Errata for Contemporary Communication Systems, 1st Edition

Location	Change	to the following
Chapter 2 p. 25, Section 2.1, 1 st para p. 48, 1 st paragraph p. 48, 2 nd paragraph p. 54, 2 nd paragraph, 2 places p. 57, 1 st paragraph, last line p. 81, 1 st paragraph p. 81, 2 nd paragraph p. 81, 3 rd paragraph p. 95, 1 st paragraph, 2 places p. 99, Problem 2.15 p. 99, Problem 2.16 p. 99, Problem 2.16, part(b)	Figure 2.1(a) and (b) $f = nf_o, n = 0, 1, 2, 3,$ $f = nf_o$ $n \rightarrow \infty$ sinusoid M-file M-files M-file	Figures 2.1(a) and (b) $f = \pm n f_o, n = 2, 3,$ $f = \pm n f_o$ $N \rightarrow \infty$ exponential signal MATLAB functions MATLAB function Figure 2.23 delete 98%
1 ,	$c(t) = \cos(3600\pi t)$ $s_{2}(t) = \cos(600\pi t)\sin(1800\pi t)$ $x(t) = \operatorname{sinc}(t)$ BP delete Part (c) $s_{1}(t) = \cos(30\pi \times 10^{3})$ $s_{2}(t) = \cos(\pi \times 10^{6})$ $s_{3}(t) = \cos(4\pi \times 10^{6})$	B_{T} $c(t) = \cos(36000\pi t)$ $s_{2}(t) = \cos(600\pi t)\cos(1800\pi t)$ $x_{1}(t) = \operatorname{sinc}(t)$ HP or BP $s_{1}(t) = \cos(30\pi t \times 10^{3})$ $s_{2}(t) = \cos(\pi t \times 10^{6})$ $s_{3}(t) = \cos(4\pi t \times 10^{6})$ 4. If $x(t)$ and $y(t)$
 Chapter 5 p. 217, Figure 5.5 (a) p. 218, equation below Table p. 242, Figure 5.25, <i>x</i>-axis la p. 274, Problem 5.1 p. 274, Problem 5.6, part (b) p. 274, Problem 5.7, part (a) p. 276, Problem 5.17 p. 276, Problem 5.17, part (b) 	bel $(n \sec)$ $k_f = 30$ and $k_p = 10\pi$ spectral density spectral density) Capture where Δf_{max} peak frequency deviation.	Add y-axis label $S(f)$ ≈ 0.98 (nsec) $k_f = 30$ Hz/V and $k_p = 10\pi$ radians/V spectrum spectrum Hold-in where the frequency of the modulating signal is f_m . peak phase error

