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  Communication systems transfer information using signals.  Signals  are functions of time that convey information 

from the transmitter to the receiver at the other end of the transmission medium. In electrical communication 

systems, signals take the form of electromagnetic waves that can be transmitted over wired or wireless media. 

Examples of wired media include twisted wire pair, coaxial cable, and optical fiber in which the signal energy is con-

tained and guided within the medium. In wireless media, on the other hand, the signal energy propagates in the form of 

unguided electromagnetic waves. Radio, microwave, and infrared are examples of wireless media. 

 A  system  is an interconnection of devices and subsystems chosen to perform a desired function on signals. In this 

chapter, we review representative signal types and system models frequently encountered in modern communication 

systems. We next consider frequency domain representation of signals and linear, time-invariant systems. Many practi-

cal communication subsystems and channels can be closely modeled by this important subclass of systems. Thus it is 

useful to understand the effect of linear, time-invariant systems on transmission of signals. 

 The chapter is organized into the following sections:

     2.1   BASIC SIGNAL CONCEPTS.  
We consider various signal classifications useful in the study of communication systems. We then describe 
basic signals encountered in modeling of such systems.  

    2.2   BASIC SYSTEM CONCEPTS. 
This section introduces  linear time-invariant (LTI)  systems and their characterization in time-domain. The 
concepts of causality and stability are also introduced.  

    2.3   FREQUENCY DOMAIN REPRESENTATION.  
The frequency domain representation of signals is introduced in this section. We discuss additional insight 
offered by the frequency domain analysis and its use in the design of communication systems.  

    2.4   FOURIER SERIES.  
This section describes Fourier series representation, which is applicable to periodic signals.  

    2.5   FOURIER TRANSFORM.  
The concept of Fourier transform and its many useful properties are discussed in this section. We conclude by 
considering Fourier transforms of periodic signals.  

    2.6   TIME-BANDWIDTH PRODUCT.  
The inverse relationship between time- and frequency-domain descriptions of a signal is considered in this 
section.  

    2.7   TRANSMISSION OF SIGNALS THROUGH LTI SYSTEMS.  
The concept of the frequency response of a linear, time-invariant system is introduced. The requirements for 
distortionless transmission of signals over such systems are then studied using frequency domain analysis 
techniques.  

    2.8   LTI SYSTEMS AS FREQUENCY SELECTIVE FILTERS.  
We introduce filtering as a key application of an LTI system. The most commonly realized filter characteristics 
are then described, and issues related to practical realization are discussed.  

    2.9   POWER SPECTRAL DENSITY.  
The section studies the  power spectral density (PSD)  as a useful measure for describing the power content 
of a signal as a function of the frequency.  

    2.10   FREQUENCY RESPONSE CHARACTERISTICS OF TRANSMISSION MEDIA.  
The characteristics of popular transmission media in terms of their frequency response performance are 
discussed in this section.  

 CHAPTER 2 
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    2.11   FOURIER TRANSFORMS FOR DISCRETE-TIME SIGNALS.  
We introduce two alternative Fourier transform representations for discrete-time signals that lead to efficient 
computational algorithms.     

The chapter concludes with final remarks and a selected list of readings.

  Figure 2.1   Examples of signals.  
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  2.1 BASIC SIGNAL CONCEPTS 

 A signal  x ( t ) is called a  continuous-time (CT) signal  if it is defined for every instant of 

time  t  in the range  2  ̀   to  ̀  . On the other hand, a  discrete-time (DT) signal  is defined 

for discrete instants of time, and hence it is a sequence of numbers, called  samples.  It 
is denoted by { x [ n ],  n   5  integer in the range  2  ̀   to  ̀  }. In this book, we will use the 

notation  x [ n ] to denote the entire sequence as well as the  n th sample or number in the 

sequence. The intended meaning will be obvious from the context. It is important to 

recognize that the sequence  x [ n ] is defined only for integer values of  n.   Figure 2.1(a)  

and (b) display examples of CT and DT signals. 

  Analog and Digital Signals  

A continuous-time signal that assumes a continuum of amplitude values between given 

maximum and minimum is called an  analog signal.  Most signals we encounter in the 

real world are analog in nature. Examples include speech, music, image, and video sig-

nals.  Digital  signals, on the other hand, can change values at discrete instants of time, 

assuming one of a finite number of amplitude levels.  Figure 2.1(c)  shows examples of 

binary and quaternary digital signals. 

 So far we have considered real signals for which the amplitude of the signal takes its 

values from the set of real numbers, that is,  x ( t ) [  R,   2   ̀   ,  t  ,  ̀  . A  complex signal,  
on the other hand, takes its values from the set of complex numbers, that is,  x ( t ) [  C,  
 2    ̀   ,  t  ,   ̀  . Complex signals are used to model signals that convey information in 

both amplitude and phase.  

 Deterministic and Random Signals  

A  deterministic signal   x ( t ) is completely specified for each value of time  t —that is, 

its amplitude is known either graphically or analytically for all values of  t.  An example 

is a simple sinusoidal waveform sin(4 p  t ), which is displayed in  Figure  2.2 . On the 
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other hand, a  random signal  is not precisely known for each value of  t— it can only be 

specified in terms of probabilities. This is a very important class of signals that includes 

noise signals and all information-carrying signals, such as speech and data signals. The 

variations of these signals are extremely complex, and we have only partial specifica-

tions available.  Figure 2.3  shows an example of a random signal. 

  Periodic and Aperiodic Signals  

A CT signal  x   p  ( t ) is  periodic  with period  T  if and only if

   xp(t) 5 xp(t 1 kT), 2` , t , `  T . 0  (2.1) 

where  k  is any integer. From equation (2.1) it is obvious that  x   p  ( t ) repeats its values at 

integer multiples of its period  T.  The minimum value of the period  T  . 0 that satisfies 

(2.1) is called the  fundamental period  of the signal and is denoted as  T   o  . A signal not 

Figure 2.2 Example of a deterministic signal: sine wave.
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Figure 2.3 Example of a random signal.
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satisfying the periodicity condition (2.1) is called an  aperiodic  signal .  The sinusoidal 

waveform displayed in  Figure 2.2  is an example of a continuous-time periodic signal 

with fundamental period  T   o    5  0.5 sec. 

 A discrete-time signal (sequence)  x   p  [ n ] satisfying

   xp 3n 4 5 xp 3n 1 kN 4, N . 0  (2.2) 

is called a  periodic  sequence with period  N  where  k  is any integer. The smallest value 

of the period  N  that satisfies (2.2) is called the fundamental period  N   o   of the sequence. 

 Figure 2.4  shows an example of a discrete-time periodic signal. 

   A sequence not satisfying the periodicity condition (2.2) is called an  aperiodic  sequence.  

 2.1.1 Some Useful Basic Signals 

 In the study of communication systems, certain signal types occur recurrently. These 

signals are defined next. 

 The Sinusoidal Signal  

The most common real-valued signal is the sinusoidal waveform

   x(t) 5 A cos(2pfot 1 f)  (2.3) 

where  A,   f   o  , and  f  are its amplitude, frequency, and phase, respectively. A sinusoidal 

signal  x ( t )  5  5sin (4 p  t   1   p /4) is shown in  Figure 2.5 . Sinusoidal signals are important 

Figure 2.4 Discrete-time periodic signal with fundamental period  N   o    5  7.
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Figure 2.5 Sinusoidal signal where  A   5  5,  f   o    5  2, and  f   5   p /4.
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because they can be used to synthesize many waveforms. An arbitrary signal defined 

over a finite interval can be expressed as a sum of sinusoidal signals with different fre-

quencies, amplitudes, and phases. Pure musical notes are essentially sinusoidal signals 

at different frequencies. 

 The Complex Exponential Signal  

The complex exponential signal is defined by

   x(t) ! Ae j(2pfot1f)  (2.4) 

where  A,   f   o  , and  f  are again amplitude, frequency, and phase, respectively.  Ae   j  f   is 

known as the signal’s complex amplitude or  phasor.  A complex exponential signal can 

be interpreted as a rotating phasor as illustrated in  Figure 2.6 . The frequency  f   o   of the 

complex exponential signal corresponds to the number of times the phasor rotates per 

second. Its horizontal and vertical projections at any time correspond to the real and 

imaginary parts of  x ( t ), respectively. It should be noted that the sinusoidal signal in 

equation (2.3) is a real part of the complex exponential signal. 

  The Unit Step Signal  

This signal is defined as

   u(t) ! b1, t $ 0

0, otherwise
  (2.5)  

 The corresponding signal in the discrete-time domain is called a  unit step sequence.  It 
is defined as

   u 3n 4 ! b1, n $ 0

0, otherwise
  (2.6)  

  Figure 2.7  displays the unit step signal  u ( t ) and its discrete-time version  u [ n ].

A signal  x ( t ) is called  causal  if  x ( t )  5  0 for all  t  , 0. Otherwise, the signal is called 

 noncausal.  For a noncausal signal  x ( t ), we can generate a causal version of it by multi-

plying it with  u ( t ). That is,

   x(t)u(t) 5 bx(t), t $ 0

0, otherwise
  (2.7)  

  Example 2.1 

 The sinusoidal signal  x ( t )  5   A cos(2 p  f   c   t   1   f ) is a noncausal signal. However,  A cos(2 p  f   c   t   1   f ) u ( t ) 
is a causal signal.   

Figure 2.6 Interpretation of a 
complex exponential signal as a 
rotating phasor.
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 The Rectangular Pulse  

The rectangular pulse    P¢ t
t
≤   is a pulse of unit amplitude and width  t  centered at  t   5  0.

   P¢ t
t
≤ ! b1, 2ty2 # t # ty2

0, otherwise
  (2.8)  

  Figure 2.8  displays the rectangular pulse    P¢ t
t
≤   and a discrete-time version of it. 

   The triangular pulse    L¢ t
t
≤   is defined by

   
L¢ t

t
≤ ! e1 1

2t
t

, 2ty2 # t # 0

1 2
2t
t

, 0 # t # 1 ty2

0, otherwise

  

(2.9)

  

  Figure 2.9  displays the triangular pulse    L¢ t
t
≤ .  

  The Impulse Signal  

The impulse signal  d ( t ) is defined by the equations

   3
`

2`

d(t)dt 5 1   (2.10) 

and

   d(t) 5 0, t 2 0 

Thus the impulse signal  d ( t ) is zero everywhere except at the origin, and it has unit 

area or  weight.  Note that the impulse signal is defined by its properties rather than its 

values. We depict the impulse signal as a vertical arrow as illustrated in  Figure 2.10(a)  

where the number beside the arrow indicates its weight. In mathematics,  d ( t ) is referred 

to as Dirac delta function or functional. The impulse signal can be viewed as a narrow 

pulse with large amplitude and having a unit area. In the limit, as the width of the pulse 

approaches zero, its amplitude increases such that the area of the pulse remains unity. 

 Figure 2.10(b)  shows the impulse signal as a limit of the narrowing rectangular pulse. 

Figure 2.8 Rectangular pulse and corresponding discrete-time sequence.
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The impulse signal is a mathematical representation for excitation or action that is highly 

localized in time.  

    In discrete-time domain, a  unit impulse  or  sample sequence  is defined by

   d 3n 4 ! b1, n 5 0

0, otherwise
  (2.11)  

  Figure 2.11  illustrates a unit impulse sequence. 

   The following properties of the impulse signal can be derived from its definition:

    1.   x(t)d(t 2 to) 5 x(to)d(t 2 to)  (2.12)  

 Equation (2.12) follows from the fact that  d ( t   2   t   o  )  5  0 everywhere except at  t   5   t   o  .  

   2.   d(at) 5
10a 0  d(t)  (2.13)   

   3.   3
`

2`

x(t)d(t 2 to)dt 5 x(to)   (2.14)  

 Equation (2.14) is obtained by substituting (2.12) into the integral as follows:

   3
`

2`

x(t)d(t 2 to)dt 5 3
`

2`

x(to)d(t 2 to)dt 5 x(to)3
`

2`

d(t 2 to)dt 5 x(to)  

This is called the  sampling  or  sifting  property of the impulse signal.  

   4.   x(t) # d(t) 5 3
`

2`

x(t)d(t 2 t)dt 5 x(t)  (2.15)  

Figure 2.10 (a) Impulse signal; (b) approximating the impulse signal with narrowing rectangular pulses.
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 Equation (2.15) is obtained by using the property  d ( t )  5   d ( 2  t ) and a change of vari-

ables as follows:

   x(t) # d(t) 5 3
`

2`

x(t)d(t 2 t)dt 5 x(t)3
`

2`

d(t 2 t)dt 5 x(t)

Similarly, 

  x(t) # d(t 2 to) 5 3
`

2`

x(t)d(t 2 to 2 t)dt 5 3
`

2`

x(t)d 3t 2 (t 2 to) 4dt 5 x(t 2 to) 

 (2.16)  

Thus, the convolution of an arbitrary signal with the impulse signal yields the signal 

itself. Further, the convolution of an arbitrary signal with a shifted impulse signal yields 

the signal shifted by the same amount.    

  Example 2.2 

 Evaluate the following expressions. 

    a. sin(3500 p  t ) d ( t )  

   b. cos( p  t ) d  (4 t   2  1)  

   c.    3
`

2`

3t2 2 cos(pt) 4d(t 2 2)dt    

   d.    3
`

2`

3e2t 1 cos(10pt) 4d(2t 2 4)dt     

  Solution 

    a. Applying Property 1 of the impulse signal yields

  sin(3500pt)d(t) 5 sin(0)d(t) 5 0 3 d(t) 5 0  

   b. Using Property 2, we obtain

  cos(pt)d(4t 2 1) 5
1

4
 cos(pt)d¢ t 2

1

4
≤  

Now applying Property 1 yields 

  cos(pt)d(4t 2 1) 5
1

4
 cos¢p

4
≤d¢ t 2

1

4
≤ 5

1

4"2
 d¢ t 2

1

4
≤    

   c. Using Property 3, we can write

  3
`

2`

3t2 2 cos(pt) 4d(t 2 2)dt 5 3t2 2 cos(pt) 4 0 t52 5 4 2 1 5 3  

   d. Applying Property 2 yields

   3
`

2`

3e2t 1 cos(10pt) 4d(2t 2 4)dt 5 3
`

2`

3e2t 1 cos(10pt) 4d 32(t 2 2) 4dt

 5
1

2 3
`

2`

3e2t 1 cos(10pt) 4d(t 2 2)dt  
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 Now using Property 3, we obtain

  3
`

2`

3e2t 1 cos(10pt) 4d(2t 2 4)dt 5
e2t 1 cos(10pt)

2
 2

t52

5
1

2
 3e22 1 1 4 5

1.135

2
5 0.567      

 Sinc Signal  

The sinc signal is defined as

   sinc(t) !
sin(pt)

pt
  (2.17)  

 The waveform of the sinc signal is displayed in  Figure  2.12 . We observe from 

  Figure  2.12  that the sinc signal undergoes zero crossings at  t    5    6 1,   6 2,   6 3, .  .  . 

The sinc signal assumes a maximum value of 1 at  t    5  0 (obtained as a limit using 

L’Hopital’s rule). 

Sign or Signum Signal

The sign signal sgn( t ) is defined as

   sgn(t) ! c1, t . 0

21, t , 0

0, otherwise

  (2.18) 

 Note that sgn( t ) denotes the sign of the independent variable  t.   Figure 2.13  depicts the 

sign signal. 

Figure 2.12 The sinc signal.
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  2.1.2 Energy and Power Signals 

 Energy and power are useful parameters of a signal. The  normalized energy  of a signal 

 x ( t ) is defined as the energy dissipated by a voltage  x ( t ) applied across a 1-ohm resistor 

(or a current  x ( t ) passing though a 1-ohm resistor).

   Ex ! lim
TS` 3

Ty2

2Ty2

0x(t) 02dt 5 3
`

2`

0x(t) 02dt  (2.19) 

The energy of a signal is meaningful only if the limit in (2.19) exists (that is, finite). 

Such signals are called  energy  signals. 

  Example 2.3 

 Find the energy of a rectangular pulse  x ( t )  5   A P( t / T   b  ).

  x(t) 5 bA, 0 t 0 # Tby2

0, otherwise
   

Solution 

 Using (2.19), the energy is given by

  Ex 5 3
`

2`

0x(t) 02dt 5 3
Tby2

2Tby2

A2dt 5 A2Tb     

Example 2.4 

 Find the energy of the carrier pulse  x ( t )  5   A P( t / T   b  )cos(2 p  f   o   t ).

  x(t) 5 bA cos(2pfot), 0 t 0 # Tby2

0, otherwise
   

Solution 

 Substituting into (2.19) yields

  Ex 5 3
`

2`

0x(t) 02dt 5 A23
Tby2

2Tby2

 cos2(2pfot)dt 5
A2

2
3
Tby2

2Tby2

31 1 cos(4pfot) 4dt 5
A2Tb

2
 

 where we have used the trigonometric identity 2cos 2 ( u )  5  1  1  cos(2 u ). The integral of the second 

term is zero because  f   o   .. 1/ T   b   has been assumed. The energy content of the signal becomes 

infinite in the limit as  T   b   S q .   
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  Example 2.5 

 Find the energy of the sinusoidal waveform  x ( t )  5  A cos (2 p   f   o   t ). 

  Solution 

  Ex 5 lim
TS` 3

Ty2

2Ty2

0x(t) 02dt 5 A2 lim
TS` 3

Ty2

2Ty2

 cos2(2pfot)dt 5 lim
TS`

 

A2T

2
S `  

Therefore, this signal is not an energy signal. In such cases, the concept of power of a signal is 

meaningful.    

 The normalized power of a signal  x ( t ) is the power dissipated by a voltage  x ( t ) applied 

across a 1-ohm resistor (or a current  x ( t ) passing though a 1-ohm resistor). The 

  normalized average   power  of a signal  x ( t ) is defined as

   Px ! lim
TS`

 

1

T 3
Ty2

2Ty2

0x(t) 02dt  (2.20) 

The normalized average power of a signal is meaningful only if the limit in (2.20) exists 

(that is, finite). Such signals are called  power  signals. For a periodic signal  x   p  ( t ) with 

fundamental period  T   o  , (2.20) simplifies to

   Px 5
1

To
3

Toy2

2Toy2

0xp(t) 02dt  (2.21) 

A signal cannot be both power- and energy-type, because  P   x    5  0 for energy signals and 

 E   x    5   ̀   for power signals. A signal may be neither energy-type nor power-type. 

  Example 2.6 

 Calculate the power of sinusoidal signal  x   p  ( t )  5   A cos(2 p  f   o   t   1   f ). 

