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Chapter 5 System Design I: Functional 
Decomposition 

At Sony, we assume all products of our competitors will have basically the same technology, 
price, performance, and features. Design is the one thing that differentiates one product from 
another in the marketplace.—Norio Ohgo, Chairman and CEO, Sony 

 
After the technical concept is selected, it is translated into a solution that satisfies the system 
requirements. The designer must put on paper, or the computer screen, a representation that is 
meaningful and clear; in other words, a useful abstraction of the system. Engineering designs 
are often complex, consisting of many systems and subsystems, thus this representation 
should facilitate the design process and effectively describe the system. In addition, it serves 
an important function in communicating the design to all members of the team. Imagine a 
scenario where each team member is responsible for designing part of a large system. Each 
person develops a part in isolation and several months later the team gets back together to 
integrate the pieces. Of course, the system won’t work unless the team has collectively defined 
and communicated the functionality and interfaces for all subsystems in the design. 

This chapter presents a well-known design technique—known as functional decom-
position—that is intuitive, flexible, and straightforward to apply. It is probably the most 
pervasive design technique used for engineering systems and is applicable to a wide va-
riety of problems that extend well beyond electrical and computer engineering. In func-
tional decomposition, systems are designed by determining the overall functionality and 
then iteratively decomposing it into component subsystems, each with its own function-
ality.  

The objective of this chapter is to present both basic design concepts and the functional 
decomposition design technique. A process for functional decomposition is provided and it is 
applied to examples in analog electronics, digital electronics, and software systems.  

Learning Objectives 
By the end of this chapter, the reader should: 
• Understand the differences between bottom-up and top-down design. 
• Know what functional decomposition is and how to apply it. 
• Be able to apply functional decomposition to different problem domains. 
• Understand the concepts of coupling and cohesion, and how they impact designs. 
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5.1 Bottom-Up and Top-Down Design 
Two general approaches to synthesizing engineering designs are known as bottom-up and 
top-down. In the case of bottom-up, the designer starts with basic components and synthe-
sizes them to create the overall system. To use an analogy, consider the case of creating an 
automobile. In the bottom-up approach, you have pieces of the automobile, such as the tires, 
motor, axle, transmission, alternator, and they are brought together to create a car. The impli-
cation is that the final system depends upon the parts at hand. In other words, in the bottom-
up approach, the parts and subsystems are given, and from them an artifact is created. 

The top-down approach is analogous to the concept of divide and conquer. In top-down 
the designer has an overall vision of what the final system must do, and the problem is parti-
tioned into components, or subsystems that work together to achieve the overall goal. Then 
each subsystem is successively refined and partitioned as necessary. In the case of the auto-
mobile, the overall objective is determined; the major subsystems are defined, such as electri-
cal, power drive train, and the suspension; and then each subsystem is further refined into its 
component parts until the complete system is designed.  

A debate that continues in the design community revolves around which is the better ap-
proach. It might appear that top-down is better, since it starts with the overall goal (require-
ments) and from that a solution is developed. Top-down is particularly valuable on large 
projects with many subsystems, where it is unlikely that bringing together pieces in an ad-hoc 
fashion will successfully solve the problem. A disadvantage of top-down design is that it tends 
to limit the solution space and innovation. Top-down design is inclined to follow a vertical 
thought process (Chapter 4) where the designer starts with a problem and successively refines 
the subsystems until a blueprint for solving the problem is defined. Furthermore, the designer 
cannot create a top-down design in a vacuum without bottom-up knowledge of existing tech-
nology and how the system can be realized.  

Bottom-up has the advantage of lending itself to creativity. It allows the designer to take 
different technologies and from them create something new, allowing more “what if?” ques-
tions to be asked. Bottom-up design is applicable when there are constraints on the compo-
nents that can be used. This is a realistic scenario. Consider the case of variant design, where 
the goal is to improve the performance of an existing, or legacy, system. For example, auto-
mobile manufacturers might have to redesign their models to meet new emissions, mileage, or 
safety standards. If you are not starting with a new design and must utilize existing systems, it 
requires bottom-up thinking. In reality, most problems require a combination of bottom-up 
and top-down thinking, and the designer must alternate between them. 

In summary, it is most effective to work between bottom-up and top-down. A completely 
top-down approach is not feasible because the designer must have an understanding of the 
bottom level technology for the components of the design hierarchy to be realistic. Likewise, 
completely bottom-up by itself is generally not feasible, particularly as the system complexity 
grows. 
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5.2 Functional Decomposition 
Functional decomposition is a recursive process that iteratively describes the functionality of 
all system components. It is analogous to the mathematical concept of a function, for example, 
y = f(x). In this function there is an input x, an output y, and a transformation between the in-
put and output f(). This is easily extended to the case of multiple inputs and outputs where the 
inputs and outputs are vectors, )(xfy

rr
= . In functional decomposition, the same items are de-

fined as in the mathematical analogy—the inputs, the outputs, and the transformation be-
tween the inputs and outputs (the functionality). Those three items constitute what is known 
as the functional specification or functional requirement—the requirement that a functional 
module should meet. A module is a block, or subsystem, that performs a function. Functional 
decomposition has a strong top-down flavor, due to the fact that the highest level functionality 
is defined and then further refined into subfunctions, each with its own inputs, outputs, and 
functionality. The process is repeated until some base level functionality is reached where the 
modules can be actualized with physical components. 