Location	Change	to the following
Chapter 6 p. 283, 2 lines above (6.16)	If an event occurs	If an event A occurs
p. 322, Equation (6.176)	$\det \begin{vmatrix} \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \end{vmatrix}_{x=g^{-1}(v,w),y=h^{-1}(v,w)}$	$\det \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \end{pmatrix}_{x=g^{-1}(v,w),y=h^{-1}(v,w)}$
p. 322, line following (6.176)	$\det A $	$\det(\underline{A})$
p. 322, line following (6.176)p. 328, Figure 6.20 axes labelsp. 344, Equation (6.270)	matrix A x $G_x(f + f_c) - G_x(f - f_c)$	matrix \underline{A} x/A G(f-f) - G(f+f)
eh.	$\mathcal{C} = 2 d\mathbf{P}$	$I = 2 d\mathbf{P}$
p. 365, Problem 6.6, part (e)	$P\left\{-1 \le \boldsymbol{x} - 2 \le 1\right\}$	$P\left\{-1 \le x - 2 \le 1\right\}$
p. 366, Problem 6.19	$\underline{z} = \underline{A}\underline{x} + \underline{b}$	$\mathbf{y} = \underline{A}\mathbf{x} + \underline{b}$
p. 366, Problem 6.23, 1 st line	$\underline{z} = \underline{A}\underline{x} + \underline{b}$ another $G_x(f + f_c) - G_x(f - f_c)$	aWSS
p. 367, Problem 6.31	$G_{\mathbf{x}}(f+f_c)-G_{\mathbf{x}}(f-f_c)$	$G_{\mathbf{x}}(f-f_c)-G_{\mathbf{x}}(f+f_c)$
Chapter 7 p. 383, 2 nd line from bottom p. 397, 2 nd equation from bottom	(7.43) $P_r = -4 + 50 = 46 = 39.81 \text{ W} P_r$	(7.44) = -4 + 50 = 46 dBm = 39.81 W
p. 402, Equation (7.103)	$(SNR_{rm}) = 30D^2(D+1)$	$(SNR_{FM}) = 60D^2(D+1)\overline{s^2}$
p. 405, Equation (7.106)	$P_{n_{FM}} = \int_{-B}^{B} G_{n_{FM}}(f) df$ $= 20 \log_{10}(7.5) - 4.77$	$P_{\boldsymbol{n}_{FM}} = \int_{-B}^{B} G_{\boldsymbol{n}_{FM}}(f) df$
p. 407, Example 7.7, 2 nd line	$= 20\log_{10}(7.5) - 4.77$	$= 20 \log_{10}(7.14) - 4.77$
p. 411, 2^{nd} line following (7.119)		noise-equivalent
p. 412, Equation (7.121) (C	$NR_{out} \Big _1 = \frac{P_T}{(N_{out})_1} = \frac{P_T}{FG_a N_o B_N} $	$\left(CNR_{out}\right)_{1} = \frac{P_{T}}{\left(N_{out}\right)_{1}} = \frac{P_{T}}{F \mathscr{G} N_{o} B_{N}}$
p. 416, Problem 7.2	$N_o / 2 = 10^{-7}$	$N_o / 2 = 10^{-10}$
p. 416, Problems 7.3 and 7.4	$N_o / 2 = 10^{-8}$	$N_o / 2 = 10^{-10}$
p. 417, Problem 7.14	(i) the transmitted power or (ii) D (that is, the transmission bandwidth) as much as possible	(i) D (that is, the transmission bandwidth) and/or (ii) thetransmitted power.
p. 417, Problem 7.14, part (b)	SNR of 50 dB? What are the corresponding values of <i>D</i> and the transmission bandwidth?	SNR of 50 dB subject to the constraint that the channel bandwidth is limited to 250 kHz ? What is the corresponding values of <i>D</i> ?
p. 418, Problem 7.15, part (d)	taking preemphasis	taking 75 μ sec preemphasis

Location	Change	to the following
Chapter 8		
p. 433, 6^{th} line from bottom	(8.23)	(8.28)
p. 441, Figure 6.20, y-axis labels	001 following 001	000
p. 441, equation in 1 st paragraph	$a_{m-1}a_12^{-(m-1)}$	$a_{m-1}2^{-(m-1)}$
p. 446, 5 th line above (8.41)	0.064%	0.0032%
p. 446, 3 rd line above (8.41)	0.9544	0.999936
p. 453, 1 st paragraph	range on input	range of input
p. 481, 6 th line from bottom	LP	BP
p. 485, Problem 8.3, part (b)	Nyquist frequency	Nyquist rate
p. 485, Problem 8.3	Add part (d)	Repeat (a) and (b) if the duty
		cycle was 10%.
p. 486, Problem 8.10, part (a)	SNR	SQNR
p. 486, Problem 8.11, line 2	sinusoidal	a Gaussian
p. 486, Problem 8.14, part (b)	$f_L = 47, f_H = 53$	$f_L = 40, f_H = 50$
p. 486, Problem 8.14, part (c)	$f_L = 50, f_H = 75$	$f_L = 55, f_H = 75$
p. 487, Problem 8.19, part (d)	3.5 bits	2.5 bits
p. 487, Figure P8.3	See revised figure below	
Figure P8.3 (revised)		