  Solution 

 Substituting  A cos(2 p  f   o   t   1   f ) into (2.21) yields

   Px 5
A2

To
3

Toy2

2Toy2

 cos2(2pfot 1 f) dt

 5
A2

2To
 C 3

Toy2

2Toy2

 dt 1 3
Toy2

2Toy2

 cos(4pfot 1 2f) dtS 5
A2

2
1 0 5

A2

2

The second integral is zero because it evaluates the integrand cos(4 p  f   o   t   1  2 f ) over two complete 

periods.    
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  2.1.3 Logarithmic Power Calculations 

 In communication systems, it is often convenient to work with power levels and compo-

nent losses (gains) in logarithmic units. Engineers prefer to express power levels as dB 

above or below 1 milliWatt (mW) and call it  dBm.  The power level in dBm is defined as

   Power level in dBm 5 10 log10 
P

1mW
  (2.22) 

where  P  is power level in mW. Thus, 1 mW is 0 dBm and 100 mW equals 20 dBm. To 

convert from dBm to mW, the following formula can be used:

   Power level in mW 5 10(dBmy10)  (2.23) 

The power level at any point in a transmission link can now be calculated by adding the 

algebraic sum of gains (in dB) up to that point to the input level in dBm. The following 

example illustrates the advantage of using logarithmic units. 

  Example 2.7 

 A semiconductor laser couples 5 mW into an optical fiber link. The optical signal travels through 

a group of components (e.g., cable, connectors, splitters) with gains specified in  Figure  2.14 . 

Compute the power input to the optical receiver. 

    Solution 

 Power coupled into the optical fiber by the laser transmitter (Tx)  P  1   5  5 mW

  Input optical power P1 in dBm 5 10 log10 
5 mW

1 mW
5 7 dBm

  Total losses in the optical fiber link  5   2 11  2  6  2  3  5   2 20 dB

  Output optical power  P2 in dBm 5 P1 (dBm) 1 Loss (dB)

     5 7 2 20 5 213 dBm

  Power input to the optical receiver  5   2 13 dBm  

  Power input to the optical receiver in micro Watts  5  10 ( 2 13/10)   5  50      

 2.1.4 Some Basic Operations on Signals 

 We consider four basic operations on signals in time-domain. These include time 

reversal, time shifting, time scaling, and amplitude scaling. 

 Time Reversal  

In time reversal we create a new signal  x  1 ( t ) by flipping the original signal  x ( t ) around 

vertical axis.

   x1(t) 5 x(2t)  (2.24)  

Figure 2.14 Optical fiber link.
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  Figure 2.15 (b) illustrates time reversal operation. Note that the resultant signal  x  1 ( t ) is 

mirror image of the original signal  x ( t ). 

  Time Shifting  

Given a CT signal  x ( t ), a time-shifted version of this signal is

   x2(t) 5 x(t 2 to), to 5 constant  (2.25)  

 If  t   o   is positive, the time-shifted signal is delayed in time. The resultant signal  x  2 ( t ) is 

shifted by  t   o   to the right of the original signal. On the other hand, if  t   o   is negative, the 

time-shifted signal is advanced in time. The resultant signal  x  2 ( t ) is shifted by  t   o   to the 

left of the original signal.  Figure 2.15(c)  illustrates time-shifting operation.  

  Time Scaling  

Given a CT signal  x ( t ), a time-scaled version of this signal is

   x3(t) 5 x(at), a 5 constant  (2.26) 

Time scaling results in either an expanded or compressed version of the original signal 

 x ( t ). If  a  .  1, the resultant signal  x  3 ( t ) is compressed or contracted in time. On the 

other hand, the signal  x  3 ( t ) is expanded in time for  a  , 1.  Figure 2.15(d)  illustrates time 

 scaling operation.  

Figure 2.15 Transformations of signals in time-domain.
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x1(t)5x(2t)

x2(t)5x(t22)
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 Amplitude Scaling  

Given a CT signal  x ( t ), an amplitude-scaled version of this signal is

   x4(t) 5 Ax(t) 1 B, A, B 5 constants  (2.27)  

 If  A  . 1, it indicates amplification of the original signal  x ( t ). The nonzero value of  B  

shifts the DC level of the resultant signal  x  4 ( t ). 
 In general, a combination of the above operations may be involved in generating the 

new signal. 

 Example 2.8 

  Plot the following signals .  

    a.    x1(t) 5 P¢ t

100
≤ 1 P¢ t

50
≤    

   b.    x2(t) 5 2P¢ t

12
≤ 1 2P¢ t

6
≤ 1 2L¢ t

6
≤    

   c.    x3(t) 5 L¢ t

2
2 1≤ 1 L¢ t

2
1 1≤      

 Solution 

 The waveforms are illustrated in  Figure 2.16 . 

Figure 2.16 Example 2.8 signal waveforms.

(a)

(b)

(c)

t
25

1

2

50225250 0

x1(t)

t
1

1

2 3212223 0

x3(t)

t
3

2

4

6

62326 0

x2(t)

mes80369_ch02_024-103.indd   37mes80369_ch02_024-103.indd   37 21/11/11   4:16 PM21/11/11   4:16 PM



Rev. Confirming Pages

38 Chapter Two

  2.2 BASIC SYSTEM CONCEPTS 

  A continuous-time system operates on a continuous-time input signal  x ( t ), according to 

some well-defined rule or  transformation  T, to produce a continuous-time output signal 

 y ( t ) as a result of it. We will use the following notation to denote the action of a system:

   Continuous-time (CT) system:   x(t) h
T

y(t)  (2.28)  

 Note that the output  y ( t ) for any value of  t  may depend on  x ( t ) for all values of  t.  
Similarly, a discrete-time system accepts an input sequence  x [ n ] to produce an output 

sequence  y [ n ]

   Discrete-time (DT) system:   x 3n 4 hT
y 3n 4   (2.29)  

 As in the case of continuous-time systems, the output  y [ n ] for any value of  n  may 

depend on  x [ n ] for all values of  n.   Figure 2.17  shows a block diagram representation of 

the CT and DT systems. 

   In the context of communication systems, the system entity may represent the effect 

of transmission media or signal processing operations on signals. An example is the 

attenuation and distortion of the output signal produced by the twisted copper wire 

pair. Another example modeled by a system entity is the filtering action produced by 

an interconnection of circuit elements (ICs, resistors, capacitors, etc.) on the received 

signal with the intent to remove out-of-band noise. 

  Example 2.9 

 The square law device is a simple example of a continuous-time system. It is defined by the input-

output relation

  y(t) 5 x2(t)

which states that the output signal value at time  t  is equal to the square of the input signal value 

at that same time.

    Example 2.10 

 Another simple example is the ideal delay system defined by

  y(t) 5 x(t 2 to)

where  t   o   is the time delay introduced by the system.    

Figure 2.17 Block diagram of a system.

Input signal x(t)
CT system

T

Output signal y(t)

Input sequence x[n]
DT system

T

Output sequence y[n]
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Example 2.11 

 The  accumulator 

  y 3n 4 5 a
n

l52`

x 3, 4 5 a
n21

l52`

x 3, 4 1 x 3n 4 5 y 3n 2 1 4 1 x 3n 4
is a discrete-time system. The output at time instant  n  is the sum of the current input sample  x [ n ] 

and the previous output  y [ n  2 1].  y [ n  2 1], in turn, is the sum of all previous input sample values 

from  2  ̀   to  n   2  1. The system cumulatively adds, that is, it accumulates all input sample values.   

In all the aforementioned cases, the input–output relation defining the system lends 

itself to simple mathematical definition. The rule for obtaining the output from the input 

can alternatively be defined by a graph or a table (e.g., in a read-only memory [ROM]). 

  2.2.1 Classification of Systems 

 There are various ways to classify systems based on the input–output relation of the 

system. 

  Linear Systems  

The most widely used system model, and the one that we frequently use in this text, is 

a  linear  system for which the  superposition principle  always holds. More precisely, a 

system    x(t) h
T

y(t)  is linear, if  x  1 ( t ) results in the output  y  1 ( t ) and  x  2 ( t ) results in the 

output  y  2 ( t ), then the response due to the input is

   x(t) 5 ax1(t) 1 bx2(t)  (2.30) 

is given by

   y(t) 5 ay1(t) 1 by2(t)  (2.31)  

 The superposition property must hold for any arbitrary constants  a  and  b , and for all 

possible inputs  x  1 ( t ) and  x  2 ( t ). This property makes it feasible to compute the response 

to a complex signal that can be decomposed as a weighted combination of some fun-

damental signals, such as unit impulse or complex exponential signals. In this case, the 

desired output is given by a similarly weighted combination of outputs to the constitu-

ent fundamental signals. A system that does not satisfy the superposition property is 

called a  nonlinear  system.

   Similarly, a DT system    x 3n 4 hT
y 3n 4   is linear if and only if  

      x1 3n 4 hT
y1 3n 4  

 x2 3n 4 hT
y2 3n 4      

then

   ax1 3n 4 1 bx2 3n 4 hT
ay1 3n 4 1 by2 3n 4   (2.32) 

for any arbitrary constants  a  and  b . 
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  Example 2.12 

 The integrator in  Figure 2.18  is a linear system. The output of the integrator is related to its input by

  y(t) 5 3
t

2`

x(t)dt 

 To show this, let  x ( t )  5   a  x  1 ( t )  1   b  x  2 ( t ) be the system input. The corresponding output is

   y(t) 5 3
t

2`

x(t)dt 5 3
t

2`

3ax1(t) 1 bx2(t) 4dt

 5 a 3
t

2`

x1(t)dt 1 b 3
t

2`

x2(t)dt

 5 ay1(t) 1 by2(t)  

 Thus, the integrator is a linear system.  

  Example 2.13 

 The square law device  y ( t )  5   x  2 ( t ) is a nonlinear system. To see this, let  x ( t )  5   a  x  1 ( t )  1   b  x  2 ( t ) be 

the system input. The corresponding output is

   y(t) 5 x2(t) 5 3ax1(t) 1 bx2(t) 42
 5 a2 3x1(t) 42 1 2abx1(t)x2(t) 1 b2 3x2(t) 42
 2 ay1(t) 1 by2(t)

where  y  1 ( t )  5  [ x  1 ( t )] 
2  and  y  2 ( t )  5  [ x  2 ( t )] 

2 . Therefore the system is nonlinear.    

Example 2.14 

 The accumulator    y 3n 4 5 a
n

l52`

x 3, 4   is a linear system.  Let

    y1 3n 4 5 a
n

l52`

x1 3, 4, y2 3n 4 5 a
n

l52`

x2 3, 4   
 For an input  x [ n ]  5   a  x  1 [ n ]  1   b  x  2 [ n ], the output is

   y 3n 4 5 a
n

l52`

(ax1 3, 4 1 bx2 3, 4)

 5 a a
n

l52`

x1 3, 4 1 b a
n

l52`

x2 3, 4
 5 ay1 3n 4 1 by2 3n 4

Hence, the system is linear.   

Figure 2.18 Integrator.

t

2`

x(t) y(t)

mes80369_ch02_024-103.indd   40mes80369_ch02_024-103.indd   40 21/11/11   4:16 PM21/11/11   4:16 PM



Rev. Confirming Pages

 Review of Signals and Linear Systems 41

  Memoryless Systems  

A memoryless system is one whose current value of the output depends only on the cur-

rent value of the input; that is, the current value of the output does not depend on either 

past values or future values of the input. The integrator    y(t) 5 3
t

2`

x(t)dt  in Example 

2.12 is an example of a system with memory. The integrator’s current output depends on 

the history of its input. The square law device  y ( t )  5   x  2 ( t ) in Example 2.13 is an example 

of a memoryless system. Its current output depends on its current input value only.  

  Time-Invariant Systems  

A system    x(t) h
T

y(t)  is said to be  time-invariant  if the delayed input  x  1 ( t )  5   x ( t   2   t   o  ) 

results in the delayed output. That is,

   y1(t) 5 y(t 2 to)  (2.33) 

for all  t   o  . 

 Similarly, a DT system    x 3n 4 hT
y 3n 4   is said to be  shift-invariant  if the delayed 

input sequence  x  1 [ n ]  5   x [ n   2   n   o  ] results in the delayed output sequence. That is,

   y1 3n 4 5 y 3n 2 no 4   (2.34) 

for all  n   o  . 

 For a system to be time- (shift-) invariant, this relationship between the input and output 

must hold for any arbitrary input signal (sequence) and the corresponding output signal 

(sequence). Time (shift) invariance ensures that the same input signal always generates the 

same output signal, regardless of the time when the input signal is applied to the system. Of 

course the output signal is a delayed replica corresponding to the delay in the input signal. 

  Example 2.15 

 The integrator is a time-invariant system. 

 To show this, let  x  1 ( t )  5   x ( t   2   t   o  ) be the system input. The corresponding output is

  y1(t) 5 3
t

2`

x1(t)dt 5 3
t

2`

x(t 2 to)dt 5 3
t2 to

2`

x(v)dv 5 y(t 2 to) 

 Therefore, the integrator is time-invariant.  

  Example 2.16 

 The amplitude modulator ( Figure 2.19 ) defined by  y ( t )  5   x ( t )cos(2 p  f   c   t ) is a time-varying system. 

   To show this, let  x  1 ( t )  5   x ( t   2   t   o  ) be the system input. The corresponding output is

  y1(t) 5 x1(t)cos(2pfct) 5 x(t 2 to)cos(2pfct) 2 y(t 2 to)

Therefore the amplitude modulator is not time-invariant.    

Figure 2.19 Amplitude modulator.

×x(t)

cos(2pfct)

y(t)
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Example 2.17 

 The  M -point moving average system    y 3n 4 5
1

M a
M21

k50

x 3n 2 k 4   is shift-invariant.   To prove it, let 

 x  1 [ n ]  5   x [ n   2   n   o  ]. Then

  y1 3n 4 5
1

M a
M21

k50

x 3n 2 no 2 k 4
Also, 

  y 3n 2 no 4 5
1

M a
M21

k50

x 3n 2 no 2 k 4  
Because    y1 3n 4 5 y 3n 2 no 4 5

1

M a
M21

k50

x 3n 2 no 2 k 4,  the DT system is shift-invariant.   

A system satisfying both the linearity and the time-invariance properties is called a 

  linear time-invariant (LTI)  system. LTI systems are mathematically easy to analyze, 

and consequently, easy to design.   

  2.2.2 Characterization of LTI Systems 

 We will next derive a very important result that the impulse response completely deter-

mines the behavior of an LTI system. For this purpose, we will start with an approxi-

mation of an arbitrary CT signal  x ( t ) by a sum of shifted, scaled pulses as shown in 

 Figure 2.20(a) . That is,

   x̂(t) 5 a
`

k52`

x(kD)dD(t 2 kD)D  (2.35) 

where  d  Δ ( t ) is unit area pulse in  Figure 2.20(b) . In the limit as Δ S 0, the summation 

approaches the integral (2.15).

   x̂(t) h
DS0

3
`

2`

x(t)d(t 2 t)dt  (2.36) 

Figure 2.20 Staircase approximation to a CT signal.

(a)

(b)

x(t)

(t)x

0 D 2D

dD(t)

D

D
1

t

t
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  Let  h  Δ ( t ) be the response of the system to the pulse  d  Δ ( t ). That is,

   dD(t) h
T

hD(t)  (2.37) 

Then, using linearity and time-invariance properties, we obtain

   x̂(t) 5 a
`

k52`

x(kD)dD(t 2 kD)D h
T

ŷ(t) 5 a
`

k52`

x(kD)hD(t 2 kD)D  (2.38)  

 In the limit as    D S 0, dD(t) h
DS0

d(t) and hD(t) h
DS0

h(t).  Therefore, we can write

   y(t) 5 lim
DS0

ŷ(t) 5 3
`

2`

x(t)h(t 2 t)dt 5 x(t) # h(t)  (2.39) 

where

   d(t) h
T

h(t)  (2.40) 

 h ( t ) is called the  impulse response  of the LTI system. Equation (2.40) states that the 

response of the system to an arbitrary input  x ( t ) is the convolution of  x ( t ) with the sys-

tem impulse response  h ( t ). Similarly, it can be shown that for a DT system, the output 

sequence  y [ n ] is the convolution sum of input sequence  x [ n ] with the system impulse 

response  h [ n ]. Summarizing 

 CT system: y(t) 5 x(t) # h(t) 5 3
`

2`

x(t)h(t 2 t)dt 5 3
`

2`

h(t)x(t 2 t)dt  (2.41)  

   DT system: y 3n 4 5 x 3n 4 # h 3n 4 5 a
`

k52`

x 3k 4h 3n 2 k 4 5 a
`

k52`

x 3n 2 k 4h 3k 4   (2.42)  

  Figure 2.21  displays these relationships for LTI systems. As a consequence of (2.41) 

and (2.42), an LTI system is  completely characterized  by its impulse response. If the 

system is nonlinear or time-variant, its impulse response describes only part of the sys-

tem’s characteristics. 

    Example 2.18 

 The impulse response of an integrator is a unit step function. To show this, let  x ( t )  5   d ( t ) be the 

system input. The corresponding output is

  h(t) 5 3
t

2`

d(t)dt 

Figure 2.21 Characterization of LTI system.

(a) Continuous-time LTI system

(b) Discrete-time LTI system

x(t) y(t) 5 x(t) ^ h(t)

x[n]

h[n]

h(t)

y[n] 5 x[n] ^ h[n]
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 Now

   3
t

2`

d(t)dt 5 b1, t $ 0

0, t , 0
  (2.43)  

 But the right-hand side of (2.43) is identical to the definition of the unit step signal in (2.5). So

   h(t) 5 3
t

2`

d(t)dt 5 u(t)  (2.44)  

 Equation (2.44) states that impulse response function of the integrator is a unit step function.  

  Example 2.19 

 The output of a  unit delay  system is  x ( t   2  1) to an input  x ( t ). Using the property (2.16) of the unit 

impulse signal, we can write

  x(t) # d(t 2 1) 5 x(t 2 1)

Therefore, the impulse response of a unit delay system is  h ( t )  5   d ( t   2  1).

    Example 2.20 

 The impulse response of the accumulator    y 3n 4 5 a
n

l52`

x 3, 4   is obtained by setting  x [ n ]   5    d [ n ] 

resulting in    h 3n 4 5 a
n

l52`

d 3, 4.  
 Now

  a
n

l52`

d 3, 4 5 b1, n $ 0

0, otherwise
 

 is a unit step sequence  u [ n ]. Thus, impulse response sequence of the accumulator is unit step 

sequence.  

  Causal Systems  

A system is said to be  causal  if its current output depends only on its current and past 

inputs. If the output depends on future inputs, the system is said to be  noncausal  or 

 anticipatory.  In a CT causal system, for every choice of  t   o  , the output signal value  y ( t   o  ) 

depends only on the input signal values  x ( t ) for  t  #  t   o   and does not depend on input sig-

nal values for  t  .  t   o  . A causal system does not anticipate the future. No physical system 

has such a capability. Thus every physical system is causal, and causality is a necessary 

condition for a system to be realizable in the real world .  
 For an LTI system, it is possible to derive a very simple condition for causality in 

terms of its impulse response  h ( t ). A CT LTI system is causal iff its impulse response 

satisfies the following condition:

   h(t) 5 0, t , 0  (2.45)  
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 The equivalent condition for a DT system is that its impulse response  h [ n ] satisfies 

the following condition for causality.

   h 3n 4 5 0, n , 0  (2.46)  

  Example 2.21 

 The integrator is a causal system because its impulse response is a unit step function and thus 

satisfies the property (2.45).  