A process for applying functional decomposition is illustrated in Figure 5.1. It starts with a 
definition of the highest level (Level 0) of system functionality (the functional requirement for 
the system). This is followed by definition of the next level of the hierarchy that is needed to 
achieve the design objective. The Level 1 design is typically referred to as the main design ar-
chitecture of the system. In this context, architecture means the organization and interconnec-
tions between modules. Care must be taken at each design level to ensure that it satisfies the 
requirements of the higher level. The process is repeated for successive levels of the design 
and stops when the detailed design level is reached. Detailed design is where the problem can 
be decomposed no further and the identification of elements such as circuit components, logic 
gates, or software code takes place. The number of levels in the design hierarchy depends 
upon the complexity of the problem.  
 
 

At the detailed
design level?

Yes DONE 

No

Determine Level 0 
functional 

requirements 
N = 1 

Determine architecture and
functional requirements for
modules at Level N

N = N + 1 

 
Figure 5.1 A process for developing designs using functional decomposition. 
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5.3 Guidance 
The following guidance is provided before examining applications of the functional decompo-
sition technique: 
• It is an iterative process. During the first pass, it is not possible to know all of the de-

tailed interfaces between components and the exact functionality of each block. 
In act, some details are not known until the implementation level is reached, so the 
designer needs to iterate, work between top-down and bottom-up, and adjust the de-
sign as necessary.  

• Set aside sufficient time to develop the design. This is a corollary to the previous point. The 
iterative nature means that it takes time to examine different solutions and to refine 
the etails into a working solution. 

• Pair together items of similar complexity. Modules at each level should have similar complex-
ity and granularity.  

• A good design will have the interfaces and functionality of modules well-defined. It is fairly easy to 
piece together some blocks into an apparently reasonable design. However, the functional 
requirements should be clearly defined and the technical feasibility understood. If not, the 
design will fall apart when it comes to the implementation stage. Consider the following 
advice of a well-known architectural designer: 

The details are not the details. They make the design.—Charles Eames 

• Look for innovations. Top-down designs tend to follow a vertical thinking process, where 
the designer proceeds linearly from problem to solution. Try to incorporate lateral think-
ing strategies from Chapter 4 and examine alternative architectures and technologies for 
the solution. 

• Don’t take functional requirements to the absurd level. Common elements, such as analog  
multipliers or digital logic gates, do not require explicit functional specifications. Doing so 
may become cumbersome and add little to the design. However, it depends upon the 
level at which you are working. If the goal is to design an analog multiplier chip, it is 
entirely appropriate to develop the functional requirement for the multiplier. 

• Combine functional decomposition with other methods of describing system behavior. There 
is no single method or unifying theory for developing designs. Functional decompo-
sition alone cannot describe all system behaviors. It may be supplemented by other 
tools such as flowcharts (logical behavior), state diagrams (stimulus-response), or 
data flow diagrams. In the digital stopwatch example presented later in this chapter, 
the behavior is defined by state diagrams. Other methods for describing system be-
havior are addressed in Chapter 6. 
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• Find similar design architectures. Determine if there exist similar designs and how they op-
erate. Realize that this creates a bias toward existing solutions. 

• Use existing technology. Many designers take the attitude that they are going to de-
velop the entire design themselves, the sentiment being to ignore technology that 
they did not develop. Furthermore, engineering education predisposes us to design 
at a fundamental level. Both factors lead to time spent reinventing the wheel. If exist-
ing technology is available that meets both the engineering and cost requirements, 
then use it. 

• Keep it simple. Do not add complexity that is not needed. 
A designer knows that he has achieved perfection not when there is nothing left 
to add, but when there is nothing left to take away.—Antoine de St-Exupery 

• Communicate the results. It is important to describe the theory of operation (the why) as well 
as the implementation (the what). The what in the completed design is usually quite clear 
from the implementation, but documenting the description of operation and design deci-
sions helps later when the system must upgraded. Designs can also become very com-
plex, so consider how much information can be effectively communicated on a single 
page. If the information is too complex to show reasonably on a page or two, then it 
probably is too detailed and another level in the hierarchy should be added. 

5.4 Application: Electronics Design 
We now examine the application of functional decomposition in different problem domains. 
In the domain of analog electronics, the inputs and outputs of modules are voltage and current 
signals. Typical transformations applied to the inputs are alterations in amplitude, power, 
phase, frequency, and spectral characteristics. Consider the design of an audio power ampli-
fier that has the following engineering requirements. 

The system must 
• Accept an audio input signal source with a maximum input voltage of 0.5 V peak. 
• Have adjustable volume control between zero and the maximum volume level. 
• Deliver a maximum of 50 W to an 8 Ω speaker. 
• Be powered by a standard 120 V, 60 Hz, AC outlet. 