$d_1[n]$ $d_2[n]$ y[n] w[n] z^{-1} Integrator 1 Integrator 2 z^{-1} 1-bit DAC

Chapter 9

p.489, 9.3, 1st line

p.521, Figure 9.30, y-axis label

The spectral density

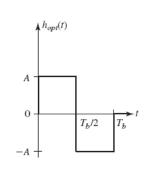
An expression for the spectral density

p.490, 9.5, 1st line spectral density and power spectral and p.491, 3rd line $(b_{n-1},b_n) \rightarrow a_n \in \mathcal{A}_4 = \{-3,-1,-1,1\}$ $(b_{n-1},b_n) \rightarrow a_n \in \mathcal{A}_4 = \{-3,-1,1,3\}$ p.497, 3rd line following (9.29) first null in the envelope of the first null in the first null in the envelope of the p.506, Section 9.4 first null in the p.513, Table 9.4, last line p.514, 2^{nd} line above (9.61) 667312 6673 another PN generator

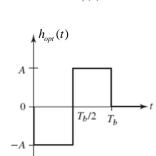
 $V_{RC}(t)$

an identical PN generator $v_{RC}(t)$

Location


Change


to the following


Chapter 10

p. 535, Eq. (10.16), line 1
$$\left. \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \right|_{\phi(u)}^{\infty} = -\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \left|_{x=\phi(u)} \frac{d\phi(u)}{du} \right|_{x=\phi(u)} = -\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \left|_{x=\phi(u)} \frac{d\phi(u)}{du} \right|_{x=\phi(u)}$$

p. 541, Figure 10.5(b)

matched filter detector \hat{b}_n to $\int_T r(u)\phi_j(T-t+u)du\Big|_{t=T}$ TFigure P10.4(a) $1/\sqrt{T_b}$ $3T_b/4$ functions corresponding to points

in-phase using closed-form solution for 0100101110 Problem 11.7 delete $P_e < 10^{-9}$ es. mapping tables for in-phase and quadrature branches. E_b / N_o block RRC

Location

p. 735, Problem 12.6, part(d) p. 735, Problem 12.7, part(d)

Chapter 13

p. 755, 4th line above (13.5)

p. 760, 1^{st} line following (13.18) p. 766, end of 2^{nd} paragraph p. 782, 2^{nd} line above (13.61)

p. 782, Equation (13.61)

p. 785, Problem 13.5, 4th line p. 786. Problem 13.11. 2nd line p. 786, Problem 13.11, part(b)

Chapter 14

- p. 791, Equation (14.6), 1st line
- p. 802, Equation (14.37), 2nd row
- p. 805, line following (14.48)
- p. 806, Example 14.13, 1st line
- p. 817, Section 14.4, 1st line
- p. 817, Equation (14.95)
- p. 817, line following (14.95)
- p. 818, Figure 14.20

p. 818, Figure 14.22

p. 8	321,	Example	14.18,	part(c)
------	------	---------	--------	---------

p.	830,	Example	14.23,	2^{nd}	line

p. 847, Problem 14.1, 1st line p. 847, Problem 14.4, part(b) p. 847, Problem 14.4, part(c)

Change

fifth bit an upper-bound expression

PSK signal sets

equivalent noise receiving filter output v(k)

$$R_{c}(k) \equiv \sum_{i=0}^{N-1} c_{i} c_{(i+k)_{\text{mod }N}}$$

50 ppm normalized loop squaring loop.

$$\log_2 p_x(x_i) p_y(y_j)$$

$$p_{21} \quad p_{22} \quad \cdots \quad p_{21N}$$

$$H(x) \le q$$

$$p_x(0) = \alpha \text{ and } p_x(1) = 1 - \alpha$$

$$(R < C)$$

$$\frac{R}{W} < W \log_2 \left(1 + \frac{E_b R}{N_o W}\right)$$

$$\eta = R/W$$

Revised (see next page)