  Example 2.22 

 The impulse response of a unit delay system is given by  h ( t )  5   d ( t   2  1). It is causal because it 

satisfies the property (2.45).   

  Stable Systems  

A system is  stable  if for every bounded input, the output is bounded. This implies that, 

if the input 0  x ( t ) 0#  B  for all values of  t,  then the output of the system 0  y ( t ) 0#  C  for all 

values of  t,  where  B  and  C  are finite constants. This type of stability is referred to as 

 bounded input, bounded output (BIBO)  stability. 

 For an LTI system, it is possible to derive a very simple condition for stability in 

terms of its impulse response. A CT LTI system is stable if its impulse response  h ( t ) is 

absolutely integrable, that is,

   3
`

2`

0h(t) 0dt , `   (2.47)  

 The equivalent condition for a DT system is that its impulse response  h [ n ] is abso-

lutely summable for BIBO stability.

   a
`

n52`

0h(n) 0 , `   (2.48)  

 One important consequence of (2.48) is that a DT system whose impulse response 

is of finite length (“FIR system”), the stability condition is always satisfied as long as 0  h [ n ] 0  ,  ̀  . 

  Example 2.23 

 The integrator system is unstable. The impulse response of the integrator is  h ( t )  5   u ( t ), so apply-

ing the criterion (2.47) leads to

  3
`

2`

0h(t) 0dt 5 3
`

2`

0u(t) 0dt 5 3
`

0

dt S `

Therefore, the integrator is an unstable system.      
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 2.3 FREQUENCY DOMAIN REPRESENTATION 

 Although electrical signals used in communication systems are commonly viewed as 

functions of time, it is very useful to think of them in terms of their frequency content. 

Certain characteristics of signals are easier to analyze and measure in the frequency 

domain. In addition, the frequency domain analysis of many important operations on 

signals leads to unique and valuable insights toward understanding their effects. That 

is why the frequency domain representation and analysis of signals and systems is an 

integral part of design tools for communication systems. 

  Figure 2.22(a)  shows the time domain representation of a 10 Hz sine wave embedded 

in noise. It is difficult to identify a simple 10 Hz waveform in the presence of wideband 

(“white”) noise by simply looking at it on an oscilloscope. However, if we look at the 

same signal and noise in the frequency domain using a spectrum analyzer, it is very easy to 

identify the 10 Hz tone. We observe from Figure 2.22(b) that the noise is spread out over 

all frequencies and forms the floor of the spectrum analyzer display. In more complex situ-

ations, the composite signal may consist of hundreds of channels or carriers. An example 

is a CATV system where a few hundred channels or signals are present. Analyzing such 

a complex signal in the time domain is not very useful. The frequency domain analysis, 

however, provides valuable insight into the effects of system impairments and noise. 

   In this chapter, we will consider two useful frequency domain representations of 

continuous-time signals:

    1. Fourier series (FS)  

   2. Fourier transform (FT)    

Figure 2.22  (a) Time and (b) frequency domain representation of a sine wave embedded in noise. 
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 The Fourier series can be used to represent periodic signals in the frequency domain. 

It expresses such a signal as a  superposition  of an infinite (<  large) number of com-

plex exponential waveforms. The Fourier transform, however, is applicable to aperiodic 

waveforms in a strict mathematical sense. Both provide a simpler description of signals 

in terms of magnitudes and phases of the constituent frequency components. 

 2.4 FOURIER SERIES 

  A CT periodic function  x   p  ( t ) with period  T   o   can be represented by an  exponential 
 Fourier series (FS) 

   xp(t) 5 a
`

n52`

Cne
j2pnfot  (2.49)  

 The series coefficients  C   n   are related to  x   p  ( t ) by

   Cn 5
1

To
3
To

xp(t)e
2j2pnfot dt  (2.50) 

where  f   o    5  1/ T   o   is called the  fundamental  frequency of the periodic signal  x   p  ( t ). From 

(2.49), it can be observed that the Fourier series expands a periodic function as an infi-

nite sum of complex phasor signals    Cne
j2pnfot.  The term  C  0  corresponding to  n   5  0 in 

(2.49) equals the  average  or  DC  component of the signal, and is given by

   C0 5
1

To
3
To

xp(t)dt  (2.51)  

  Jean Baptiste Joseph Fourier   was born in Auxerre, France 

in 1768. He was orphaned at age eight and grew up with his 

aunt and uncle in the same town. On the recommendation of the 

Bishop of Auxerre, Fourier was offered a place at the nearby 

École Royale Militaire. He demonstrated such proficiency in 

mathematics in his early years that he later became a teacher 

there. When the École Normale was founded in 1794 in Paris, 

Fourier was among its first students, and, in 1795, he began 

teaching there. That same year, Fourier joined the faculty at 

the brand new École Polytechnique and became a colleague of 

Gaspard Monge and other mathematicians. 

 Fourier accompanied Napoléon Bonaparte on his Egyptian 

expedition in 1798. He was appointed governor of Lower Egypt 

and secretary of the Institut d’Égypte. While there, he organized 

ammunition workshops to support the French army during the 

war with the English. He also contributed several mathematical 

papers to the Egyptian Institute (also called the Cairo Institute), 

which Napoléon founded in Cairo, with a view of weakening 

English influence in the East. After the French defeat in 1801, 

Fourier returned to France and became prefect of Isère. It was 

here that he carried out his investigation of propagation of heat in 

the solid bodies. These experiments led to the development of the 

Fourier series and Fourier integral. Fourier claimed that an arbi-

trary function defined in a finite interval can be expressed as a sum 

of sinusoids. He submitted his initial work on heat transfer to the 

Institut de France in 1807. The judges, including the great French 

mathematicians Laplace, Lagrange, Monge, and LaCroix admit-

ted the originality and significance of Fourier’s work, but criti-

cized its lack of mathematical rigor. Fourier believed the criticism 

was unjustified but was unable to defend his claim because the 

tools required for operations with infinite series were not avail-

able at the time. Although three of the four judges were in favor 

of publication, the paper was rejected for publication because of 

the forceful opposition by Lagrange. Fourier was elected to the 

Académie des Sciences in 1817 and became its secretary in 1822. 

Fifteen years after he presented the results, the Académie des 

 Sciences published his prize-winning essay  Théorie analytique 
de la chaleur  in 1822. The book is now considered a classic.  

 Pioneers in the Field 
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The phasor signal    C1e
j2pfot  represents the fundamental frequency ( f   o  ) component in 

the periodic signal  x   p  ( t ). The terms in summation (2.49) for  n   $  2 consists of phasor 

signals at harmonic frequencies  f   5   nf   o  ,  n   5  0, 1, 2, 3, . . .  in the FS expansion of the 

signal  x   p  ( t ). They are called its  frequency  or  spectral components . Each phasor term 

in (2.49) can be written as

 Cne
j2pnfot 5 0Cn 0e j(2pnfot1]Cn) (2.52)

 Plots of 0  C   n  0  and    ]Cn  as function of frequency are called the  magnitude  and the 

 phase  spectrum of the signal, respectively. Because the magnitude and phase spectra of 

periodic signals contain spectral components at discrete frequencies  f   5   nf   o  ,  n   5  0, 1, 2, 

3, . . . , these are called  line spectra.  For  x   p  ( t ) real function of time, we have

   C2n 5
1

To
3
T0

xp(t)e
j 2pnfotdt 5 £ 1

To
3
To

xp(t)e
2j2pnfotdt≥*

5 Cn
*  (2.53) 

From (2.53) it follows that for a real signal, the magnitude spectrum is an even function, 

and the phase spectrum is an odd function of frequency.  

 2.4.1 Trigonometric Fourier Series 

 We next derive a second form of the Fourier series for real signals. For this purpose, we 

write (2.49) as

   xp(t) 5 Co 1 a
`

n51

C2ne
2j2pnfot 1 a

`

n51

Cne
j2pnfot 5 Co 1 a

`

n51

Cn
*e2j2pnfot 1 a

`

n51

Cne
j2pnfot

 5 C0 1 a
`

n51

0Cn 0 3e2j(2pnfot1]Cn) 1 e j(2pnfot1]Cn) 4
  5 C0 1 2a

`

n51

0Cn 0  cos(2pnfot 1 ]Cn)    (2.54)

 

 

 Equation (2.54) is called the  trigonometric   Fourier series.  We can write an alternative 

form of (2.54) by expanding the cosine function as follows:

   xp(t) 5 A0 1 a
`

n51

An cos(2pnfot) 1 a
`

n51

Bn sin(2pnfot)  (2.55) 

where

   An 5 2 0Cn 0  cos(]Cn) 5 Cn 1 Cn
* 5

2

To
3
To

xp(t) cos(2pnfot)dt  (2.56) 

   Bn 5 22 0Cn 0 sin(]Cn) 5 2(Cn 2 Cn
*)yj 5

2

To
3
To

xp(t) sin(2pnfot)dt  (2.57)  

Magnitude of the frequency 

component at  f   5   nf   o  

Phase of the frequency 

component at  f   5   nf   o  
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 The coefficients of the exponential and trigonometric forms of the Fourier series are 

related by

   Co 5 Ao; 2Cn 5 An 2 jBn  (2.58)  

 We can conclude from (2.56) and (2.57) that if

    1.  x   p  ( t ) is an even function of time, its Fourier series expansion will contain only cosine 

terms, i.e.,  B   n    5  0,  n   5  1, 2, . . .  

   2.  x   p  ( t ) is an odd function of time, its Fourier series expansion will contain only sine 

terms, i.e.,  A   n    5  0,  n   5  1, 2, . . .    

  Example 2.24 

 Determine the Fourier series expansion of a periodic pulse train    gTo
(t) 5 a

`

n52`

PB (t 2 nTo)

t
R   of 

rectangular pulses shown in  Figure 2.23 . 

    Solution 

 Each pulse in  Figure 2.23  has unity amplitude and duration  t . The Fourier coefficients are given by

   Cn 5
1

To
3
To

gTo
(t)e2j2pnfot dt 5

1

To
3

ty2

2ty2

e2j2pnfot dt

 5 2
1

j2pnfoTo
 3e2jpnfot 2 e jpnfot 4

        5
t

To
 
sin(pnfot)

pnfot
5

t

To
 sinc(nfot)  (2.59)  

 The magnitude spectrum, given by    0Cn 0 5 t

To
 0sinc(nfot) 0 ,  is shown in  Figure 2.24  for the case 

   
t

To
5 0.25.  Because the sinc function is always real, the phase spectrum in   Figure 2.24  assumes 

values 0 o  or 180 o , depending on the sign of the sinc( n  f   o   t ) function. Note the following points 

about the magnitude spectrum of the periodic pulse train:

      a. The value of the DC coefficient is  t / T   o  .  

   b. The frequency spacing between adjacent spectral components is fo 5 1/ T   o   Hz.  

   c. The zero crossings of the envelope occur at integral multiples of 4 fo 5 1/ t  Hz.      

Figure 2.23 Rectangular pulse train.
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  Example 2.25 

 Suppose that a binary information source sends a repetition of pattern 01111110 at a rate of 

8 Kbps. A binary 1 is transmitted by sending a rectangular pulse of 1 V with a width of 

0.125 ms, and a 0 is transmitted by sending a pulse of  2 1 V. Find the Fourier series expansion 

of the  periodic waveform  x   p  ( t ) shown in  Figure 2.25 . 

    Solution 

 The periodic waveform  x   p  ( t ) in  Figure 2.25  can be expressed as

  xp(t) 5 a
`

k52`

p(t 2 kTo) 

where  p ( t ) is defined in  Figure 2.25 . Because  x   p  ( t ) is an even function of time, its Fourier series 

expansion will contain only cosine terms. That is, 

  xp(t) 5 A0 1 a
`

n51

Ancos(2pnfot) 

Figure 2.24 Magnitude and phase spectra of a rectangular pulse train.
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Figure 2.25 Periodic waveform  x   p  ( t ) corresponding to repeated pattern 01111110.
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 where 

    f0 5
1

To
5 1000 Hz 

  A0 5
1

To
3
To

xp(t)dt 5
1

To
3
To

0

p(t) dt 5
1

To
 B 6To

8
2

2To

8
R 5 0.5 

  An 5
2

To
3
To

xp(t)cos(2pnfot) dt 5
4

To
3

Toy2

0

p(t)cos(2pnfot) dt  

  5
4

To
c 3

3Toy8

0

 cos(2pnfot)dt 2 3
Toy2

3Toy8

 cos(2pnfot)dts 5
4

pn
 sin(3pny4)   

 The FS representation for  x   p  ( t ) can now be written as

   xp(t) 5 A0 1
4

pa
`

n51

sin(3pny4)

n
 cos(2pnfot)

 5 0.5 1
4

p
 sin¢ 3p

4
≤ cos(2p 3 1000t) 1

4

2p
 sin¢ 3p

2
≤ cos(2p 3 2000t)

 1
4

3p
 sin¢ 9p

4
≤cos(2p 3 3000t) 1

1

p
 sin(3p)cos(2p 3 4000t) 2 c

     Figure 2.26  displays the plot of Fourier coefficients  A   n   as a function of frequency. 

Figure 2.26 One-sided magnitude spectrum for  x   p  ( t ).
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  2.4.2 Parseval’s Theorem 

 The normalized average power  P   x   of a periodic signal is given from (2.21) as

   Px 5
1

To
3
To

0xp(t) 02dt 5
1

To
3
To

xp(t)xp
*(t)dt  (2.21)  

 Substituting the FS expansion for    xp
*(t)  from (2.49) into (2.21), we get

       Px 5
1

To
3
To

xp(t)B a
`

n52`

Cn
*e2j2pnfotR  dt

     5 a
`

n52`

C1

To
3
To

xp(t)e
2j2pnfotdtSCn

* 

  

5 a
`

n52`

CnCn
* 5 a

`

n52`

0Cn 02
Average power in

the frequency

component at f 5 nfo

   (2.60)

The normalized average power of a periodic signal is the sum of the average power of 

its frequency components. 

  Bandwidth of a Signal  

The  bandwidth  of a signal is a measure of the range of significant frequency compo-

nents present in the signal. The term significant here implies inclusion of those frequen-

cies that represent the signal with acceptable distortion. The latter is determined by the 

relevance in a given application. If the significant energy of the signal lies in the range 

of positive frequencies  f  1  ,  f  ,  f  2 , the bandwidth would be  f  2   2   f  1 . There are many defi-

nitions of bandwidth, depending on how frequencies  f  1  and  f  2  are defined. If  f  1  and  f  2  are 

chosen so that the spectrum of the signal is zero outside the frequency band  f  1  ,  f  ,  f  2 , 
the quantity  f  2   2   f  1  is called the  absolute bandwidth.  

  Example 2.26 

   Determine the absolute bandwidth of a periodic pulse train of rectangular pulses shown in 

 Example 2.24. 

 The magnitude spectrum of a periodic pulse train of rectangular pulses, shown in  Figure 2.23 , 

is given by    0Cn 0 5 t

To
 0sinc(nfot) 0 .  The values of the sinc function become smaller and smaller as 

 n  S  ̀  , yet they remain nonzero. Therefore, the absolute bandwidth of this signal is infinite.  

 In another popular definition of bandwidth, the frequencies  f  1  and  f  2  are chosen so that 

99% of the power resides in the frequency band  f  1  ,  f  ,  f  2 . In this case the quantity 

 f  2   2   f  1  is called the  99%   power bandwidth.  

V
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  Example 2.27 

 Determine the 99% power bandwidth of the periodic pulse train of rectangular pulses shown in 

Example 2.24. Assume  T   o    5  1  m sec and  t / T   o    5  0.5. 

  Solution 

 From Example 2.24, the FS expansion of the periodic pulse train  x   p  ( t ) can be expressed as

  xp(t) 5 a
`

n52`

Cne
j2pnfot

where 

  Cn 5
t

To
 sinc(nfot)  

Now 

  fo 5
1

To
5 1 MHz   

  C0 5
t

To
5 0.5   

  Cn 5
t

To
 sinc(nfot) 5 0.5 sinc(ny2)  

Using Parseval’s theorem, we can write 

   Px 5 a
`

n52`

0Cn 02 5 C0
2 1 2a

`

n51

0Cn 02
 5 0.25 1 0.5a

`

n51

0sinc(ny2) 02        

Table 2.1  displays Fourier coefficients and the accumulated power up to and including fre-

quency f 5 n fo. As the table shows, we need to include 21 Fourier coefficients to get 99% power 

in the signal. Because each spectral component is separated by 1 MHz, the 99% power bandwidth 

of the periodic pulse train is approximately 21 MHz. 

  Table 2.1   Power in the Fourier Components of 
the Rectangular Pulse Train 

 n Cn

Accumulated Power (Up to and 

Including Frequency f 5 nfo)

 0 0.25 0.25

 1 0.6366 0.4526

 3 20.212 0.4752

 5 0.1273 0.4833

 7 20.091 0.4874

 9 0.0707 0.4899

11 20.058 0.4916

13 0.0490 0.4928

15 20.0424 0.4937

17 0.0374 0.4944

19 20.0335 0.4949

21 0.0303 0.4954

 We observe that the normalized average power in the periodic pulse train is 0.5 W as shown 

below:

   Px 5
1

To
3

Toy2

2Toy2

0gTo
(t) 02 dt 5

1

To
3

Toy2

2Toy2

P2¢ t
t
≤  dt 5

1

To
3

ty2

2ty2

dt 5
t

To
5 0.5   

mes80369_ch02_024-103.indd   53mes80369_ch02_024-103.indd   53 21/11/11   4:16 PM21/11/11   4:16 PM



Rev. Confirming Pages

54 Chapter Two

 2.4.3 Convergence of Fourier Series 

 It is interesting to consider the sequence of signals that we obtain as we incorporate 

finite number of terms into the Fourier series of a signal. The partial sum representing 

the FS approximation to xp(t) can be expressed as

   SN(t) 5 a
N

n52N
Cne

j2pnfot  (2.61)  

 It is quite reasonable to expect that as more and more terms are included in the par-

tial sum (2.61), the approximation should get better and better, yielding zero approxi-

mation error as  n  S  ̀  . The fundamental result on the convergence of Fourier series, due 

to Dirichlet, states that the approximation error

    eN 5 max
t[ 30, To4 0xp(t) 2 SN(t) 0   (2.62)  

decreases to zero as  n  S  ̀   for all values of  t  where the function is continuous. However, 

if the function is discontinuous at a point  t   o  , the partial sum  S   N   ( t ) at  t   5   t   o   converges to 

the value    
xp(to

1) 1 xp(to
2)

2
.  Thus the maximum error is always half the size of the jump 

in the waveform at the discontinuity point. However, on each side of the discontinuity, 

 S   N  ( t ) has oscillatory  overshoot  with peak value of about 9% of the size of the discon-

tinuity as shown in  Figure 2.27 . This behavior is independent of value of  N  except that 

the period of oscillation changes to  T   o  /2 N.  This is also known as  Gibbs phenomenon  

in the theory of Fourier series. 