Level 0 
The Level 0 functionality for the amplifier is shown in Figure 5.2, which is fairly simple—the 
inputs are an audio signal, volume control, and wall outlet power, and the output is an ampli-
fied audio signal.  
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audio output signalAudio Power
Amplifier

audio input signal

power, 120 V AC

volume control

 
Figure 5.2 Level 0 audio power amplifier functionality. 

The system should be described in as much detail as possible for each level via the func-
tional requirement. The Level 0 functional requirement for this design is as follows. 

Module Audio Power Amplifier 

Inputs - Audio input signal: 0.5 V peak. 
- Power: 120 V AC rms, 60 Hz. 
- User volume control: variable control. 

Outputs - Audio output signal: ? V peak value. 

Functionality Amplify the input signal to produce a 50-W maximum output signal. 
The amplification should have variable user control. The output vol-
ume should be variable between no volume and a maximum volume 
level. 

Not all values can be known on the first pass through the design, as was indicated in the 
guidelines. Underlined items represent values that need to be determined or refined as 
the design proceeds. In this case, the peak value of the audio output voltage is deter-
mined from the system requirements on power gain. Knowing that the maximum power 
is given by 2

max peakP V R=  allows the maximum output voltage to be computed as 

peak 8 *50 WV = Ω = 20 V. 

Level 1 
The Level 1 diagram, or system architecture, is shown in Figure 5.3. This architecture is 
common in amplifier design and is but one possible solution. It contains three cascaded am-
plifier stages and a DC supply that powers the three stages. The first amplifier stage, the 
buffer amplifier, provides a high-resistance buffer that minimizes loading effects with 
the source. Buffer amplifiers have extremely high input resistance and a unity signal gain. 
The high-gain amplifier increases the amplitude of the signal, but provides little in terms of the 
output current necessary to drive the speakers. The last stage in the cascade is the power  
output stage, which provides the current needed to drive the speakers, but has no voltage 
amplification. 
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Figure 5.3 Level 1 audio amplifier design. 

The functional requirements for the Level 1 subsystems are now detailed, starting 
with the buffer amplifier. 

Module Buffer amplifier 

Inputs - Audio input signal: 0.5 V peak. 
- Power: ± 25 V DC. 

Outputs - Audio signal: 0.5 V peak. 

Functionality Buffer the input signal and provide unity voltage gain. It should have an 
input resistance > 1 MΩ and an output resistance < 100 Ω. 

Where did the ±25 V DC value for the DC input power come from? The system must produce 
a ±20 V AC output signal to satisfy the Level 0 requirement, so supply values that exceed that 
are required to power the electronics. How about the values for the input and output resis-
tance? They are educated guesses, based on knowledge of what is achievable with the tech-
nology (bottom-up knowledge). The exact resistance requirements are refined later on the 
basis of the overall design, taking into account the input and output resistances for all stages.  

Now consider the functional requirements for the high-gain amplifier. 

Module High-gain amplifier 
Inputs - Audio input signal: 0.5 V peak. 

- User volume control: variable control. 
- Power: ± 25 V DC 

Outputs - Audio signal: 20 V peak. 
Functionality Provide an adjustable voltage gain, between 1 and 40. It should have an 

input resistance > 100 kΩ and an output resistance < 100 Ω. 
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The gain of 40 is determined from the overall system power and gain requirements (the maxi-
mum input voltage of 0.5 V must be able to be amplified to 20 V), while the resistances are 
again educated guesses.  

Now consider the power output stage. 

Module Power Output Stage 

Inputs - Audio input signal: 20 V peak. 

- Power: ± 25 V DC. 

Outputs - Audio signal: 20 V peak at up to 2.5 A. 

Functionality Provide unity voltage gain with output current as required by a resistive load of up 
to 2.5 A. It should have an input resistance > 1 MΩ and output resistance <  1  Ω. 

For the power output stage, it is clear that 20 V peak needs to be delivered, but how was the 
requirement on current determined? The current needed to drive the speaker is determined 
from Ohm’s law as 20 8 2.5 A.I V R= = =   

The last module to examine at this level is the power supply. 

Module Power Supply 

Inputs - 120 V AC rms. 

Outputs - Power: ± 25 V DC with up to 3.0 A of current with a regulation of < 1%. 

Functionality Convert AC wall outlet voltage to positive and negative DC output voltages, and 
provide enough current to drive all amplifiers. 

It is clear that the power supply needs to deliver ± 25 V DC, while the 3.0 A current capability 
was selected to supply the 2.5 A needed for the peak output power requirement plus the cur-
rent needed to power the other amplifier stages.  