Symbol	Codeword
а	0
b	10
с	11
d	110
е	111

the entropy

a

b

С d

84 79 45 66 69 45 79 82 45 78 79 84 45 256 258 260 84 72 65 267 73 83 268 257 259 source *x* emits $p_{\mathbf{x}_{o}}(i\Delta)$ quantized source x_o .

fourth bit an expression

to the following

PSK signals $(M = 2^k, k > 2)$

noise-equivalent MF/Equalizer output v_k

$$R_c(k) \triangleq \frac{1}{N} \sum_{i=0}^{N-k-1} c_i c_{i+k}$$

±50 ppm normalized loop bandwidth squaring loop filter.

 $\log_2(p_x(x_i)p_y(y_i))$ $p_{21} p_{22} \dots p_{2N}$ $H(\mathbf{x}) \leq \log_2 q$ $p_x(0) = p \text{ and } p_x(1) = 1 - p$ $(R_h < C)$ $\frac{R_b}{W} < W \log_2 \left(1 + \frac{E_b R_b}{N_b W} \right)$ $\eta = R_h / W$

Codeword

00

01

10

110 111

Symbol

the volume ... sphere entropy

TO_BE_OR_NOT_TO_BE_ THAT_IS_THE_ QUESTION source emits $P(i\Delta)$ quantized source.

Location

Change

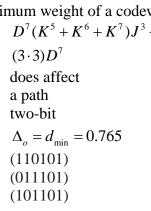
to the following

Chapter 15

p. 856, Section 15.1, 1st paragraph
$$R$$

p. 865, Equation (15.22) $P(\underline{y}|\underline{x}_{\ell}) \ge P(\underline{y}|\underline{x}_{m}), \ \ell \ne m$
p. 869, Equation (15.31), 2nd line $\binom{n}{2}p^{4}(1-p)^{n-4}$
p. 882, line following (15.68) $K = E_{cb} + \sum_{j=0}^{n-1} r_{j}^{2}$
p. 883, line following (15.75) minimum weight of a codeword
p. 902, Equation (15.117), 2nd line $D^{7}(K^{5} + K^{6} + K^{7})J^{3} + \dots$
p. 903, Equation (15.123), 1st line (3.3) D^{7}
p. 903, line following (15.123) does affect
p. 903, 3rd line following (15.123) a path
p. 903, 4th line following (15.123) two-bit
p. 914, Figure 15.30 QPSK part $\Delta_{o} = d_{min} = 0.765$

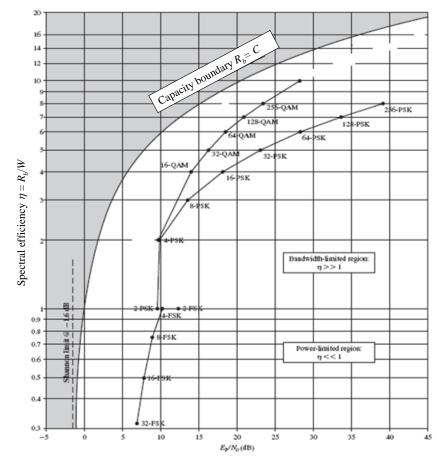
$$R_{b}$$


$$P(\underline{y}|\underline{x}_{\ell}) \ge P(\underline{y}|\underline{x}_{m}), \quad m \neq \ell$$

$$\binom{n}{4} p^{4} (1-p)^{n-4}$$

$$K = nE_{cb} + \sum_{j=0}^{n-1} r_{j}^{2}$$

e n


p. 921, Problem 15.3, part(d) p. 921, Problem 15.3, part(e)

minimum weight of the code

$$D^7 (K^5 + 2K^6 + K^7)J^3 + \dots$$

 $(3 \cdot 4)D^7$
does not affect
two paths
four decoded bit
 $\Delta_o = d_{\min} = \sqrt{2}$
(010101)
(001101)
(111101)

(

Figure 14.20 (revised)