Figure 2.27 FS approximations to a rectangular pulse train.
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  2.5 FOURIER TRANSFORM 

  The Fourier coefficients of the rectangular pulse train are spaced at a discrete set of 

frequencies  n  f   o    5   n / T   o  . The component frequencies are separated by 1/ T   o   Hz. Note that 

as the period  T   o   gets larger, the frequency separation gets smaller. Obviously, as the 

period approaches infinity, the frequency separation tends to zero. Thus a nonperiodic 

function, which can be viewed as a periodic function with infinite period, contains all 

frequencies in its Fourier expansion rather than just a discrete set. The Fourier expan-

sion of a nonperiodic function is defined in terms of an integral rather than the infinite 

sum in (2.49). That is,

   x(t) 5 3
`

2`

X(  f  )e j2pft df   (2.63) 

where    X(f) 5 IEx(t)F  is the  Fourier transform (FT)  of the signal  x ( t ). It is defined by 

the following formula

   X( f ) 5 3
`

2`

x(t)e2j2pft dt  (2.64)  

 We will use the following notation to denote the FT and its inverse operation:

  FT operation 

   x(t) h
I

X( f ): X( f ) 5 IEx(t)F 5 3
`

2`

x(t)e2j2pft dt   

Inverse FT operation 

   X( f ) h
I21

x(t): x(t) 5 I21EX( f )F 5 3
`

2`

X( f )e j2pft df   

 Most frequently, the notation   g
I

 will be used to denote either the FT operation or 

its inverse. The meaning will be obvious from the context. Equations (2.63) and (2.64) 

form the Fourier transform pair. 

 We observe from (2.64) that  X (  f  ) is defined over all frequencies  f  and plays the same 

role for nonperiodic signals as Fourier coefficients  C   n   do for periodic signals.  X (  f  ) is 

called the  frequency   spectrum  of the nonperiodic signal  x ( t ). It is a continuous spec-

trum as opposed to the line spectrum produced by coefficients  C   n   for a periodic signal. 

In general,  X (  f  ) is a complex function of the real variable  f  and can be written as

   X( f ) 5 0X( f ) 0e j]X( f )  (2.65) 

where 0  X (  f  ) 0  and    ]X( f )  are, respectively, called the  magnitude  and the  phase spec-
trum  of the signal  x ( t ).

   For real x(t), X(2f ) 5 3
`

2`

x(t)e j2pftdt 5 X*( f )  (2.66) 

Comparing magnitude and phase responses of both sides of (2.66) yields

   0X(2f ) 0 5 0X( f ) 0   (2.67) 

   ]X(2f ) 5 2]X( f )  (2.68)  

 Thus 0  X (  f  ) 0  and    ]X( f )  are even and odd functions of  f,  respectively.  
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   2.5.1 Fourier Transforms of Some Common Signals 

 Rectangular Pulse  

   x(t) 5 AP(tyt) 

   X( f ) 5 A3
`

2`

e2j2pftdt 5 A3
ty2

2ty2

e2j2pftdt 5 A 

e2jpft 2 e jpft

2j2pf
5 A 

sin(pft)

pf
    

      5 At sin c( ft)  (2.69) 

 The magnitude and phase spectra of the rectangular pulse are plotted in  Figure 2.28 . 

It is interesting to note that the width of the mainlobe increases as the pulse width  t  

narrows. 

 Unit Impulse Signal   

   x(t) 5 d(t) 

   X( f ) 5 3
`

2`

d(t)e2j2pft dt 5 3
`

2`

d(t)dt 5 1  (2.70)   

 Equation (2.70) states that the unit impulse signal contains all frequencies with equal 

magnitudes as shown in  Figure 2.29 . 

Figure 2.28 Magnitude and phase spectra of the rectangular pulse.
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Figure 2.29 Fourier transform of the unit impulse signal.
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 Complex Exponential Signal

The Fourier transform of the complex exponential signal    e j2pfct  is  d (   f   2   f   c  ). This can 

be verified by substituting  d (  f   2   f   c  ) in the inverse Fourier transform formula as follows:

   3
`

2`

d( f 2 fc)e
j2pft df 5 3

`

2`

d( f 2 fc)e
j2pfct df 5 e j2pfct   (2.71) 

  Figure 2.30  displays the result. It is intuitively satisfying in that it affirms that the spec-

trum of a complex sinusoid    e j2pfct  contains energy at only single frequency  f   c  . 

   Substituting  f   c    5  0 into (2.71), we obtain the FT of a DC signal as

   1 g
I

d( f ).  

 Signum Signal

The signum signal sgn( t ) in (2.18) can be expressed as

    sgn(t) 5 b1, t $ 0

21, t # 0
 5 lim

aS0
be2at, t $ 0

2eat, t # 0
  (2.72) 

 The FT of sgn( t ) can now be written as

     IEsgn(t)F 5 lim
aS0

C230
2`

eate2j2pft dt 1 3
`

0

e2ate2j2pft dtS
 5 lim

aS0
C230

2`

e(a2 j2pf )t dt 1 3
`

0

e2(a1 j2pf )t dtS
 5 lim

aS0

24jpf

a2 1 4p2f  
2

5
1

jpf
  

(2.73) 

   Unit Step Signal

The step function u(t) can be expressed as

   u(t) 5
1

2
1

1

2
 sgn(t)  (2.74) 

Figure 2.30 Fourier transform of a complex exponential signal.
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 Taking the FT of both sides of (2.74) yields

   U( f ) 5
1

2
 d( f ) 1

1

j2pf
  (2.75)  

  Table 2.2  tabulates Fourier transforms of frequently used signal types.   

  2.5.2 Properties of Fourier Transform 

 There are a number of important properties of the Fourier transform that are useful in 

the analysis and design of communication systems. 

 Linearity  

   ax(t) 1 by(t) g
I

aX( f ) 1 bY( f )  (2.76) 

where  a  and  b  are arbitrary real or complex constants. 

  Table 2.2   Basic Fourier Transform Pairs 

Time Function x(t) Fourier Transform X( f )

DC signal A Ad( f )
Rectangular pulse P(t/t) tsinc( ft)

Triangular pulse L(t/t)
t

2
 sinc2 ¢ ft

2
≤

Decaying exponential e2 atu(t)
1

a 1 j2pf

e2 a|t| 2a

a2 1 (2pf )2

Unit impulse d(t) 1

d(t 2 to) e2j2pfto

Sinc pulse sinc(2Wt)
1

2W
 P( fy2W)

Complex sinusoid e j 2p fc t d( f 2 fc)

Sinusoid sin(2p fc t)
1

2 j
 3d( f 2 fc) 2 d( f 1 fc) 4

Sinusoid cos(2p fct)
1

2
 3d( f 2 fc) 1 d( f 1 fc) 4

Gaussian pulse e2pt2 e2p f 2

sgn(t)
1

jpf

Unit step u(t)
1

2
 d( f ) 1

1

j2pf

1

pt
2jsgn( f )

d'(t) j2pf

mes80369_ch02_024-103.indd   58mes80369_ch02_024-103.indd   58 21/11/11   4:16 PM21/11/11   4:16 PM



Rev. Confirming Pages

 Review of Signals and Linear Systems 59

To prove this property, let us take the FT of the left-hand side to obtain

   ax(t) 1 by(t) g
I 3

`

2`

3ax(t) 1 by(t) 4e2j2pftdt 5 a3
`

2`

x(t)e2j2pftdt 1 b3
`

2`

y(t)e2j2pftdt

 5 aX( f ) 1 bY( f )

  Time Shifting  

   x(t 2 to) g
I

X( f )e2j2pfto  (2.77)  

 This can be proved by using the inverse Fourier transform formula as follows:

   x(t 2 to) 5 3
`

2`

X( f )e j2pf (t2 to)df 5 3
`

2`

3X( f )e2j 2pf to 4e j 2pftdf 5 I21EX( f )e2j2pf toF
The Fourier transform of a signal  x ( t ) represents the magnitude and phase of all the 

frequency components in it. Now, if  x ( t ) is shifted in time by  t   o   seconds, it is equivalent 

to shifting all the component sinusoids by the same amount. This does not change their 

magnitudes, so the magnitude of  X (  f  ) remains unchanged with a time shift. However, 

the phase of each constituent sinusoid does change with a time shift, and the higher the 

frequency of the sinusoid, the larger the phase change.  

  Frequency Translation   

   x(t)e j2pfct g
I

X( f 2 fc)  (2.78)  

 Taking the Fourier transform of the left-hand side yields

   3
`

2`

x(t)e j2pfcte2j2pftdt 5 3
`

2`

x(t)e2j2p( f2 fc)tdt 5 X( f 2 fc) 

 This property states that multiplication of a signal  x ( t ) by    e j2pfct  translates its frequency 

spectrum  X (  f  ) by the amount  f   c   (to the right on a graph). Communication systems 

often use frequency translation to assign frequency slots within a shared frequency 

spectrum to individual users on a demand basis—as in cellular telephone networks, for 

example.  

  Convolution   

   x(t) # y(t) g
I

X( f )Y( f )  (2.79)  

 To prove this property, recall that    x(t) # y(t) 5 3
`

2`

x(t)y(t 2 t)dt.  If we take the 

 Fourier transform of the right-hand side and exchange the order of integration, we get

    3
`

2`

C 3`
2`

x(t)y(t 2 t)dtS e2j2pf tdt 5 3
`

2`

dtx(t) C 3`
2`

y(t 2 t)e2j2pftdtS
  5 3

`

2`

x(t)Y( f )e2j2pf t dt
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where we have used the time-shifting property of the Fourier transform on  y ( t   2   t ). 

Now taking  Y (  f  ) outside the integral yields 

   3
`

2`

x(t)y(t 2 t)dt g
I

Y( f )3
`

2`

x(t)e2j2pftdt 5 Y( f )X( f )   

 Equation (2.79) states that the convolution operation in the time domain is  equivalent  to 

multiplication in the frequency domain. This is a very useful result.  

  Time/Frequency Scaling   

   x(at) g
I

 

10a 0  X¢ f

a
≤   (2.80)  

 To prove this property, we first assume  a  . 0. Using the change of variables,  u   5   at,  
we have

   x(at) g
I 3

`

2`

x(at)e2j2pftdt 5
1

a 3
`

2`

x(u)e2j2p( fya)u du 5
1

a
 X¢ f

a
≤  

 Now with  a  , 0, substituting  u   5   2 0  a 0   t  yields

  x(at) g
I 3

`

2`

x(2 0a 0 t)e2j2pftdt 5
10a 03

`

2`

x(u)e j 2p( fy 0a 0 )u du 5
10a 0  X ¢2 f0a 0 ≤ 5

10a 0  X¢ f

a
≤  

 The function  x ( at ), for  a  . 0, is a time-compressed (by a factor  a ) version of  x ( t ). On 

the other hand, a function  X (  f / a ) represents a function  X (  f  ) expanded by the same factor 

 a.  The scaling property therefore states that compressing a signal in the time domain will 

stretch its Fourier transform. Similarly, stretching a time signal will compress its Fourier 

transform. The result is intuitively satisfying because compression in time by the factor  a  

means that the function is varying rapidly in time by the same amount. Consequently, the 

extent of its frequency spectrum will be increased by the factor  a.  The converse can also 

be justified by a similar argument.  

  Duality  

   If x(t) g
I

X( f ), then X(t) g
I

x(2f )  (2.81)  

 To prove this property, we begin with

   x(t) 5 3
`

2`

X( f )e j2pftdf  

 Making a change of variable  f   5   2  v  yields

   x(t) 5 3
`

2`

X(2v)e2j2pvtdv 

mes80369_ch02_024-103.indd   60mes80369_ch02_024-103.indd   60 21/11/11   4:16 PM21/11/11   4:16 PM



Rev. Confirming Pages

 Review of Signals and Linear Systems 61

 If we set  t   5   2  f,  we get

   x(2f ) 5 3
`

2`

X(2v)e j2pfvdv 

 Finally, substituting  t  for  2  v,  we get

   x(2f ) 5 3
`

2`

X(t)e2j2pft dt 5 IEX(t)F

   Example 2.28 

 Calculate the Fourier transform of the sinc pulse 2 W sinc( t 2 W ). 

  Solution 

 From  Table 2.2 , the Fourier transform of a rectangular pulse is a sinc function in the frequency 

domain.

  P(tyt) g
I

t sinc(ft) 

 Using the duality property, we obtain

  2W sinc(t2W) g
I

P( fy2W) 

 Thus the Fourier transform of a sinc pulse is a rectangular function in frequency.    

 Differentiation Property   

   
d

dt
 x(t) g

I
j2pf X( f )  (2.82)  

 To prove this, we have

   
d

dt
 x(t) 5

d

dt 3
`

2`

X( f )e j2pft df 5 3
`

2`

X( f )¢ d

dt
 e j2pft≤df 5 3

`

2`

3 j2pfX( f ) 4e j2pft df   (2.83)  

 From (2.83) we conclude that

   I21E j2pf X( f )F 5
d

dt
 x(t)

or 

   I b d

dt
 x(t)r 5 j2pf X( f )  
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Equation (2.82) states that the differentiation in the time domain is equivalent to multi-

plication by  j 2 p  f  in the frequency domain. With repeated application of the differentia-

tion property, we obtain the following relation

   I b dn

dtn  x(t)r 5 ( j2pf )nX( f ) (2.84)

  Differentiation in Frequency Domain   

   tx(t) g
I

 

j

2p
 
d

df
 X( f )  (2.85)  

 The proof follows the same basic steps as involved in proving the differentiation 

theorem.  

  Integration Property 

   3
t

2`

x(t)dt g
I

 
X( f )

j2pf
1

1

2
 X(0)d( f )   (2.86) 

 To prove this, we first note that

   3
t

2`

x(t)dt 5 x(t) # u(t)  

 Using the convolution property of the FT, we can write

   Ic3t

2`

x(t)dts 5 X( f )U( f )  (2.87)

   Substituting (2.75) into (2.87) yields

   I c3t
2`

x(t)dts 5 X( f )b 1

j2pf
1

1

2
 d( f )r 5

X( f )

j2pf
1

1

2
 X(0)d( f )  

  Parseval’s Relation   

    3
`

2`

x(t)y*(t)dt 5 3
`

2`

X( f )Y*( f ) df   (2.88)   

 To prove this, we substitute

   y*(t) 5 3
`

2`

Y*( f )e2j2pftd f
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into the left-hand side of (2.88) and exchanging the order of integration yields 

    3
`

2`

x(t)y*(t)dt 5 3
`

2`

x(t)C 3`
2`

Y*( f )e2j 2pftd fS  dt

 5 3
`

2`

Y *( f ) C3`
2`

x(t)e2j2pftdtSdf 5 3
`

2`

Y*( f )X( f )df   

 If we let  y ( t )  5   x ( t ) in Parseval’s formula, we get the well-known relationship for the 

energy of a signal in time and frequency domains. 

    Ex 5 3
`

2`

0 x(t) 02 dt 5 3
`

2`

0X( f ) 02 df   (2.89)  

 Equation (2.89) states that the energy of a signal is given by the area under the 0  X (  f  ) 0  2  
curve. 0  X (  f  ) 0  2  is called the  energy density spectrum  of  x ( t ). Note that the quantity 0  X (  f   o  ) 0  2   Δ f  represents the energy contained in a spectral band of Δ f   Hz centered at 

frequency  f   o  . Thus 0  X (  f  ) 0  2  may be interpreted as the energy per Hz of bandwidth con-

tained in spectral components of  x ( t ) centered at frequency  f . It is specified in units of 

Joules/Hz. 

  Table 2.3  summarizes important properties of the Fourier transform. The following 

example illustrates how the properties in  Table 2.3  may be used to calculate the FT of 

other signals not listed in  Table 2.2 . 

Table 2.3   Fourier Transform Properties 

Property Time Function
x(t)
y(t)

Fourier Transform
X( f  )
Y( f  )

Linearity ax(t) 1 by(t) aX(  f ) 1 bY(  f )
Time-shifting x(t 2 to) X( f )e2j2pfto

Frequency translation x(t)e j 2p fc t X(  f 2 fc)

Convolution x(t) # y(t) X(  f )Y(  f )
Multiplication x(t)y(t) X(  f ) # Y(  f )

Time/Frequency scaling x(at)
10a 0  X¢ f

a
≤

Duality X(t) x(2 f )

Differentiation in time
d

dt
 x(t) j2pf X(  f )

Differentiation in frequency tx(t)
j

2p
 
d

df
 X( f )

Integration 3
t

2`

x(t)dt
X( f )

j2pf
1

1

2
 X(0)d( f )

Parseval’s relation 3
`

2`

x(t)y*(t)dt 5 3
`

2`

X( f )Y*( f )df

mes80369_ch02_024-103.indd   63mes80369_ch02_024-103.indd   63 21/11/11   4:16 PM21/11/11   4:16 PM



Rev. Confirming Pages

64 Chapter Two

  Example 2.29 

 Calculate the FT of the signals in  Figure 2.31(a)  and (b). 