Finally, it is necessary to determine if the values of the input and output resistances se-
lected for the stages are realistic. For cascaded amplifier stages, the overall voltage gain is given 
by the product of gains multiplied by the voltage divider losses between stages [Sed04]. In this 
case the overall gain is 

 in2 in3
 1  2  3

in2  out1 in3 out2

 Voltage gain gain gain gain
  

100 k 1M1 40 1
100 k 100 1M 100

40

R R
R R R R

  
= × ×   + +  

  = × ×   + +  
≈

.                     (1) 

So the resistance values selected in the functional requirements satisfy the overall system re-
quirements. If not, it would be necessary to go back and refine them. 
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Level 2 
At this point, the three amplifier stages are ready for detailed component level design, while 
the power supply needs another level of refinement, as shown in Figure 5.4. The functional 
requirement for each of the elements in the power supply would be developed similarly. 
Functional decomposition stops at this point—all levels of the hierarchy are defined and the 
next step is the detailed design, where the actual circuit components are determined.  

 

Rectifier Smoothing
Filter Regulator(s)Transformer 120 

V AC 
V AC rectified

voltage
DC

voltage 1 output 
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voltage(s) 

 
Figure 5.4 Level 2 design of the power supply. 

5.5 Application: Digital Design 
Functional decomposition is widely applied to the design of digital systems, where it is known 
as entity-architecture design. The inputs and outputs refer to the entity, and the architecture 
describes the functionality. The application of functional decomposition to digital systems is 
demonstrated in the following example. Consider the design of a simple digital stopwatch that 
keeps track of seconds and has the following engineering requirements. 

The system must 
• Have no more than two control buttons. 
• Implement run, stop, and reset functions. 
• Output a 16-bit binary number that represents seconds elapsed. 

Level 0 
The Level 0 diagram and functional requirements are shown in Figure 5.5. 
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Figure 5.5 Level 0 digital stopwatch functionality. 
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Module Stopwatch 

Inputs - A: Reset button signal. When the button is pushed it resets the counter 
to zero. 

- B: Run/stop toggle signal. When the button is pushed it toggles between 
run and stop modes. 

Outputs - b15–b0: 16-bit binary number that represents the number of seconds 
elapsed. 

Functionality The stopwatch counts the number of seconds after B is pushed when the 
system is in the reset or stop mode. When in run mode and B is pushed, 
the stopwatch stops counting. A reset button push (A) will reset the out-
put value of the counter to zero only when the stopwatch is in stop mode. 

Level 1 
The Level 1 architecture in Figure 5.6 contains three modules: a seconds counter, a clock di-
vider, and a finite state machine (FSM). The stopwatch counts seconds, thus the seconds 
counter module counts the seconds and outputs a 16-bit number representing the number of 
seconds elapsed. The clock divider generates a 1 Hz signal that triggers the seconds counter. 
The FSM responds to the button press stimuli and produces the appropriate control signals for 
the seconds counter. The system clock is included to clock both the FSM and the clock divider.  

 

1-Hz clock
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b15

b1.
.
.
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B 

reset

control
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Figure 5.6 Level 1 design for the digital stopwatch. 
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The functionality of the Level 1 modules is described as follows, starting with the finite 
state machine. 

Module Finite State Machine 

Inputs - A: Signal to reset the counter. 

- B: Signal to toggle the stopwatch between run and stop modes. 

- Clock: 1 Hz clock signal. 

Outputs - Reset: Signal to reset the counter to zero.  

- Control: Signal that enables or disables the counter. 

Functionality 
Reset Run

Stop

B

B
BA

 

The functionality of the finite state machine is described with a tool that is probably familiar to 
the reader, the state diagram. State diagrams are covered in more detail in Chapter 6. The state 
diagram describes stimulus-response behavior, and shows how the system transitions be-
tween states according to logic signals from the button presses.  
 Next, consider the clock divider. 

Module Clock Divider 

Inputs - System clock: 32,768 Hz. 

Outputs - Internal clock: 1 Hz clock for seconds elapsed. 

Functionality Divide the system clock by 32,768 to produce a 1 Hz clock. 

The value of 32,768 Hz was selected for the system clock for several reasons. It is a power of 2 
that is easily divisible by digital circuitry to produce a 1 Hz output signal. It is also well above 
the clock rate needed for detecting button presses, and there is a wide selection of crystals that 
can meet this requirement. 
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Finally, consider the seconds counter. 

Module Seconds Counter 

Inputs - Reset: Reset the counter to zero. 
- Control: Enable/disable the counter. 
- Clock: Increment the counter. 

Outputs - b15–b0: 16-bit binary representation of number of seconds elapsed. 

Functionality Count the seconds when enabled and resets to zero when reset signal 
enabled. 

The system decomposition would end here, assuming that the design is to be implemented 
with off-the-shelf chips. The next step would be to determine components at the detailed de-
sign level. However, if it were an integrated circuit design, the description would continue 
until the transistor level is reached.  

5.6 Application: Software Design 
Software also lends itself to functional decomposition, since virtually all computing languages 
provide the capability to call functions, subroutines, or modules. Functional software design 
simplifies program development by eliminating the need to create redundant code via the use 
of functions that are called repeatedly. 

