to the employee’s name, position, and identification number, the
company also records each employee’s Social Security number, address, phone number,
and emergency contact.

 The Vineyard: The grounds of On-the-Vine Vineyard include the Estate house with an
award-winning rose garden, winery, and two vineyard plots of 40 acres each in separate
locations. Each vineyard is managed by a single employee and is referred to by its own
unique name, Sonoma Cellar and Sonoma Barrel. No employee manages more than one
vineyard. Each vineyard is dedicated to the growing of a single grape variety per year.

 As mentioned above, On-the-Vine Vineyard currently grows eight different grape varieties:

 1. Chardonnay
 2. Sauvignon Blanc
 3. Merlot

T5-20 * Plug-In T5 Designing Database Applications

bal76744_plugint05_002-021.indd T5-20 2/21/08 11:54:41 AM

Plug-In T5 Designing Database Applications * T5-21

 4. Syrah
 5. Zinfandel
 6. Sangiovese
 7. Viognier
 8. Cabernet

 The Winery: Each wine produced is given a unique identification number in addition to
its name. Other information recorded for each wine is its vintage year, category (e.g., dry
red, dessert, etc.), and percent alcohol, which is a legal requirement. Also recorded is the
employee in charge of making that wine. Winemakers may be responsible for more than
one wine at a time.

 The composition of a wine may be entirely from a single grape variety or may be a blend
of more than one variety. Several of the grape varieties are used in more than one blended
wine.

 The Customers: On-the-Vine customers are mainly restaurants and wine shops, but
the winery also sells to individuals via the Internet. All customers are assigned a unique
customer identification number, and this number is recorded along with their address and
phone number. Individual customers also have their first name, last name, and date of birth,
in order to demonstrate legal age, recorded. Restaurants and wine shops have their com-
pany name and tax identification number recorded.

 All customers obtain their products by placing orders directly with On-the-Vine. Each
order is assigned a unique order number, and the date the order is received, the product or
products ordered, and the quantity or quantities desired are all recorded at the same time.
A shipment status of “pending” is assigned to an order until it is actually shipped, where-
upon the status is then changed to “shipped.”

 The Task: You have been hired to assist On-the-Vine Vineyard with creating a database
structure that will incorporate all the features and business rules mentioned above. You
should start out developing an ERD and then proceed to create a normalization structure
in 3NF.

Plug-In T5 Designing Database Applications * T5-21

bal76744_plugint05_002-021.indd T5-21 2/21/08 11:54:41 AM