    Solution 

    a.    x1(t) 5 2PB 2(t 1 ty4)

t
R 1 PB (t 2 ty2)

t
R   

 Now

  P¢2t
t
≤ gI t

2
 sinc¢ ft

2
≤

Applying the time-shifting property of the FT yields 

PB 2(t 1 ty4)

t
R gI t

2
 sinc ¢ ft

2
≤e jpfty2

and

  PB (t 2 ty2)

t
R gI t sinc( ft)e2jpft 

Adding 

  X1( f ) 5 2
t

2
 sinc¢ ft

2
≤e jpf ty2 1 t sinc( ft)e2jpft   

  b. As shown in  Figure 2.31(c) , differentiating  x  2 ( t ) yields

   
dx2(t)

dt
5 P(t 1 1y2) 2 d(t 2 1) 

Taking the FT of both sides and using the differentiation property, we obtain 

  j2pf X2( f ) 5 IEP(t 1 1y2) 2 d(t 2 1)F 

Figure 2.31 Waveforms: Example 2.29.

x2(t)

t
21 10

x1(t)

t

21

1 1

(a) (b)

t/2

t
t

21 1

1

0

(c)

dx2(t)
dt
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Now     P(t) g
I

 sinc( f ).  Applying the time-shifting property of the FT, we can write 

  P(t 1 1y2) g
I

 sinc( f )e jpf  

Also    d(t) g
I

1.  Again, using the time-shifting property of the FT, we get 

  d(t 2 1) g
I

e2j2pf  

Adding 

  j2pf X2( f ) 5 sinc( f )e jpf 2 e2j2pf  

or 

  X2( f ) 5
1

j2pf
 3sinc( f )e jpf 2 e2j2pf 4         

  2.5.3 Fourier Transforms of Periodic Signals 

 The Fourier transform is strictly defined for finite energy signals. However, the Fou-

rier transform of a real sinusoidal signal exists, as is evident from  Table 2.2 . Thus it is 

possible to formally determine the Fourier transform of a periodic signal by taking the 

Fourier transform of its complex Fourier series term by term. The FS expansion for a 

periodic function  x   p  ( t ) can be written from (2.49) as 

   xp(t) 5 a
`

n52`

Cne
j2pnfot  

 Taking the Fourier transform of both sides, we have

    Xp( f ) 5 Ib a`
n52`

Cne
j2pnfotr 5 a

`

n52`

CnIEe j2pnfotF  5 a
`

n52`

Cnd( f 2 nfo)  (2.90)  

 Equation (2.90) states that the FT of a periodic signal consists of impulses located at 

harmonic frequencies of the signal. The weight of the impulse located at  f   5   nf   o   in the 

FT  X   p  (  f  ), denoted by Xp(nfo), is equal to the corresponding coefficient in the exponen-

tial FS expansion of  x   p  ( t ). That is,

   Xp(nfo) 5 Cn  (2.91)  

  Example 2.30 

 Calculate the Fourier transform of a cosine wave  A  cos(2 p  f   c   t   1   f ). 

  Solution 

  x(t) 5 A cos(2pfct 1 f) 5
A

2
 e j(2pfct1f) 1

A

2
 e2j(2pfct1f)
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 Taking the FT of both sides and using  Table 2.2 , we obtain

    X( f ) 5
A

2
 e jfd( f 2 fc) 1

A

2
 e2jfd( f 1 fc)  (2.92)   

  Figure 2.32  displays the magnitude of the Fourier transform of  A  cos(2 p  f   c   t   1   f ). Similarly, it can 

be shown that

   A sin(2pfct 1 f) g
I A

2j
 e jfd( f 2 fc) 2

A

2j
 e2jfd( f 1 fc)  (2.93)  

      Example 2.31 

 Determine the FT of the periodic impulse train displayed in  Figure 2.33 . 

  Solution 

 The periodic impulse train with period  T   o   is given by

   dp(t) 5 a
`

n52`

d(t 2 nTo)  (2.94)  

 The FS expansion for this signal can be expressed as

   dp(t) 5 a
`

n52`

Cne j2pnfot  (2.95) 

where

    fo 5
1

To

  Cn 5
1

To
3
To

dp(t)e
2j2pnfotdt 5

1

To
3

Toy2

2Toy2

d(t)e2j2pnfotdt 5
1

To
5 fo  (2.96)  

 Substituting into (2.95) yields

   dp(t) 5 fo a
`

n52`

e j2pnfot  (2.97)  

 Taking the Fourier transform of both sides of (2.97), we obtain

   Dp( f ) 5 IEdp(t)F 5 fo a
`

n52`

d( f 2 nfo)  (2.98)  

Figure 2.32 Fourier transform of  A  cos(2 p  f   c   t   1   f ).

X( f )

fc2fc
f

A /2

0
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 Equation (2.98) states that the Fourier transform Δ  p  (  f   ) of a periodic impulse train with period  T   o   

is also a periodic impulse train but with period    fo 5
1

To
.  The weight of each impulse in Δ  p  (  f   ) is 

 f   o   as displayed in  Figure 2.33 . 

      Poisson Sum Formula  

Consider the signal  y ( t ) obtained by convolving an energy signal  x ( t ) with the periodic 

impulse train in (2.94).

   y(t) 5 dp(t) # x(t) 5 x(t) # a
`

n52`

d(t 2 nTo) 5 a
`

n52`

x(t 2 nTo)  (2.99)  

 It is obvious from (2.99) that  y ( t ) is a periodic and is referred to as a  periodic 
 extension  of  x ( t ). Now using the convolution property of Fourier transform and (2.98), 

we obtain

    a
`

n52`

x(t 2 nTo) 5 x(t) # a
`

n52`

d(t 2 nTo) g
I

X( f )Dp( f )

  5 X( f )fo a
`

n52`

d( f 2 nfo) 5 fo a
`

n52`

X(nfo)d( f 2 nfo) 

 That is,

   a
`

n52`

x(t 2 nTo) g
I

fo a
`

n52`

X(nfo)d( f 2 nfo)  (2.100)  

 Now taking the inverse Fourier transform of the right-hand side of (2.100) yields

   I21b fo a
`

n52`

X(nfo)d( f 2 nfo)r 5 fo a
`

n52`

X(nfo)e j2pnfot  (2.101)  

Figure 2.33 Periodic impulse train and its Fourier transform.

Dp( f )

fo 2fo 3fo2fo22fo23fo
f

0

fo

dp( t)

To 2To 3To2To22To23To

t
0

1
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 Combining (2.100) and (2.101) yields the Poisson sum formula

   a
`

n52`

x(t 2 nTo) 5
1

To
 a

`

n52`

X(nfo)e j2pnfot  (2.102)  

 Equation (2.102) states that the sample values  X ( nf   o  ) of the Fourier transform of  x ( t ) are 

the FS coefficients of the periodic signal    To a
`

n52`

x(t 2 nTo).  As a special case, setting 

 t   5  0 in (2.102), we obtain

   a
`

n52`

x(nTo) 5
1

To
 a

`

n52`

X(nfo)  (2.103)      

  2.6 TIME-BANDWIDTH PRODUCT 

  Recall the scaling property of the Fourier transform, which states that the compression 

in the time domain is equivalent to the expansion in the frequency domain, and vice 

versa. Thus, the frequency- and time-domain behaviors of a signal are  inversely  related. 

This important relationship is captured in the statement that the time-bandwidth product 

of a signal is constant.

 Time Duration 3 Frequency Bandwidth 5 k  (2.104) 

where  k  is some constant determined by the precise definitions of  duration  in the time 

domain and  bandwidth  in the frequency domain. For example,

    1. The unit impulse signal, which has zero duration, has a Fourier transform with infi-

nite extent.  

   2. The sinc signal, which has infinite time duration, has a Fourier transform with finite 

bandwidth.    

 Thus, a signal cannot be both duration-limited and bandwidth-limited. We provide 

the proof of (2.104) by choosing the pulse duration definition as the width Δ t  of a rec-

tangle whose height matches its peak value (say  x (0) for convenience), and whose area 

is the same as that under the pulse  x ( t ). This is illustrated in  Figure 2.34 . 

   Dt 5

3
`

2`

x(t) dt

x(0)
  (2.105) 

 We define the bandwidth Δ f  in a similar manner as

   Df 5

3
`

2`

X( f ) df

X(0)
  (2.106)  

 The product of these two is

   D fDt 5

3
`

2`

X( f )df

X(0)
 

3
`

2`

x(t) dt

x(0)
  (2.107)  
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 Now from the definition of Fourier transform pair, we have

   X(0) 5 3
`

2`

x(t)e2j2pft dt 0 f50 5 3
`

2`

x(t) dt  (2.108) 

   x(0) 5 3
`

2`

X( f )e j2pf t df 0 t50 5 3
`

2`

X( f ) df   (2.109)  

 Substituting into (2.107) yields

   DfDt 5 1  (2.110)  

 (2.110) states that the product of the pulse duration and its bandwidth is unity. If we 

instead use  root-mean-square (RMS)  definitions for signal duration and bandwidth, it 

can be shown that

   DfrmsDtrms $
1

4p
  (2.111) 

where

   Dtrms 5

3
`

2`

t2 0x(t) 02 dt

3
`

2`

0x(t) 02 dt

  (2.112) 

   Dfrms 5

3
`

2`

f 2 0X( f ) 02 df

3
`

2`

2 0X( f ) 02 df

  (2.113)  

 For a Gaussian pulse    e2pt 2

,  (2.111) is satisfied with the equality sign. Again, the time 

duration and bandwidth of a signal have an inverse relationship. This leads to the general 

conclusion that the time duration of a signal and its bandwidth cannot both be made 

arbitrarily small. The relationship (2.111) is also known as the  uncertainty principle  in 

quantum physics, where Δ f   rms   and Δ t   rms   are interpreted as resolutions in frequency and 

time, respectively. Frequency resolution means the ability to clearly identify signal com-

ponents that are concentrated at particular frequencies, and time resolution implies the 

precision to clearly identify signal events that manifest during a short time interval. The 

uncertainty principle sets a fundamental limit on resolution in both time and frequency.   

Figure 2.34 Definition of pulse width and bandwidth.

x(t) X( f)

Dt Df
t f
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  2.7 TRANSMISSION OF SIGNALS THROUGH LTI SYSTEMS 

  An LTI system is completely characterized in the time domain by its impulse response 

function  h ( t ). Recall that the input–output relationship in the time domain of an LTI sys-

tem with impulse response function  h ( t ) is given by the convolution integral of (2.41) 

and is of the form

   y(t) 5 x(t) # h(t) 5 3
`

2`

x(t)h(t 2 t)dt  (2.41) 

where  y ( t ) and  x ( t ) are, respectively, the output and the input signals. We now consider 

the response of an LTI system to complex exponential signal    e j2pfct.  From (2.41), the 

output is given by

 

y(t) 5 3
`

2`

e j2pfcth(t 2 t)dt 5 3
`

2`

e j2pfc(t2u)h(u)du 5 e j2pfct 3
`

2`

e2j2pfcuh(u)du

(''')'''*
H( fc)

 5 e j2pfctH( fc)  (2.114) 

where

    H( f ) g
I

h(t)  

 Note that  H (  f  ) is FT of the impulse response function  h ( t ) and provides frequency 

domain description of the system. It is called  frequency response   function  of the LTI 

system. (2.114) states that for a complex exponential input of frequency  f   c  , the output  y ( t ) 
is also a complex exponential signal of the  same  frequency but  scaled  by the complex 

weight  H (  f   c  ). We can write (2.114) as

   y(t) 5 0H( fc) 0e j 32pfct 1]H( fc)4  (2.115)  

 It is obvious from (2.115) that the value of  H (  f  ) at  f   c   determines the magnitude and 

phase shifts introduced by the system in passing the input complex exponential signal 

from input to output. Equation (2.115) implies that the response of the system to a real 

sinusoidal input signal  x ( t )  5  cos(2 p   f   c   t ) of frequency  f   c   is given by

   y(t) 5 0H( fc) 0cos 32pfct 1 ]H( fc) 4   (2.116)  

 Similarly, the response of the system to sinusoidal input signal  x ( t )  5  sin(2 p  f   c   t ) is

   y(t) 5 0H( fc) 0sin 32pfct 1 ]H( fc) 4   (2.117)  

 For a periodic input signal  x   p  ( t ) represented by its Fourier series (2.49), the output of 

an LTI system can be obtained by applying (2.114) to each discrete frequency compo-

nent as follows:

   yp(t) 5 a
`

n52`

CnH(nfo)e j2pnfot  (2.118)  
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 Equation (2.118) states that the output of an LTI system to a periodic input is  also  peri-

odic and FS coefficients of the output signal are given by  C   n   H ( nf   o  ). 

  Example 2.32 

 The frequency response  H (  f  ) of an LTI system is given by

  H( f ) 5
2

1 1 j0.0025pf

Determine the output  y ( t ) for an input  x ( t )  5  sin(800 p  t )  1  2sin(2000 p  t   1  p  /4).   

Solution 

 The response of the system to input sinusoidal signal sin(800 p  t ) is given by

  H(400) 5 0.184 2 j0.578

This can be represented in the magnitude-phase form as   

 0H (400) 0  5  0.6066  

     ]H(400) 5 272.34°    

The output of the system for an input sin(800 p  t ) can now be expressed using (2.117) as 

0.6066sin(800 p  t   2  72.34  o ). 

 The response of the system to input sinusoidal signal 2sin(2000 p  t   1   p /4) is

    H (1000)  5  0.032  2   j 0.2506    

 This can be represented in the magnitude-phase form as

     0H(1000) 0 5    0.2526

     ] 0H(1000) 0 5 282.75o   

The output of the system for an input 2sin(2000 p  t   1   p /4) can now be expressed using (2.117) as 

0.5052 sin(2000 p  t   2  82.75 o   1   p /4). 

 Therefore, the combined output is

     y ( t )  5  0.6066 sin(800 p  t   2  72.34 o )  1  0.5052 sin(2000 p  t   2  82.75 o   1   p /4)      

 For any arbitrary input, the frequency domain response of an LTI system can be obtained 

by applying the FT to both sides of (2.41) and using the convolution property (2.79).

   Y( f ) 5 X( f )H( f )  (2.119) 

Equation (2.119) states that the output of the system in the frequency domain is given by 

multiplying the Fourier transform of the input by the system frequency response  H (  f  ).  H (  f  ), 
in general, is a complex function of  f  and can be expressed in the  magnitude-phase form as

   H( f ) 5 0H( f ) 0e j]H( f )  (2.120) 

where 0  H (  f  ) 0  and    ]H( f )  are, respectively, called the  magnitude  and the  phase 
responses  of the system. 
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 Design specifications for the LTI system, in many applications, are given in terms 

of the magnitude and phase responses. If  h ( t ) is a real function of time, then it follows 

from (2.67) and (2.68) that 0H( f ) 0  is an even function of  f 

   0H( f ) 0 5 0H(2f ) 0   (2.121) 

and the phase function    ]H( f )  is an odd function of  f 

   ]H( f) 5 2]H(2f )  (2.122)  

 In the frequency domain, the magnitude and the phase of the system input and output 

are related by

   0Y( f ) 0 5 0X( f ) 0 0H( f ) 0   (2.123) 

   ]Y( f ) 5 ]X( f ) 1 ]H( f )  (2.124) 

    The magnitude and the phase effects represented by (2.123) and (2.124) can be either 

 intentional  or  undesirable.  In the latter case, these effects of an LTI system on a signal  

are referred to as magnitude and phase distortions, respectively. 

  Example 2.33 

 Determine the magnitude and phase response of the RC low-pass filter shown in  Figure 2.35 . 

    Solution 

 The transfer function of the RC low-pass filter is obtained from  Figure 2.35  as

    H( f ) 5
Y( f )

X( f )
5

1yj2pfC

R 1 1yj2pfC
5

1

1 1 j2pfRC
 5

1

1 1 j( fyf3dB)
  (2.125) 

where

              f3dB 5
1

2pRC
  (2.126)  

 The magnitude and phase responses of the RC low-pass filter can now be expressed as

      0H( f ) 0 5 1

"1 1 ( fyf3dB)2
  (2.127) 

      ]H( f ) 5 2tan21( fyf3dB)  (2.128)  

  f  3  dB  is called the  3-dB cutoff frequency  or  3-dB bandwidth  of the low-pass filter because its 

magnitude-squared response drops by 3 dB (i.e., one-half the power) at  f   5   f  3  dB  as shown below:

      10 log10 0H( f3dB) 02 5 20log10 
1

"2
5 23 dB  (2.129)  Figure 2.35 RC low-pass filter.

Y( f )X( f) C

R
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 Equation (2.129) states that the input signal frequency component at  f    5    f  3  dB  is attenuated by 

3 dB compared with that at  f   5  0 in the filter output waveform.  Figure 2.36  shows the magnitude 

and phase responses of the low-pass filter with 3-dB bandwidth equal to 1 Hz. 

   Taking inverse FT of both sides of (2.125), the impulse response of the RC low-pass filter is 

given by

       h(t) 5 2pf3dBe22pf3dBtu(t) 5
1

RC
 e2tyRCu(t)  (2.130)    

  2.7.1 Distortionless Transmission 

 In general, both the magnitude and phase of spectral components of the input signal 

will be altered as the signal passes through an LTI system as indicated by (2.123) and 

(2.124). This amounts to  distortion  in signal transmission. An LTI system is termed 

 distortionless  if it introduces the same attenuation to all spectral components and offers 

linear phase response over the frequency band of interest, that is,

   Hideal( f ) 5 bHoe
2j2pfto, f1 # f # f2

0, otherwise
  (2.131)  

 Substituting (2.131) into (2.119) yields

   Y( f ) 5 X( f )Hideal( f ) 5 HoX( f )e2j2pfto  (2.132)  

 Taking inverse FT of both sides of (2.132), the output of a distortionless LTI system 

due to an arbitrary input signal  x ( t ) is given by

   y(t) 5 Ho x(t 2 to)  (2.133)  

Figure 2.36  (a) Magnitude and (b) phase responses of the RC low-pass filter. 
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  Consequently, the output of a distortionless LTI system is simply a delayed and 
scaled replica of the input.  

  Group Delay  

The  group delay  of an LTI system is defined as

   tg( f ) ! 2
1

2p
 
d]H( f )

df
  (2.134)  

 The phase response of a distortionless LTI system from (2.131) is a linear function of 

frequency as given by

   ]Hideal( f ) 5 22pfto,  f1 # f # f2  (2.135) 

where  t   o   is a constant. For a linear phase LTI system, we obtain

   tg( f ) 5 2
1

2p
 
d(22pfto)

df
5 to 5 constant  (2.136)  

 Equation (2.136) states that for a linear phase LTI system, the group delay is con-

stant. We interpret the group delay  t   g  (  f  ) as the time delay that a spectral component at 

frequency  f  undergoes as it passes through the LTI system. In this case of a linear phase 

LTI system, all frequency components of the input signal undergo the same time delay.  

  Phase Delay  

The  phase delay  of an LTI system is defined as

   tp( f ) ! 2
1

2pf
]H( f )  (2.137)  

 For a linear phase LTI system, the phase delay is given by

   tp( f ) 5 2
1

2pf
 (22pfto) 5 to 5 constant  (2.138)      

 2.8 LTI SYSTEMS AS FREQUENCY SELECTIVE FILTERS 

  One key application of LTI systems is to design  filters  that separate the desired 

 information-bearing signal from unwanted interference and noise. By definition, filters 

pass certain frequency components in the input signal (sequence) with minimum distor-

tion and block all other frequency components.  

  2.8.1 Ideal Filters 

 An ideal filter designed to pass signal components of certain frequencies without any 

distortion should have a magnitude response that is flat over these frequencies and 

should totally block signal components at all other frequencies. The range of frequencies 
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where the magnitude response takes the constant value and where the phase response 

is a linear function of frequency is called the  passband.  The range of frequencies 

where the frequency response is zero is called the  stopband  of the filter.  Figure 2.37  

displays the frequency response characteristics of ideal filters. 

   Ideal Low-Pass Filter  

The magnitude response of an ideal  low-pass (LP)  filter is defined as

   0HLP( f ) 0 5 bAo, 2W # f # W

0, otherwise
  (2.139)  

 The range of frequencies 0 #  f  #  W  is the passband of the filter. The range of frequen-

cies  f  .  W  is the stopband of the filter. 