Structure charts are specialized block diagrams for visualizing functional software de-
signs. The modules used in a structure chart are shown in Figure 5.7. The larger arrows indi-
cate connections to other modules, while the smaller arrows represent data and control 
information passed between modules. Five basic modules are utilized:  
1) Input modules. Receive information. 
2) Output modules. Return information. 
3) Transform modules. Receive information, change it, and return the changed information. 
4) Coordination modules. Coordinate or synchronize activities between modules. 
5) Composite modules. Any possible combination of the other four.  
This approach to software design, also known as structured design, was formalized in the 1970s 
by IBM researchers [Ste99].  
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Figure 5.7 Module types for functional software design. The larger arrows indicate connections 
between modules and the smaller arrows represent data and control. 

The following example demonstrates the application of functional decomposition to a 
software design with the following requirements.  

The system must 
• Accept an ASCII file of integer numbers as input. 
• Sort the numbers into ascending order and save the sorted numbers to disk. 
• Compute the mean of the numbers. 
• Display the mean on the screen. 

This is a fairly simple task that could easily be done in a single function, but doing so 
would not allow components of the design to be easily reused, tested, or troubleshot. The 
engineering requirements themselves provide some guidance in terms of how to arrange 
the functionality of the modules (form follows function). The architecture in Figure 5.8 con-
tains a main module that calls three submodules. In this design main is a coordinating 
module that controls the processing and calling of the other modules, a common sce-
nario. It was also decided that all user interaction would take place within main. The 
order of the processing is not described by structure charts. In our program, main calls 
ReadArray, SortArray, and ComputeMean in sequential order. main passes the file-
name (fname) to ReadArray, which reads in the array and the number of elements in it, 
and returns this information to main. The choice of passing in the filename was deliber-
ate; the user could have been prompted for the filename in ReadArray, but doing so 
might limit future reuse of the function since you may not always want to do so when 
reading an array of data. SortArray is then called, which accepts the array of numbers 
and the number of elements in the array, and returns the sorted values in the same array. 
Finally, ComputeMean is executed, which accepts the sorted array and the number of 
elements, computes the mean value, and returns it to main. 
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Figure 5.8 Structure chart design of sorting and mean computation program. 

 The functional requirements for each module in the structure chart are detailed in 
Table 5.1. The structure chart provides a visual relationship between modules in the de-
sign, but also has some disadvantages. It is difficult to visualize designs as the complex-
ity of the software increases. This can be addressed by expanding sublevels in the design 
as necessary in different diagrams. Structure charts also lack a temporal aspect that indi-
cates the calling order. Most software systems have many layers in the hierarchy and 
highly complex calling patterns. In this example, main calls three modules in a well-
defined order, but if there were another level in the hierarchy, there is no reason why it 
could not be called by a module at any other level. That leads to some of the unique 
problems associated with software design. Functional design works well for small to 
moderately complex software, but tends to fall short when applied to large-scale soft-
ware systems. As such, it has given way to the object-oriented design approach. 

5.7 Application: Thermometer Design 
The final example includes both analog and digital modules and the objective is to design a 
thermometer that meets the following engineering requirements. 

The system must 
• Measure temperature between 0 and 200°C. 
• Have an accuracy of 0.4% of full scale. 
• Display the temperature digitally, including one digit beyond the decimal point. 
• Be powered by a standard 120 V, 60 Hz AC outlet. 
• Use an RTD (resistance temperature detector) that has an accuracy of 0.55°C over the 

range. The resistance of the RTD varies linearly with temperature from 100 Ω at 0°C to 
178 Ω at 200°C. (Note: this requirement does not meet the abstractness property identified 
in Chapter 3, since it identifies part of the solution. This requirement is given to provide 
guidance in this example.) 
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Table 5.1 Functional design requirements for the number sort program. 

Module name main() 

Module type Coordination 

Input arguments None. 

Output arguments None. 

Description The main function calls ReadArray() to read the input file from disk, Sort-
Array() to sort the array, and ComputeMean() to determine the mean value of 
elements in the array. User interaction requires the user to enter the filename, 
and the mean value is displayed on the screen. 

Modules invoked ReadArray, SortArray, and ComputeMean. 

 
Module name ReadArray() 

Module type Input and output 

Input arguments - fname[]: character array with filename to read from. 

Output Arguments - numArray[]: integer array with elements read from file. 

- N: number of elements in numArray[]. 

Description Read data from input data file and store elements in array numArray[]. The 
number of elements read is placed in N. 

Modules invoked None. 

 
Module name SortArray() 

Module type Transformation  

Input arguments - numArray[]: integer array of numbers. 

- N: number of elements in numArray[]. 

Output Arguments - numArray[]: sorted array of integer numbers. 

Description Sort elements in array using a shell sort algorithm. Saves the sorted array to 
disk. 

Modules invoked None. 

 
Module name ComputeMean() 

Module type Input and output 

Input arguments - numArray[]: integer array of numbers. 

- N: number of elements in numArray[]. 

Output arguments - mean: mean value of the elements in the array. 

Description Computes the mean value of the integer elements in the array. 

Modules invoked None. 
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Level 0 
The overall goal is to convert a sensed temperature to a digital temperature reading. The 
Level 0 description is shown in Figure 5.9. 

Digital Thermometer

Ambient
Temperature

Power,
120 VAC

Digital 
Temperature 

Display 
 

Figure 5.9 Level 0 digital thermometer functionality. 

Module Digital Thermometer 

Inputs - Ambient temperature: 0–200°C. 

- Power: 120 V AC power. 

Outputs - Digital temperature display: A four digit display, including one digit 
beyond the decimal point. 

Functionality Displays temperature on digital readout with an accuracy of 0.4% of full 
scale. 

Level 1 
The Level 1 architecture selected is shown in Figure 5.10. The temperature conversion unit 
converts the temperature to an analog voltage, using the RTD that is sampled by the analog-
to-digital converter. The N-bit binary output from the converter is translated into binary-coded 
decimal (BCD). BCD is a 4-bit representation of the digits between 0 and 9. Since there are four 
display digits, there are four separate binary encoded outputs from the BCD conversion unit. 
Common seven-segment LEDs are used for the display. However, they do not directly accept 
BCD and instead have seven input lines, each of which is individually switched to control the 
display segments. The requirements did not specifically address cost or size constraints, nor 
clearly define the environment, so there are many possible solutions. For example, an analog-
to-digital current converter could be used, integrated circuit temperature-sensing packages 
could be considered, and microcontroller-based solutions are feasible as well.  

From a system design perspective, an error budget is needed to identify the maximum 
error that each subsystem may introduce, while still achieving the overall accuracy. In this 
case, error is introduced in the temperature conversion unit and A/D converter, but not in the 
remaining digital components. The overall accuracy that the system must achieve is 0.4%, 
and that translates into 0.8°C of allowable error for the 200°C range. Let’s now examine the 
modules.  
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Figure 5.10 Level 1 design of the digital thermometer. 

The functionality of the Level 1 modules is described as follows, starting with the tem-
perature conversion unit. 

Module Temperature Conversion Unit 

Inputs - Ambient temperature: 0–200°C. 

- Power: ? V DC (to power the electronics). 

Outputs - VT: temperature proportional voltage. VT  = αT, and ranges from ? to ? V. 

Functionality Produces an output voltage that is linearly proportional to temperature. It 
must achieve an accuracy of ?%. 

There are several unknowns at this point. The voltage necessary to power the electronics is not 
known, but a reasonable assumption could be made. The output voltage range and the accu-
racy are unknown. It is known that the RTD will introduce up to 0.55°C of error and that the 
electronics themselves will introduce additional error (the exact amount is unknown at this 
point). An educated guess is made that the maximum error allowed for the temperature unit 
is 0.6°C. This means that the electronics themselves would be required to introduce no more 
than 0.05°C of error as a result of the 0.55°C of error introduced by the RTD.  

Now consider the analog to digital converter. 

Module A/D Converter 

Inputs - VT: voltage proportional to temperature that ranges from ? to ? V. 

- Power: ? V DC. 

Outputs - bN-1–b0: ?-bit binary representation of VT. 

Functionality Converts analog input to binary digital output.  

It is not likely that it will be necessary to design the A/D converter because low-cost, off-the-
shelf solutions are available. The requirements drive the converter selection. There are two 
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unknowns—the number of bits and the range of the input voltage. The number of bits affects 
the accuracy, since the greater the number of bits, the better the accuracy. The number of bits 
needed for the converter is calculated from the maximum allowable error that the A/D can in-
troduce (0.2°C), the number of discrete intervals, and the temperate range as 

range 200Max error  0.2 C     9.97 bits.
number of intervals 2N

C N°= = ≤ ° ⇒ ≥                  (2) 

So the A/D converter needs to have at least 10 bits. How is the voltage range selected? It is typi-
cally fixed for a particular integrated circuit solution, but the temperature conversion subsys-
tem output should be matched to the voltage range so that all bits are effectively utilized; 
otherwise, error is introduced.  

Now, consider the BCD conversion unit.  

Module BCD Conversion Unit 

Inputs - 10-bit binary number (b9–b0): Represents the range 0.0–200.0°C. 

- Power: ? V DC. 

Outputs - BCD0: 4-bit BCD representation of tenths digit (after decimal). 

- BCD1: 4-bit BCD representation of ones digit. 

- BCD2: 4-bit BCD representation of tens digit. 

- BCD3: 4-bit BCD representation of hundreds digit. 

Functionality Converts the 10-bit binary number to BCD representation of temperature. 
Must refresh the displays twice a second. 

The objective of the BCD conversion unit is fairly simple, although the component level design 
of the circuitry to accomplish the conversion is not.  

This leads to the last module, the seven-segment LED driver, whose functionality is de-
scribed as follows. 

Module Seven-Segment LED Driver 

Inputs - BCD0: 4-bit BCD representation of tenths digit (after decimal). 

- BCD1: 4-bit BCD representation of ones digit. 

- BCD2: 4-bit BCD representation of tens digit. 

- BCD3: 4-bit BCD representation of hundreds digit. 

- Power: ? V DC. 