 The frequency response of an ideal LP filter can now be expressed as

   HLP( f ) 5 AoP( fy2W)e2j2pfto  (2.140)  

 Taking the inverse Fourier transform yields the impulse response  h   LP  ( t ) of the ideal LP 

filter as

   hLP(t) 5 2WAo sinc 32W(t 2 to) 4   (2.141)  

  Figure 2.38  displays the impulse response of an ideal LP filter. 

  Ideal High-Pass Filter  

The magnitude response of an ideal  high-pass (HP)  filter is defined as

   0HHP( f ) 0 5 b0, 2W # f # W

Ao, otherwise
  (2.142)  

Figure 2.37  Magnitude and phase responses of ideal filters. 
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 The range of frequencies  f  #  W  is the stopband of the filter. The range of frequencies 

 f   .  W  is the passband of the filter. The frequency response of an ideal HP filter can now 

be written as

   HHP( f ) 5 Ao 31 2 P( fy2W) 4e2j2pfto  (2.143)  

 Taking the inverse Fourier transform yields the impulse response  h   HP  ( t ) of the ideal 

HP filter as

   hHP(t) 5 AoEd(t 2 to) 2 2W sinc 32W(t 2 to) 4F  (2.144)   

 Ideal Bandpass Filter  

The magnitude response of an ideal  bandpass (BP)  filter is defined as

   0HBP( f ) 0 5 bAo, fc 2 W # 0 f 0# fc 1 W

0, otherwise
  (2.145)  

 The range of frequencies  f   c    2   W  #  0  f 0  #   f   c    1   W  is the passband of the filter. The 

range of frequencies 0  f 0    .   f   c    1   W  and 0   f 0   ,   f   c    2   W  are the stopband regions of the 

filter. The frequency response of an ideal BP filter can now be written as

   HBP( f ) 5 Ho( f 2 fc) 1 Ho( f 1 fc)  (2.146) 

where

   Ho( f ) 5 AoP( fy2W)e2j2pfto  (2.147) 

is an LP filter with impulse response

   ho(t) 5 2WAo sinc 32W(t 2 to) 4   (2.148)  

Figure 2.38  Impulse response of an ideal LP filter. 
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 Because

   Ho( f 2 fc) g
I

ho(t)e
j2pfct  (2.149) 

   Ho( f 1 fc) g
I

ho(t)e
2j 2pfct  (2.150) 

we can now write the impulse response  h   BP  ( t ) of the bandpass filter as

 hBP(t) 5 4WAo sinc 32W(t 2 to) 4B e j2pfct 1 e2j2pfct

2
R

 5 4WAo sinc 32W(t 2 to) 4 cos(2pfct)  (2.151) 

 Thus, the impulse response of the bandpass filter is an oscillatory function. For 

the important case  f   c    . .  2 W,    h   BP  ( t ) can be viewed as the slowly varying signal 

4 WA   o   sinc(2 Wt ) shifted by  t   o   seconds and modulating the high-frequency sinusoidal sig-

nal cos(2 p  f   c   t ).  Figure 2.39  displays the impulse response of the ideal bandpass filter. 

  Ideal Bandstop Filter  

The magnitude response of an ideal  bandstop (BS)  filter is defined as

   0HBS( f ) 0 5 bAo, otherwise

0, fc 2 W # 0 f 0 # fc 1 W
  (2.152)  

 The range of frequencies  f   c    2   W  #  0  f 0  #   f   c        1   W  is the stopband of the filter. The range 

of frequencies 0  f 0  .   f   c    1   W  and 0  f 0    ,   f   c    2   W  is the passband region of the filter.   

Figure 2.39  Impulse response of an ideal BP filter. 
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 2.8.2 Realizable Approximations to Ideal Filters 

 In practice, it is impossible to realize a filter with the ideal  brick wall  characteristic 

of  Figure 2.37  because the corresponding impulse response is not causal and extends 

from  2  ̀   to  ̀  . In order to develop realizable filter transfer functions, the ideal fre-

quency response specifications of  Figure 2.37  are relaxed by including a transition band 

between the passband and the stopband to permit the magnitude response to decay more 

gradually from its maximum value in the passband to the zero value in the stopband as 

shown in  Figure 2.40 . Moreover, the magnitude response is allowed to vary by a small 

amount both in the passband and stopband. 

   The magnitude response specifications for a realizable approximation 0Ha( f ) 0          to the 

ideal brick wall characteristic consists of acceptable tolerances as shown in  Figure 2.40 . 

In the  passband  defined by 0 #  f  #  f   p  , we require

   1 2 dp # 0Ha( f ) 0 # 1 1 dp  (2.153) 

that is, the magnitude approximates unity within an error of  6  d   p  . In the  stopband,  
defined by  f   s   # 0  f 0   #  ̀  , we require

    0Ha( f ) 0 # ds  (2.154)  

implying that the magnitude approximates zero within an error of  d   s  . The frequencies 

 f   p   and  f   s   are, respectively, called the  passband edge frequency  and the  stopband edge 
frequency.  The limits of the tolerances in the passband and stopband,  d   p   and  d   s  , are 

called the  peak ripple values.  The peak passband ripple in dB is

   Rp 5 220 log(1 2 dp)  (2.155)  

 The minimum stopband attenuation in dB is given by

   Rs 5 220 log(ds)  (2.156)  

 Now we consider three design approaches to achieve the specifications described in 

 Figure 2.40 . These include

Figure 2.40  Typical magnitude specification of an LP filter. 
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    1. Butterworth approximation  

   2. Chebyshev approximation  

   3. Elliptic approximation    

 All these methods realize 0Ha( f ) 0  2  by an expression of the form

   0Ha( f ) 02 5
1

1 1 e2C2( f )
  (2.157) 

where  C (  f  ) is called the  characteristic function,  which is unique to the design 

approach selected. 

  Butterworth Approximation  

The frequency response of the Butterworth filter is maximally flat (i.e., it has no 

 ripples) in the passband and rolls off toward zero in the stopband. For Butterworth 

filters,

   C( f ) 5 ( fyfc)
N   (2.158) 

   e 5 1 

 The magnitude-squared response of the Butterworth filter is given by

   0Ha( f ) 02 5
1

1 1 ( fyfc)
2N   (2.159) 

where  f   c   is the 3-dB cutoff frequency. Note that as the filter order  N   S   ̀  , 0Ha( f ) 0
approaches the ideal brick wall characteristic. That is, the passband and the stopband 

magnitude responses approach the ideal characteristic with a corresponding decrease 

in the transition band. Butterworth filters have a monotonically decreasing magnitude 

response with  f.   

  Chebyshev Approximation  

Chebyshev filters minimize the peak error between the approximation and the ideal 

brick wall characteristic over the specified frequency range of the filter. In fact, the 

magnitude error is equiripple in the passband. For Chebyshev filters,

   C( f ) 5 TN( fyfp)  (2.160) 

where  T   N  ( x ) is a Chebyshev polynomial of order  N  given by the recursion relation

   Tn(x) 5 2xTn21(x) 2 Tn22(x), n $ 2  (2.161) 

and

   T1(x) 5 x, T0(x) 5 0  (2.162)  

 The parameter  e  specifies peak ripple in the passband. For a Chebyshev filter of 

fixed order  N,  there is a trade-off between the ripple and passband width. If one wants 

a small ripple, then the passband must be narrow. If both a small ripple and a wide 
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passband are required, then a sufficiently large filter order  N  must be chosen. For a 

given filter order  N,  a Chebyshev design provides a sharper transition roll-off than 

the Butterworth filter. Like the Butterworth, the Chebyshev filter stopband roll-off is 

monotonic.  

 Elliptic Approximation  

The magnitude-squared response of the Elliptic or Cauer filter of order  N  is given by

   0Ha( f ) 02 5
1

1 1 e2RN
2 ( fyfp)

  (2.163) 

where  R   N  ( x ) is an elliptic polynomial of order  N  and  e  determines passband ripple. 

Although an Elliptic filter achieves faster roll-off than either Butterworth or Chebyshev 

varieties, it introduces ripple in both the passband and the stopband. Also, the Elliptic 

filter roll-off is not monotonic, eventually reaching an attenuation limit, called the stop-

band floor. 

  Figure 2.41  displays the magnitude response of a sixth-order Elliptic filter designed 

to achieve 2-dB ripple in the passband (  f   p     5   2  kHz) and a 50-dB stopband floor 

(  f   s    5  2.5 kHz). For comparison, the magnitude responses of the same-order Butterworth 

and Chebyshev designs are plotted as well. The Elliptic filter has a predictably sharper 

roll-off characteristic than the other two approximations. However, the faster roll-off 

in the transition band is accompanied with a nonlinear phase response characteristic 

as well. 

 2.8.3 Analog Filter Design Using MATLAB 

 The  Signal Processing Toolbox  in MATLAB includes a large number of built-in func-

tions to develop analog filter transfer functions for meeting given frequency response 

specifications. The design procedure consists of two steps:

Figure 2.41   Comparison of the frequency responses of three types of analog LP filters.  
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    1. Estimate the order of the filter  H   a  ( s ) using any one of the magnitude approximation 

techniques, that is, Butterworth, Chebyshev, and Elliptic approximations. Specifi-

cally, the following M-file functions are available:

[N,Wn]  5  buttord(Wp,Ws,Rp,Rs,’s’)
[N,Wn]  5  cheb1ord(Wp,Ws,Rp,Rs,’s’)
[N,Wn]  5  ellipord(Wp,Ws,Rp,Rs,’s’)

  where   Wp   and   Ws  , respectively, are passband and stopband edge frequencies in 

 radians/sec with   Wp   ,   Ws   for a LP filter. The other two parameters ,    Rp   and   Rs  , are 

the passband ripple and the minimum stopband attenuation in dB, respectively. The 

outputs of these functions are the filter order   N   and the frequency scaling factor   Wn  . 

To meet the specified response specifications,   Wn   is a 3-dB angular cutoff frequency 

in the case of Butterworth design, whereas it is an angular passband edge frequency 

for Chebyshev and Elliptic filters.  

   2. Design the LP analog filter  H   a  ( s ) using any of the following M-files corresponding 

to the approximation approach selected:

[b,a]  5  butter(N,Wn,’s’)
[b,a]  5  cheby1(N,Rp,Wn,’s’)
[b,a]  5  ellip(N,Rp,Rs,Wn,’s’)

  The output data files of these functions are the length  N   1  1 column vectors b and 

a providing, respectively, the numerator and denominator coefficients in descending 

powers of s. The form of the transfer function obtained is given by

   Ha(s) 5
B(s)

A(s)
5

b(1)sN 1 b(2)sN21 1 c 1 b(N)s 1 b(N 1 1)

a(1)sN 1 a(2)sN21 1 c 1 a(N)s 1 a(N 1 1)
  (2.164)     

 After these coefficients have been calculated, the frequency response can be com-

puted using the M-file function   freqs(b,a,w)  , where w is a specified set of angular 

frequencies (radians/sec). The function   freqs(b,a,w)   generates a complex vector 

of frequency response samples  H   a  ( v ) from which magnitude or phase response samples 

of the filter can be readily computed. 

  Example 2.34 

 Design and plot the gain response of an analog Elliptic LP filter with the following specifications:

   • Passband frequency  fp   5  800 Hz  

  • Stopband frequency  fs   5  1000 Hz  

  • Maximum passband ripple  Rp   5  1 dB  

  • Minimum stopband ripple  Rs   5  40 dB    

  Solution 

 To determine the order of the Elliptic filter meeting the specifications, we use the command      

 [N,Wn]  5  ellipord(Wp,Ws,Rp,Rs,’s’)   with   Wp    5  2 p (800),   Ws    5  2 p (1000),   Rp    5  1, 

  Rs    5  40. The outputs generated are   N    5  5 and   Wn    5  2 p (800). Next we design the filter using the 

command   [b,a]    5    ellip(N,Rp,Rs,Wn,’s’).    Figure 2.42  displays the sample MATLAB 

code for this example. The magnitude response of the desired filter of order   N    5  5 is shown in 

 Figure 2.43 . 
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% Program to Design Elliptic Low-pass Filter
%
% Read in passband edge frequency,stopband edge frequency
% passband ripple in dB and minimum stopband
% attenuation in dB
Fp  5  input(’Fp  5 Passband edge frequency in Hz  5  ’);
Fs  5  input(’Fs  5 Stopband edge frequency in Hz  5  ’);
Rp  5  input(’Passband ripple in dB  5  ’);
Rs  5  input(’Minimum stopband attenuation in dB  5  ’);
Wp 5 2  *  pi  *  Fp
Ws 5 2  *  pi  *  Fs
%Determine the order of Elliptic filter
[N,Wn]  5  ellipord(Wp,Ws,Rp,Rs,’s’)
%Determine the coefficients of the transfer function
[num,den]  5  ellip(N,Rp,Rs,Wn,’s’);
% Compute and plot the frequency response
omega  5  [0: 20: 6  *  Fp  *  pi];
h  5  freqs(num,den,omega);
plot (omega/(2  *  pi),20  *  log10(abs(h)));
grid on;
title(’Magnitude Response of Elliptic LP Filter’);
axis([0 3  *  Fp  2 80 5])
xlabel(’Frequency, Hz’);
ylabel(’Magnitude Response(dB)’);

Figure 2.42   MATLAB m-file to design LP Elliptic filter.  

Figure 2.43   Magnitude response of the LP Elliptic filter.  
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     For designing HP, BP, and BS digital filters, the order of the three types of filters can 

be estimated using the same MATLAB functions as before but with the following differ-

ences: For HP filters,   Wp > Ws  . For BP and BS digital filters,   Wp   and   Ws   are vectors 

of length 2 specifying the transition bandedges. For example,   Wp  5  [wp1 wp2]   with 

  wp1<w<wp2. wp1   and   wp2   are, respectively, the lower and upper passband edge frequen-

cies. As before, the parameters   Rp   and   Rs   are the passband ripple and the minimum stop-

band attenuation in dB, respectively. The outputs of these functions are the filter order   N   
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and the frequency scaling factor   Wn. Wn   is a vector of length 2 for bandpass and bandstop 

filters.   N   and   Wn   are used as input to the following MATLAB functions for filter design:

[b,a]  5  butter(N,Wn,‘filtertype’,’s’)
[b,a]  5  cheby1(N,Rp,Wn,‘filtertype’,’s’)
[b,a]  5  ellip(N,Rp,Rs,Wn,‘filtertype’,’s’) 

 For example, the command

[b,a]  5  butter(N,Wn,’s’)

is used to design a BP Butterworth filter of order 2N with Wn being a two-element vec-

tor. By default, if Wn is a two-element vector, a BP or BS filter is assumed. 

 For designing high-pass (HP) digital filters, the string ‘filtertype’ is ‘high’ 

in all of the preceding commands with Wn being a scalar. For example, the command

[b,a]  5  cheby1(N,Rp,Wn,‘high’,’s’)

is used to design a HP Chebyshev filter of order N. 

 Similarly, the string “filtertype” is ‘stop’ in all of the preceding commands for 

designing BS digital filters. For example, the command

[b,a]  5  ellip(N,Rp,Rs,Wn,‘stop’,’s’)

is used to design a BS Elliptic filter of order 2N with Wn being a two-element vector. 

 Example 2.35 

 Design and plot the gain response of an Elliptic BP filter with the following specifications:

   • Passband edge frequencies [  f   p 1 ,  f   p 2 ]  5  [4000, 7000] Hz  

  • Stopband edge frequencies [  f   s 1 ,  f   s 2 ]  5  [3000, 8000] Hz  

  • Maximum passband ripple  Rp   5  1 dB  

  • Minimum stopband ripple  Rs   5  40 dB    

% Program to Design Elliptic Bandpass Filter
%
% Read in passband edge frequency,stopband edge frequency
% passband ripple in dB and minimum stopband
% attenuation in dB
Fp  5  input(’Fp  5 Passband edge frequencies in Hz  5  ’);
Fs  5  input(’Fs  5 Stopband edge frequencies in Hz  5  ’);
Rp  5  input(’Passband ripple in dB  5  ’);
Rs  5  input(’Minimum stopband attenuation in dB  5  ’);
Wp 5 2*    pi  *  Fp
Ws 5 2  *  pi*    Fs
%Determine the order of Elliptic filter
[N,Wn]  5  ellipord(Wp,Ws,Rp,Rs,’s’)
%Determine the coefficients of the transfer function
[num,den]  5  ellip(N,Rp,Rs,Wn,’s’);
% Compute and plot the frequency response
omega  5  [0: 200: 4  *  Fp(2)*    pi];
h  5  freqs(num,den,omega);
plot (omega/(2  *  pi),20  *  log10(abs(h)));
grid on;
title(’Magnitude Response of Elliptic Bandpass Filter’);
axis([0 2  *  Fp(2)  2 80 5]);
xlabel(’Frequency, Hz’);
ylabel(’Magnitude Response(dB)’);

Figure 2.44   MATLAB m-file to design BP Elliptic filter.  

mes80369_ch02_024-103.indd   83mes80369_ch02_024-103.indd   83 21/11/11   4:17 PM21/11/11   4:17 PM



Rev. Confirming Pages

84 Chapter Two

 To determine the order of the Elliptic filter meeting the specifications, we use the command   [N,Wn]  
5    ellipord(Wp,Ws,Rp,Rs,’s’)   with   Wp    5  2 p [4000, 7000],   Ws    5  2 p [3000, 8000],   Rp    5  1, 

  Rs    5  40. Next we design the filter using the command   [b,a]  5  ellip(N,Rp,Rs,Wn,’s’).   

 Figure 2.44  displays the sample MATLAB code for this example. The magnitude response of the 

desired filter of order  N   5  10 is shown in  Figure 2.45 . 