Outputs - Four 7-segment driver lines. 

Functionality Converts the BCD for each digit into outputs that turn on LEDs in seven-
segment package to display the temperature. 
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For completeness, the functional requirements of the power supply are supplied. They are 
similar to the power supply requirements utilized in the audio amplifier design in Section 5.4.  

Module Power supply 

Inputs - 120 V AC rms. 

Outputs - ± ? V DC with up to ? mA of current. 

- Regulation of ?%. 

Functionality Convert AC wall outlet voltage to positive and negative DC output volt-
ages, with enough current to drive all circuit subsystems. 

At this point, the requirements for the major subsystems are completed and ready for de-
sign at the component level. Illustration of the complete design would require a fair amount of 
detail, and while it is not presented here, some of the issues involved are discussed. First, there 
are a variety of electronic circuits (inverting op amps, single BJT configurations, and current 
mirrors, etc.—see Section 4.3.3) that could be utilized as a current source to drive the RTD in 
the temperature conversion subsystem. A midrange resolution A/D converter is needed, and 
its particular input voltage range drives the output voltage requirements for the temperature 
conversion module. The BCD conversion circuitry could be implemented using combinational 
digital logic (tedious due to the number of discrete gates), or a more efficient, but slower, se-
quential logic design. Finally, the seven-segment display converters could be designed using 
combinational logic that maps the BCD inputs into outputs to activate the appropriate display 
segments.  

5.8 Coupling and Cohesion 
The concepts of coupling and cohesion are examined before concluding this chapter. They 
originated to describe software designs [Ste99], but are applicable to electrical and computer 
systems. To understand their importance, consider the relationship between the number of 
modules in a system and the number of connections between them. For our purposes, a con-
nection between two modules may consist of any number of signals without regard to their 
direction. Thus, a system consisting of two modules has, at most, one connection. If the num-
ber of modules is increased to three, the number of possible connections increases to three, a 
system with four modules has six possible connections, and five modules increases the num-
ber of possible connections to ten. The point is that the maximum number of potential connec-
tions increases rapidly with the number of modules in the system. The relationship between 
the maximum possible connections and number of modules (n) is given by 

max
( 1)Connections

2
n n −= .                                                          (3) 



Design for Electrical and Computer Engineers 

 

106 

Modules are coupled if they depend upon each other in some way to operate properly. 
Coupling is the extent to which modules or subsystems are connected [Jal97]. Although there 
is no agreed upon mathematical definition of coupling, it seems obvious that increasing the 
exchange of control and data between two modules leads to a higher degree of coupling. 
When systems are highly coupled, it is difficult to change one module without affecting the 
other. Consider the extreme case where all modules in a system are connected to each other—
an error in one module has the potential to affect every other module in the system. Errors in a 
module are propagated to others to a degree that is related to the amount of coupling. From 
this point of view, it is good to minimize coupling. Yet coupling cannot be eliminated, since 
the point of functional decomposition is to break a design into components that work together 
to produce a higher level behavior. 

There are two ways to reduce coupling—minimize the number of connections between 
modules and maximize cohesion within modules. Cohesion refers to how focused a module 
is—highly cohesive systems do one or a few things very well. Stevens et al. [Ste99] defined six 
types of cohesion from the weakest to strongest as: coincidental, logical, temporal, communi-
cational, sequential, and functional. More information on this can be found in the original 
work, but the conclusion is that modules with high functional cohesion are the most desirable. 
So it is best to design modules with a single well-defined functional objective consistent with 
the philosophy of functional decomposition. This leads to the important design principle that 
it is desirable to maximize cohesion, while minimizing coupling.  

Coupling and cohesion impact the later stages of testing and system integration. If a par-
ticular module is highly cohesive, then it should be possible to test it independently of the 
other modules to verify its operability. This does not mean that it will necessarily operate 
properly when integrated into the overall system, but the probability that it will is higher if 
provided with proper inputs from connected modules. Contrast this to the case of a low-
cohesion system. In that case, it will likely be difficult to test the individual modules without 
first integrating them. 

To develop a better understanding, consider the amplifier design in Figure 5.3  
(Section 5.4) with three cascaded amplifier stages. Each stage is highly cohesive, performing a 
singular function of signal amplification. Each of these stages could easily operate as a stand-
alone module independent of the complete system. How about coupling? In terms of the 
number of connections, it is fairly low as each amplifier stage has an input and output voltage 
signal. The most coupled module in the system is the power supply, and not surprisingly, its 
failure leads to a complete system failure. Coupling in this case can also be viewed in terms of 
the resistance matching between input and output of the cascaded stages, producing the volt-
age divider effect in equation (1). For voltage amplifiers, the goal is to have high input resis-
tance and low output resistance, which minimize both voltage losses and coupling. The stages 
are not completely uncoupled, because the input resistances, although large, are not infinite, 
and the output resistances are not zero. The modules in the power supply unit in Figure 5.4 
(rectifier, smoothing filter, and regulator) have a much higher degree of coupling. In fact, it is 
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difficult to develop a clear functional decomposition of the power supply module because the 
elements in the smoothing filter also serve as part of the rectifier circuit (refer to a basic elec-
tronics textbook [Sed04] for more information).  

As another example, consider a software design where two options are under considera-
tion: one large function with 1000 lines of code, versus 15 cohesive functions, each with an av-
erage of 100 lines of code. Both perform the same function, but which runs faster? Most likely 
the first, as it would be highly integrated and would not suffer from overhead needed with 
multiple functions. Which is easier to upgrade and debug a year from now? That is clearly the 
second case. Although loosely coupled and highly cohesive designs may facilitate better de-
sign and testing, they may not be best in terms of performance. 

5.9 Project Application: The Functional Design 
The following is a format for documenting and presenting functional designs. 

Design Level 0 

• Present a single module block diagram with inputs and outputs identified. 
• Present the functional requirements: inputs, outputs, and functionality. 

Design Level 1 
• Present the Level 1 diagram (system architecture) with all modules and interconnections 

shown.  
• Describe the theory of operation. This should explain how the modules work together to 

achieve the functional objectives. 
• Present the functional requirements for each module at this level. 

Design Level N (for N > 1) 

• Repeat the process from Design Level 1 for as many levels as necessary. 

Design Alternatives 

• Describe the different alternatives that were considered, the tradeoffs, and the rationale 
for the choices made. This should be based upon concept evaluation methods communi-
cated in Chapter 4. 

5.10 Summary and Further Reading 
This chapter presented the functional decomposition design technique, where every level of 
the design is decomposed into submodules, each of which is the domain of the next lower 
level. The inputs, outputs, and functionality must be determined for a given module. Ap-
pling the process in Figure 5.1 and following the guidelines in Section 5.3 should aid in the 
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application of functional decomposition. Functional decomposition is applicable to a wide 
variety of systems, and in this chapter designs of analog electronics, digital electronics, and 
software were examined. 

Nigel Cross presents a good overview of the functional decomposition method with ap-
plication to mechanical systems [Cro00], but with less focus on the description of the func-
tional requirements than presented here. The work by Stevens et al. [Ste99] is interesting 
reading that gives an understanding of the evolution of structured design. It delves into the 
concepts of coupling and cohesion. Coupling and cohesion are also addressed well in the book 
by Jalote [Jal97]. An in-depth treatment of structured systems design is found in The Practical 
Guide to Structured Systems Design [Pag88]. This guide also integrates data flow diagrams 
with functional techniques. Finally, the thermometer design example was inspired by 
Stadtmiller’s book [Sta01] on electronics design. 

5.11 Problems 
5.1 Describe the differences between bottom-up and top-down design. 

5.2 Develop a functional design for an audio graphic equalizer. A graphic equalizer de-
composes an audio signal into component frequency bands, allows the user to apply 
amplification to each individual band, and recombines the component signals. The de-
sign can employ either analog or digital processing. Be sure to clearly identify the de-
sign levels, functional requirements, and theory of operation for the different levels in 
the architecture.  

The system must 
• Accept an audio input signal source, with a source resistance of 1000 Ω and a 

maximum input voltage of 1 V peak-to-peak. 
• Have an adjustable volume control. 
• Deliver a maximum of 40 W to an 8 Ω speaker. 
• Have four frequency bands into which the audio is decomposed (you select 

the frequency ranges).  

• Operate from standard wall outlet power, 120 V rms. 
5.3 Develop a functional design for a system that measures and displays the speed of a 

bicycle. Be sure to clearly identify the design levels, functional requirements, and the-
ory of operation for each level. 

The system must 
• Measure instantaneous velocities between zero and 75 miles per hour with 

an accuracy of 1% of full scale. 
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• Display the velocity digitally and include one digit beyond the decimal point. 
• Operate with bicycle tires that have 19-, 24-, 26-, and 27-inch diameters. 

 
5.4 Draw a structure chart for the following C++ program: 

void IncBy5(int &a, int &b); 
int  Multiply(int a, int b); 
void Print(int a, int b); 
 
main(){ 
 int x=y=z=0; 
 IncBy5(x,y); 
 z=Mult(x,y); 
 Print(x,z); 
} 
void IncBy5(int &a, int &b) { 
 a+=5; 
 b+=5; 
 Print(a,b); 
} 
 
int Multiply(int a, int b){  
return (a*b);  

} 
 
void Print(int a, int b) { 
 cout << a << “, ” << b; 
} 

5.5 Develop a functional design for software that meets the following requirements.  

The system must 
• Read an array of floating point numbers from an ASCII file on disk. 
• Compute the average, median, and standard deviation of the numbers. 
• Store the average, median, and standard deviation values on disk. 

The design should have multiple modules and include the following elements: (a) a 
structure chart, and (b) a functional description of each module. 

5.6 Describe in your own words what is meant by coupling in design. Describe the 
advantages of both loosely and tightly coupled designs. 

5.7 Project Application. Develop a functional design for your project. Follow the presenta-
tion guidelines in Section 5.9 for communicating the results of the design. 