 2.9 POWER SPECTRAL DENSITY 

  In the design of communication systems, we are interested in power distribution of 

a power signal in the frequency domain. Recall from Section 2.1 that the normalized 

average power of a signal  x ( t ) was defined in (2.20) as

 Px 5 lim
TS`

1

T 3
Ty2

2Ty2

0x(t) 02dt  (2.20) 

  Note that the average power defined here is a  time-average mean-square value  to 

distinguish it from statistical mean-square value to be discussed in Chapter 6. The 

problem in dealing with power signals in the frequency domain is that their Fourier 

transform may not exist as they have infinite energy. To overcome this problem, we 

define a new function  x   T   ( t ) by truncating  x ( t ) outside the interval 0  t 0   .  T /2.

   xT (t) 5 bx(t), 2Ty2 # t # Ty2

0, otherwise
  (2.165) 

 x   T   ( t ) has finite energy as long as  T  is finite. We can now write an expression for the 

energy of  x   T   ( t ) by using Parseval’s relation (2.89) as follows: 

   ExT
5 3

`

2`

0xT (t) 02dt 5 3
`

2`

0XT ( f ) 02df   (2.166)  

Figure 2.45   Magnitude response of the BP Elliptic filter.  
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where

   xT (t) g
I

XT ( f )

Because 

   3
`

2`

0xT (t) 02dt 5 3
Ty2

2Ty2

0x(t) 02dt   (2.167)  

we can write

   
1

T 3
Ty2

2Ty2

0x(t) 02dt 5 3
`

2`

0XT ( f ) 02
T

 df   (2.168)  

 The normalized average power can now be expressed by substituting (2.168) into (2.20) as

 Px 5 lim
TS`

3
`

2`

0XT ( f ) 02
T

 df   (2.169) 

  Because  x ( t ) is a power signal, the integral on the right-hand side of (2.169) exists in 

the limit as  T  S  ̀  . Therefore, we can change the order of integration and limit yielding

   Px 5 lim
TS`

3
`

2`

0XT ( f ) 02
T

 df 5 3
`

2`

lim
TS`

0XT ( f ) 02
T

 df   (2.170) 

  The  power spectral density (PSD)  G  x  (  f  ) of power signal  x ( t ) is defined as

   Gx( f ) ! lim
TS`

0XT ( f ) 02
T

  (2.171) 

  This allows us to express the normalized average power as

   Px 5 3
`

2`

Gx( f )df   (2.172)  

 From (2.172), it is obvious G  x  (  f   o  )Δ f  represents the power contained in a spectral band 

of Δ f  Hz centered at frequency  f   o  . Thus G  x  (  f  ) may be interpreted as the power contained 

in spectral components of  x ( t ) centered at frequency  f  per Hz of bandwidth. It is speci-

fied in units of W/Hz.  

  Power Spectral Density of a Periodic Signal  

For a periodic signal  x   p  ( t ), the normalized average power is given from (2.60) as

   Px 5 a
`

n52`

0Cn 02 

 Because 0  C   n  0  2  is power contained in the spectral component at  f   5   nf   o  , the PSD G  x  (  f  ) of 

a periodic signal can be expressed as

   Gx( f ) 5 a
`

n52`

0Cn 02d( f 2 nfo)  (2.173)  
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 Substituting (2.91) into (2.173) yields

   Gx( f ) 5 a
`

n52`

0Xp(nfo) 02d( f 2 nfo)  (2.174)   

  2.9.1 Time-Average Autocorrelation Function 

 The  time-average autocorrelation function  of a power signal  x ( t ) is defined as

   Rx(t) 5 lim
TS`

1

T 3
Ty2

2Ty2

x(t)x(t 2 t)dt  (2.175) 

  The normalized average power  P   x   of  x ( t ) is related to R  x  ( t ) by

   Px 5 lim
TS`

1

T 3
Ty2

2Ty2

0x(t) 02dt 5 Rx(0)  (2.176) 

  It can be shown that the PSD of a power signal  x ( t ) is the Fourier transform of its time-

average autocorrelation function.

   Gx( f ) g
I

Rx(t)  (2.177)  

  Example 2.36 

 Determine the time-average autocorrelation function and PSD of the sinusoidal signal 

 x ( t )  5   A cos(2 p  f   o   t   1   f ) 

  Solution 

The time-average autocorrelation function is obtained using the definition (2.175) as

  Rx(t) 5 lim
TS`

1

T 3
Ty2

2Ty2

x(t)x(t 2 t)dt  

  5 lim
TS`

1

T 3
Ty2

2Ty2

A2 cos(2pfot 1 f)cos 32pfo(t 2 t) 1 f 4dt

  5
A2

2
 cos(2pfot) 1 lim

TS`

1

T 3
Ty2

2Ty2

cos 34pfot 2 2pfot 1 2f 4dt

 The second integral is zero yielding

   Rx(t) 5
A2

2
 cos(2pfot)  (2.178)  
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 Because the PSD of a power signal  x ( t ) is the Fourier transform of its time-average autocor-

relation function, we obtain using  Table 2.2 

   Gx( f ) 5 IERx(t)F 5 IbA2

2
 cos(2pfot)r 5

A2

4
 3d( f 2 fo) 1 d( f 1 fo) 4  

 The normalized average power may be obtained by using (2.172) as

   Px 5 3
`

2`

Gx( f )df 5 3
`

2`

A2

4
 3d( f 2 fo) 1 d( f 1 fo) 4df 5

A2

2
    

 2.9.2 Relationship Between Input and Output Power Spectral Densities 

 For a linear system with transfer function  H (  f  ), the output  y ( t ) of the system in response 

to the input signal  x ( t ) is given in the frequency domain from (2.119) as

   Y( f ) 5 X( f )H( f )  (2.119)  

 The PSD of a power signal  y ( t ) can be written using (2.169) as

   Gy( f ) 5 lim
TS`

0YT ( f ) 02
T

  (2.179) 

  The relationship in the frequency domain between the truncated versions of  y ( t ) and  x ( t ) 
is obtained using (2.119) as

   YT( f ) 5 XT( f )H( f )  (2.180)  

 Substituting (2.180) into (2.179) yields

    Gy( f ) 5 lim
TS`

0XT ( f )H( f ) 02
T

5 0H( f ) 02 lim
TS`

0XT ( f ) 02
T

 5 0H( f ) 02Gx( f )  (2.181) 

  Equation (2.181) states that the output signal PSD in an LTI system depends on the 

magnitude of  H (  f  ) and is given by 0  H (  f  ) 0  2  times the input PSD. 

 Example 2.37 

 The periodic pulse train in Example 2.24 is input to a fourth order Butterworth LPF with 3-dB 

cutoff frequency  f   c    5  4 MHz. Assume  T   o    5  1  m sec and  t / T   o    5  0.25. Plot the output PSD. 

 Solution 

 The PSD G  x  (  f  ) of periodic pulse train is given by substituting (2.59) into (2.173).

   Gx( f ) 5 ¢ t

To
≤2

a
`

n52`

2sinc¢nt

To
≤ 22d( f 2 nfo) 5

1

16 a
`

n52`

0sinc(ny4) 02d( f 2 nfo)  (2.182)  
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 Substituting (2.182) and (2.181) yields the output PSD G  y  (  f  ) as

   Gy( f ) 5 0H( f ) 02Gx( f ) 5
1

16
 0H( f ) 02 a`

n52`

0sinc(ny4) 02d( f 2 nfo)

 5
1

16 a
`

n52`

0H(nfo) 02 0sinc(ny4) 02d( f 2 nfo)  (2.183)  

  Figure 2.46(a)  displays the PSD Gx    (  f  ) of the periodic pulse train. The magnitude response of 

the fourth order Butterworth LPF with 3-dB cutoff frequency  f   c    5  4 MHz is illustrated in  Fig-

ure 2.46(b) . The output PSD G  y  (  f  ) calculated using (2.183) is shown in  Figure 2.46(c) . 

 2.10 FREQUENCY RESPONSE CHARACTERISTICS 
OF TRANSMISSION MEDIA 

  We consider transmission of signals through widely used wired media such as TWP and 

coaxial cables.  

  2.10.1 Twisted Wire Pairs 

 To obtain frequency domain characterization of twisted wire pairs (TWPs) and coaxial 

cables, we use transmission line theory concepts. The distributed circuit model of the 

transmission line consists of a cascade of many transmission line segments of the type 

shown in  Figure 2.47 . Each transmission line segment is characterized by an equivalent 

circuit with lumped-circuit elements  R,   L,   C,  and  G  where

Figure 2.46   Input and output spectral densities.  
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   •  R   5  Series resistance per meter  

  •  L   5  Series inductance per meter  

  •  C   5  Shunt capacitance per meter  

  •  G   5  Shunt conductance per meter    

   The line is  lossless  if  R    5    G    5   0.  R  depends on frequency and has the form 

   R( f ) < co"2pf   at high frequencies because of the  skin effect.  This refers to the ten-

dency of high frequencies in a signal to travel near the surface of a conductor in a layer 

some tens of microns thick. 

 If voltage  x   i  ( t ) is applied at the input to the transmission line at time  t   5  0, the volt-

age along the line declines exponentially with distance. At time  t  its value is given by

   x(z, t) 5 xi(t)e
2gz  (2.184) 

where  z  is the distance in meters.  g  is called the  propagation constant  of the TWP. 

It determines the variation of voltage along the line. As a special case, if the input is a 

complex sinusoidal signal  x   i  ( t )  5   Ae     j 2 p   ft   of frequency  f  Hz, the voltage along the line 

at distance  z  is

   x(z, t) 5 Ae j2pfte2gz  at time t  (2.185)  

 The propagation constant is a complex function of frequency and is given in terms 

the lumped-circuit model element values as

   g( f ) 5 a( f ) 1 jb( f ) 5 "(R 1 j2pfL)(G 1 j2pfC)  (2.186) 

where  a   5  attenuation coefficient ( 5  0 for lossless line), and  b   5  phase shift coeffi-

cient  5  2 p / l  (radians/meter). Substituting (2.186) into (2.185) yields

 x(z, t) 5 Ae2[a(  f  )1jb(  f  )]ze j 2pft 5 Ae2a(  f  )ze j[2pft2b(  f  )z] (2.187)

  Equation (2.187) states that the entering phasor signal’s magnitude decays along the 

line as  e   2  a (   f   ) z  . Further, a phase shift of  2  b (  f  ) z  radians is introduced in the input phasor 

signal. Another important parameter of the transmission line is its  characteristic 
impedance,   Z   o  . It is defined as the input impedance of an infinite line or that of a finite 

line terminated with a load impedance,  Z   L    5   Z   o  . It is given in terms the lumped-circuit 

model element values as

   Zo 5 Å R 1 j2pfL

G 1 j2pfC
  (2.188)  

 For a transmission line terminated with its characteristic impedance, the transfer 

function  HTWP( f, ,)  is given by

   HTWP( f, ,) 5 e2g( f ) ,    (2.189) 

Figure 2.47   Transmission line model of a TWP.  
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where , is line length. The  attenuation  or  insertion loss  is defined as the reduction or 

loss in signal power as it is transferred across the transmission medium. It is determined 

by the magnitude of its transfer function, which is given by

   0HTWP( f, ,) 0 5 e2a( f ),   (2.190) 

where  a (  f  )   5   real part of the propagation constant in (2.186). The attenuation of a 

TWP is usually expressed in dB as

  Insertion Loss 5 220log10 0HTWP( f, ,) 0 5 220log10e
2a( f ), 5 8.686a( f  ), dB  (2.191)  

 The parameter  a (  f  ) has the form

   a( f  ) = c1"f  1 c2 f  (2.192) 

where  f  is in Hz. For    f $ 300 kHz, a( f ) < c1 "f  Substituting in (2.191) allows us to 

write the following simplified expression for the attenuation of a TWP:

   Insertion Loss 5 8.686c1" f, dB,  f $ 300 kHz  (2.193) 

where  f  and   ,   are specified in Hz and miles, respectively. Attenuation of the TWP 

increases both with the length and the frequency of operation. The increase in attenua-

tion is linear with length and is proportional to    "f   at high frequencies because of the 

skin effect. The parameters  c  1  and  c  2  for popular TWP cables are listed in  Table 2.4 . 

  Figure  2.48  shows insertion losses that are produced using the parameters from 

 Table 2.4  for a length of 1 mile. The attenuation for a TWP, measured in dB/mile, can 

range from a few dB/mile at 1 kHz to 15 to 30 dB/mile at 500 kHz, depending on the 

AWG of the wire. Because the insertion loss of a TWP increases linearly with distance, 

the bandwidth decreases correspondingly with the length of TWP drop. 

Figure 2.48   Attenuation characteristics of TWP.  
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    Example 2.38 

 The element values in the lumped-circuit model of 24-AWG TWP are given as

    C   5  0.05  m F/km  

   L   5  0.673 mH/km  

   R   5  180 ohms/km  

   G   5  0    

 In telephone network, subscriber loops are limited to 18,000 feet (| 5.45 km). Determine the 

output of 6-km TWP for an input sinusoidal signal  x ( t )  5  5cos(6800 p  t ). 

  Solution 

 Substituting these element values in (2.186) yields

 g( f ) 0 f53.4 kHz 5 "(180 1 j6.8p 3 0.673)(0 1 j6.8p 3 0.05 3 1023)

 5 0.2979 1 j0.3227 5 0.4392]47.3°

Therefore,  a  at 3.4 kHz  5  0.2979 km  2  1 . The attenuation at  f   5  3.4 kHz is obtained by substitut-

ing  a  into (2.191) as 8.686  3  0.2979 < 2.6 dB/km. 

 The transfer function value for 6-km TWP loop at 3.4 kHz is given from (2.189) as

   HTWP( f ) 0 f53.4 kHz 5 e263g( f ) 0 f53.4 3103 5 e2(0.29791 j0.3227)36

 5 20.0598 2 j0.1563 5 0.1674]2110.9°

Substituting into (2.116), the output of 6-km TWP loop for a sinusoidal input  x ( t )  5  5cos(6800 p  t ) 
can be written as 

    y(t) 5 0HTWP( f ) 0 f53.4 kHz 3 5cos 36800pt 1 ]HTWP( f ) 0 f53.4 kHz 4  
  5 5 3 0.1674cos(6800pt 2 110.9°) 5 0.837cos(6800pt 2 110.9°) 

      Example 2.39 

 If the maximum run length using Category (Cat) 5 TWP from the desktop to the nearest wiring 

closet is restricted to 100 feet, what is the expected power level at the closet assuming the desktop 

network interface launches 250 mW at 100 MHz? 

  Solution 

 The attenuation of a Cat 5 TWP is given by

  Insertion Loss 5 8.686 3 3.83 3 1023 3 "108 dBymile 5 8.686 3 38.3 5 332.67 dBymile 

  Table 2.4    c  1  and  c  2  Parameters for 
Popular TWP Cables 

Type c1 c2

Cat 3 4.31 3 1023 4.26 3 1027

Cat 4 3.89 3 1023 4.82 3 1027

Cat 5 3.83 3 1023 2.41 3 1028

AWG 26 4.8 3 1023 21.71 3 1028

AWG 24 3.8 3 1023 20.54 3 1028

AWG 22 3.0 3 1023 0.035 3 1028
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 Therefore, loss for ,    5  100 foot drop of Cat 5 TWP cable  5  332.67  3  100/5000  5  6.65 dB. 

 Power launched by the desktop  5  250  mW   5  10log 10 (250)  5  24 dBm 

 Power level at the wiring closet  5  Power launched by the desktop – loss  5  24  2  6.65  5  17.35 

dBm  5  10 17.35/10   5  54 mW    

 2.10.2 Coaxial Cable 

 The insertion loss of coaxial cables can be modeled by the following:

   Insertion Loss 5 20log10 0Hcoax( f, ,) 0 5 (k1"f 1 k2 f ), dB  (2.194) 

where

    f   5  frequency in MHz  

  ,    5  cable length in kft    

 For high frequencies, k1"f      term in (2.194) dominates. This allows us to write the fol-

lowing simplified expression for the attenuation of a coaxial cable:

   Insertion Loss 5 k1"f , dB, f $ 300 kHz  (2.195) 

where  f  and ,   are specified in MHz and kft, respectively. Attenuation of the coaxial 

cable also increases both with frequency and the cable length. The increase in attenu-

ation is linear with length and proportional to    "f   at high frequencies because of the 

skin effect. The parameters  k  1  and  k  2  characterize the coaxial cable type;  k  1  basically 

indicates the amount of conductor loss while  k  2  indicates the amount of dielectric loss. 

The parameters for different types of cables are listed in  Table 2.5 . 

 RG-59 and RG-6 cables are used in the distribution segment of a CATV network for 

subscriber drops. 500-F and 625-F are examples of cables that originate from a fiber 

distribution node to form the trunk and feeder portion of the CATV network.  Figure 2.49  

displays the attenuation characteristics of both cable types. By comparing the results 

in  Figure 2.49  with those in  Figure 2.48 , it can be seen that coaxial cables can provide 

much larger frequency range of operation (up to 1 GHz) than twisted wire pair (a few 

MHz). Today’s  cable television (CATV)  systems use a frequency range of 1 GHz. 

  2.11 FOURIER TRANSFORMS FOR DISCRETE-TIME 
SIGNALS 

  For discrete-time signals  x [ n ], two alternative frequency domain representations are 

extremely useful. 

   •  Discrete-time Fourier transform (DTFT)   

  •  Discrete Fourier transform (DFT)    

  Table 2.5    k  1  and k   2  Parameters for Popular 
Coaxial Cables 

500-F 625-F RG-6 RG-59

k1 0.69 0.6058 2.1144 2.7155

k2 3.7 3 1023 1.6 3 1023 2.1 3 1023 1.5 3 1023
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 The DTFT    X(e jv̂ )  of a sequence  x [ n ], obtained by sampling an analog signal  x ( t ) at 

the rate  f   s    5  1/ T   s   samples/sec, is defined by

   X(e jv̂ ) 5 a
`

n52`

x 3n 4e2jv̂n  (2.196) 

where    v̂   is normalized angular frequency    v̂ 5 2pfTs  in radians/sample.    X(e jv̂ )  is, 

in general, a complex and  continuous  function of the real variable    v̂   and can be 

written as

   X(e jv̂ ) 5 0X(e jv̂) 0e j]X(e jv̂)   (2.197) 

where both magnitude    0X(e jv̂ ) 0   and phase    ]X(e jv̂)  are real functions of    v̂ .  The DTFT 

   X(e jv̂ )  of a sequence  x [ n ] is a periodic function of    v̂   with period 2 p .

   X 3e j (v̂ 12pk) 4 5 a
`

n52`

x 3n 4e2j(v̂ 12pk)n 5 a
`

n52`

x 3n 4e2jv̂n 5 X(e jv̂ )  (2.198)  

    Figure 2.50  displays the relationship between the FT of a continuous signal  x ( t ) and 

its sampled version  x [ n ]. The values of    v̂ 5 6p  correspond to half the sampling rate, 

that is,  f   s  /2. 

 In the case of a finite-length sequence  x [ n ], 0 #  n  #  N   2  1, there is a simpler fre-

quency domain representation in terms of its DFT. The DFT  X [ k ] of a sequence  x [ n ] is 

defined by

Figure 2.49   Attenuation characteristics of coaxial cables.  
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   X 3k 4 5 a
N21

n50

x 3n 4e2j2pknyN,  k 5 0, 1, c, N 2 1  (2.199)  

 Note that DFT is applicable  only  to a finite-length sequence. The length of the DFT 

sequence  X [ k ] is also  N .  X [ k ] is, therefore, referred to as  N  -point  DFT of  x [ n ]. Because

    X 3k 4 5 X(e jv̂ ) 0 v̂ 52pkyN,  (2.200)  

the DFT  X [ k ] can be viewed as  uniformly spaced  samples of the corresponding DTFT 

   X(e jv̂ )  over [0, 2 p ] at frequencies    v̂k 5
2pk

N
, k 5 0, 1, c, N 2 1.  It is easy to prove 

that  X [ k ] is periodic with period  N. 

   X 3k 4 5 X 3k 1 mN 4,  m any integer 

 Because there are  N  frequency samples in the interval  f   s   (corresponding to [0, 2 p ] on 

   v̂   axis), the frequency resolution of DFT is given by

   Df 5
fs
N

5
1

NTs
5

1

T
  (2.201) 

where  T  is the total duration of the signal. Equation (2.201) states that the frequency 

resolution of DFT is determined by the signal record length. To obtain the original 

sequence  x [ n ] from the DFT sequence, we use the  inverse DFT (IDFT)  defined by

   x 3n 4 5
1

N a
N21

k50

X 3k 4e1j2pknyN,  n 5 0, 1, c, N 2 1  (2.202) 

Equations (2.199) and (2.202) form a DFT pair. 

 The  Fast Fourier transform (FFT)  is an extremely efficient algorithm for comput-

ing DFT. The FFT requires that the sequence length  N  is an integer power of 2. This is 

usually accomplished by appending zeros on either side of discrete-time sequence  x [ n ]. 

Figure 2.50   Relationship between FT and DTFT of a sampled signal.  
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Zero-padding increases the number of points in the DFT thereby improving the DFT’s 

approximation of the DTFT    X(e jv̂ ).  In MATLAB, the m-file fft(x )  is used for com-

puting the  N -point FFT of a length- N  sequence  x [ n ]. The m-file ifft(X )  computes 

the inverse FFT of length- N  DFT sequence  X [ k ]. 

  Example 2.40 

 Consider a rectangular pulse of unit amplitude and duration  T   5  1 sec. 

    a. Sample the pulse at 20 Hz and append zeros on either side to generate a discrete-time sequence 

 x [ n ] of length 512.  

   b. Obtain the DFT X[k] of  x [ n ] by using m-file fft(x). Plot fftshift(X).   

  Solution 

 The m-file in  Figure 2.51(b)  computes the FFT as a rectangular pulse of unit amplitude and dura-

tion  T   5  1 sec. The sampling rate is chosen so that 20 samples are obtained within the pulse inter-

val to account for the wide bandwidth of the pulse due to its sharp edges. Figure 2.54(a) displays 

the sampled sequence  x [ n ] and magnitude of the 512-point FFT. 

% Example_2.41.m
% Matlab script to illustrate the FFT of a rectangular pulse
% 

clear all;

% Time axis: Sampling period is 50 milliseconds
delt 5 1/20
t  5   2 12.5:delt:12.5  ;
fs 5 1/delt

% A rectangular pulse of duration 1 second

x  5  rectpuls (t,1);
subplot (2,1,1);
stem(t,x)
axis ([25 5 0 1.1]) 
title ('x[n]')
xlabel('Time')

% Fast Fourier Transform of x[n]

X  5  fft(x,512);

% Compute the magnitude of FFT and center it

XX  5  abs(fftshift(X(1:512)));
f  5  fs*(2256:255)/512        ;
subplot (2,1,2);
stem(f,XX)
axis ([20.5*fs 0.5*fs 0 25]) 
title('DFT X[k]')
xlabel('Frequency (Hz)')
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              FINAL REMARKS 

 In this chapter we reviewed fundamental concepts about signals and their processing 

by linear systems. Although signals are usually described as functions of time, the fre-

quency domain description was introduced to analyze the signals and linear systems. 

The Fourier transform serves as a fundamental tool in this context for relating the time-

domain and frequency-domain descriptions. 

 An inverse relationship exists between the time-domain and frequency-domain 

parameters that characterize signals and systems. An important consequence of this 

inverse relationship is that the duration–bandwidth product of a signal is constant. Thus, 

a signal cannot arbitrarily be both duration and bandwidth limited. 

 The response of linear time-invariant systems to input signals was considered in both 

time- and frequency-domains. The output signal in general is a distorted version of the 

input as a result of nonideal magnitude and phase response characteristics of the system. An 

important signal processing operation in communication systems is that of linear filtering. 

We studied various ideal filter types and investigated realizable designs using MATLAB. 

 The transmission characteristics of different transmission media were then studied 

in the frequency domain. Signal transmission and distortion properties of wired media 

such as twisted wire pair and coaxial cable were reviewed.  

Figure 2.51   (a) Sampled sequence  x [ n ] and magnitude of the 512-point FFT; (b) m-file for computing 
the FFT of a rectangular pulse.  
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  F U R T H E R  R E A D I N G  S

 Signals and systems are covered in the undergraduate texts on the sub-

ject [1–4]. References [5] and [6] review the material from the perspec-

tive of its relevance in the study of communication systems. 

  1. Kamen, E., and B. Heck.  Fundamentals of Signals and Systems,  
3rd ed. Upper Saddle River, NJ: Prentice Hall, 2006. 

  2. McClellan J., R. Schafer, and M. Yoder.  Signal Processing First.  
Upper Saddle River, NJ: Prentice Hall, 2003. 

  3. Lathi, B.  Linear Systems and Signals,  2nd ed. New York: Oxford 

University Press, 2004. 

  4. Oppenheim, A., A. Willsky, and S. Nawab.  Signals and Systems,  
2nd ed. Upper Saddle River, NJ: Prentice Hall, 1996. 

  5. Ziemer, R., and W. Tranter.  Principles of Communications: 
Systems, Modulation, and Noise,  5th ed. New York: John Wiley, 

2001. 

  6. Carlson, B., P. Crilly, and J. Rutledge.  Communication Systems,  
4th ed. New York: McGraw-Hill, 2002. 

  7. Mitra, S.  Digital Signal Processing: A Computer-Based 
Approach,  3rd ed. New York: McGraw-Hill, 2006. 

  8. MATLAB  1  Signal Processing Toolbox, Student Version 

Release 14, available at   www.mathworks.com/student  .  

  P R O B L E M S 

    2.1. Consider the signals displayed in Figure P2.1. Show that each 

of these signals can be expressed as the sum of rectangular 

P ( t ) or triangular L( t ) pulses. 

   2.3. Plot the following signals:

   a.  x  1 ( t )  5  2P( t /2)cos(6 p  t )  

  b.    x2(t) 5 2B 1

2
1

1

2
 sgn(t)R    

  c.  x  3 ( t )  5   x  2 (2 t   1  2)  

  d.  x  4 ( t )  5  sinc(2 t )P( t /2)     

   2.4. Determine whether the following signals are periodic. For peri-

odic signals, determine the fundamental period. 

   a.  x  1 ( t )  5  sin( p  t )  1  5cos(4 p  t /5)  

  b.  x  2 ( t )  5   e    j 3 t    1   e    j 9 t    1  cos(12 t )  

  c.  x  3 ( t )  5  sin(2 p  t )  1  cos(10 t )  

  d.    x4(t) 5 cos¢2pt 2
p

4
≤ 1 sin(5pt)     

   2.5. Classify the following signals as odd or even or neither. 

   a.  x  1  ( t )  5   2  4 t   

  b.  x  2  ( t )  5  e2 0 t 0   
  c.  x  3  ( t )  5  5cos(3 t )  

  d.    x4(t) 5 sin¢3t 2
p

2
≤    

  e.  x  5 ( t )  5   u ( t )  

  f.  x  6 ( t )  5  sin(2 t )  1  cos(2 t )    

   2.6. Determine whether the following signals are energy or power, 

or neither and calculate the corresponding energy or power in 

the signal. 

   a.  x  1 ( t )  5   u ( t )  

  b.  x  2 ( t )  5  4cos(2 p  t )  1  3cos(4 p  t )  

Figure P2.1
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    2.2. For the signal  x  2 ( t ) in Figure P2.1(b) plot the following signals:

   a.  x  2 ( t   2  3)  

  b.  x  2 (2 t )  

  c.  x  2 (2 t )  

  d.  x  2 (3  2  2 t )     
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  c.    x3(t) 5
1

t
   

  d  x  4 ( t )  5   e   2  a  t    u ( t )  

  e.  x  5 ( t )  5  P( t /3)  1  P ( t )  

  f.  x  6 ( t )  5  5 e  (22t  1   j 10 p  t )  u ( t )  

  g.    x7(t) 5 a
`

n52`

L 3(t 2 4n)y2 4      
   2.7. Evaluate the following expressions by using the properties of 

the delta function:

   a.  x  1 ( t )  5   d (4 t )sin(2 t )  

  b.    x2(t) 5 d(t)cos¢30pt 1
p

4
≤    

  c.  x  3 ( t )  5   d ( t )sinc( t   1  1)  

  d.  x  4 ( t )  5   d ( t   2  2) e   2  t   sin(2.5 p  t )  

  e.    x5(t) 5 3
`

2`

d(2t)sinc(t)dt    

  f.    x6(t) 5 3
`

2`

d(t 2 3)cos(t)dt    

  g.    x7(t) 5 3
`

2`

d(2 2 t) 

1

1 2 t3
 dt    

  h.    x8(t) 5 3
`

2`

d(3t 2 4)e23tdt    

  i.  x  9  ( t )  5   d   r( t ) # P ( t )     

   2.8. For each of the following continuous-time systems, determine 

whether or not the system is (1) linear, (2) time-invariant, 

(3) memoryless, and (4) causal. 

   a.  y ( t )  5   x ( t   2  1)  

  b.  y ( t )  5  3 x ( t )  2  2  

  c.  y ( t )  5 0  x ( t ) 0   
  d.  y ( t )  5  [cos(2 t )] x ( t )  

  e.  y ( t )  5   e   x ( t )   

  f.  y ( t )  5   tx ( t )  

  g.    y(t) 5 3
t

2`

e23(t2t)x(t 2 1)dt     

   2.9. Calculate the output  y ( t ) of the LTI system for the following 

cases:

   a.  x ( t )  5   e   2  2 t    u ( t ) and  h ( t )  5   u ( t   2  2)  2   u ( t   2  4)  

  b.  x ( t )  5   e   2  t    u ( t ) and  h ( t )  5   e   2  2 t   u ( t )  

  c.  x ( t )  5   u (2 t ) and  h ( t )  5   d ( t )  2  3 e   2  2 t   u ( t )  

  d.  x ( t )  5   d ( t   2  2)  1  3 e  3 t   u (2 t ) and  h ( t )  5   u ( t )  2   u ( t   2  1)     

  2.10. The impulse response of a continuous-time LTI system is dis-

played in  Figure P2.2(b) . Assuming the input  x ( t ) to the system 

is waveform illustrated in  Figure P2.2(a) , determine the system 

output waveform  y ( t ) and sketch it. 

Figure P2.2

(a)

x(t)

t

1

1 40 2 3 65 7

(b)

h(t)

t

1

1 40 2 3

   2.11. An LTI system has the impulse response

 h ( t )  5   e   2  0.5( t   2  2)  u ( t   2  2). 

   a. Is the system causal?  

  b. Is the system stable?  

  c. Repeat parts (a) and (b) for  h ( t )  5   e  20.5( t   1  2)  u ( t   1  2).    

   2.12. a.     Write down the exponential Fourier series coefficients of 

the signal

  x(t) 5 5sin(40pt) 1 7cos(80pt 2 py2) 2 cos(160pt 1 py4).  

  b. Is  x ( t ) periodic? If so, what is its period?     

   2.13. A signal has the two-sided spectrum shown in  Figure P2.3 . 

     a. Write the equation for  x ( t ).  

  b. Is the signal periodic? If so, what is its period?  

  c. Does the signal have energy at DC?    

   2.14. Write down the complex exponential Fourier series for each of 

the periodic signals shown in   Figure P2.4 . Plot the magnitude 

and phase spectra.  

Figure P2.3
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 2.15. For the rectangular pulse train in  Figure 2.24 , compute the 

 Fourier coefficients of the new periodic signal  y ( t ) given by

   a.  y ( t )  5   x ( t   2  0.5 T   o  )  

  b.    y(t) 5 x(t)e j2ptyTo   

  c.  y ( t )  5   x ( a  t )   

  2.16. Draw the one-sided magnitude power spectrum for the square 

wave in  Figure P2.5  with duty cycle 50%. 

   a. Calculate the normalized average power.  

  b. Determine the 99% power bandwidth of the pulse train.   

  2.17. Determine the Fourier transforms of the signals shown in 

 Figure P2.6 . 

Figure P2.4
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Figure P2.6

A

(a)

x1(t)

t
0 1

1

21

2A

1 1

2

(c)

x3(t)

et e2t

t
0 121

(b)

cos(2pt)

x2(t)

t
0 0.2520.25

(d)

x4(t)

t
0 12122 2

   2.18. Use properties of the Fourier transform to compute the Fourier 

transform of following signals. 

   a. sinc 2 ( Wt )  

  b. P ( t / T )cos(2 p   f   c   t )  

  c. ( e   2  t  cos10 p  t ) u ( t )  

  d.  te   2  t   u ( t )  

  e.    e2pt2   

  f. 4sinc 2 ( t )cos(100 p  t )    

   2.19. Find the following convolutions:

   a. sinc( Wt ) # sinc(2 Wt )  

  b. sinc 2 ( Wt ) # sinc(2 Wt )     

   2.20. The FT of a signal  x ( t ) is described by

        X( f ) 5
1

5 1 j2pf

Determine the FT  V (  f  ) of the following signals:   

a.  v ( t )  5   x (5 t   2  1) What is the impulse response  h ( t )?  

  b.  v ( t )  5   x ( t )cos(100 p  t )  

  c.  v ( t )  5   x ( t ) e   j 10 t    

  d.    v(t) 5
dx(t)

dt
   

  e.  v ( t )  5   x ( t ) #  u ( t )     
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   2.21. Consider the delay element  y ( t )  5   x ( t   2  3). 

   a. What is the impulse response  h ( t )?  

  b. What is the magnitude and phase response function of the 

system?    

 2.22. The periodic input  x ( t ) to an LTI system is displayed in  

Figure P2.7 . The frequency response function of the system 

is given by

  H( f ) 5
2

2 1 j2pf
   

a. Write the complex exponential FS of input    x ( t ).

  b. Plot the magnitude and phase response functions for  H (  f  ).  

  c. Compute the complex exponential FS of the output  y ( t ).   

  c.    x(t) 5 cos(400pt) 1
sin(1000pt)

pt
   

  d  x ( t )  5  5cos(800 p  t )  1  2 d ( t )     

   2.24. The frequency response of an ideal HP filter is given by

  H( f ) 5 b4, 0 f 0 . 20 Hz,

0, 0 f 0 , 20 Hz
 

 Determine the output signal  y ( t ) for the input

   a.  x ( t )  5  5  1  2cos(50 p  t   2   p /2)  2  cos(75 p  t   1   p /4)  

  b.  x ( t )  5  cos(20 p  t   2  3 p /4)  1  3cos(100 p  t   1   p /4)     

   2.25. The frequency response of an ideal BP filter is given by

  H( f ) 5 b2e2j0.0005pf, 900 , 0 f 0 , 1000 Hz,

0, otherwise
 

 Determine the output signal  y ( t ) for the input

   a.  x ( t )  5  2cos(1850 p  t   2   p /2)  2  cos(1900 p  t   1   p /4)  

  b.  x ( t )  5  sinc(60 t )cos(1900 p  t )  

  c.  x ( t )  5  sinc 2 (30 t )cos(1900 p  t )     

   2.26. The signal 2 e   2 2 t   u ( t ) is input to an ideal LP filter with passband 

edge frequency equal to 5 Hz. Find the energy density spec-

trum of the output of the filter. Calculate the energy of the input 

signal and the output signal.  

   2.27. Calculate and sketch the power spectral density of the follow-

ing signals:

   a.  x ( t )  5  2cos(1000 p  t   2   p /2)  2  cos(1850 p  t   1   p /4)  

  b.  x ( t )  5  [1  1  sin(200 p  t )]cos(2000 p  t )  

  c.  x ( t )  5  cos 2 (200 p  t )sin(1800 p  t )    

 Calculate the normalized average power of the signal in each case.    

Figure P2.7

1

x(t)

t
0 121222324 42 3 5

••••••

   2.23. The frequency response of an ideal LP filter is given by

  H( f ) 5 b5e2j 0.0025p f, 0 f 0 , 1000 Hz

0, 0 f 0 . 1000 Hz
 

 Determine the output signal in each of the following cases:

   a.  x ( t )  5  5sin(400 p  t )  1  2cos(1200 p  t   2   p /2) 

 2  cos(2200 p  t   1   p /4)  

  b.    x(t) 5 2 sin(400pt) 1
sin(2200pt)

pt
   

  M A T L A B  P R O B L E M S 

    2.28. Consider the square wave  x ( t ) with To 5  1 in Figure P2.5. It is 

applied to a filter with frequency response

  H( f ) 5
1

1 1 j0.2pf
   

a. Verify using Symbolic MATLAB that FS coefficients of 

 x ( t ) are given by

  
Cn 5 c2j 

2A

pn
, n odd

0, n even
  

  b. Use MATLAB stem command to plot the magnitude 

spectrum   0Cn 0 ,  0 # 0n 0 # 10.  

  c. Calculate and plot the filter output magnitude spectrum 0  D   n  0 ,   0 # 0  n 0#  10. 

 Plot the FS approximation of the filter output for  n   5 10.  

  d. Repeat parts (b) and (c) for  T   o    5  0.1. Comment on the dif-

ferences in the filter output waveform.     

   2.29. Consider the periodic signal

  x(t) 5 1.5 sin(400pt) 1 0.75cos(800pt) 1 2sin(1200pt).   

a. Generate a discrete-time sequence  x [ n ] of length 2048 by 

sampling the signal at 2.4 kHz. Plot  x [ n ].  

  b. Obtain the DFT   X[k]   of  x [ n ] by using function   fft(x).   
Plot   fftshift(X).       

   2.30. Consider the signal  x ( t ) described by

  x(t) 5 d t 1 4, 24 # t # 21

1, 21 , t # 1

t 2 4, 1 , t # 4

0, otherwise
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Figure P2.8

2

x(t)

t
0

••••••

To2To

a. Sample the pulse at 16 Hz and append zeros on either side 

to generate a discrete-time sequence  x [ n ] of length 256.  

  b. Obtain the DFT   X[k]   of  x [ n ] by using function   fft(x).   

Plot   fftshift(X).       

   2.31. A rectangular pulse of unit amplitude and duration 

 T   5  50 msec is applied to an Elliptic filter with following 

specifications:

   Passband frequency  fp   5   B  Hz  

  Stopband frequency  fs   5  1.25 B  Hz  

  Maximum passband ripple  Rp   5  1 dB  

  Minimum stopband ripple  Rs   5  40 dB   

   a. Generate a discrete-time sequence   x[n]   of length 1024 by 

sampling the signal at 1 kHz over the interval [2512,512) 

msec This has the effect of appending zeros prior to the 

beginning and at the end of the pulse.  

  b. Design an Elliptic filter  BT   5  0.5 as illustrated in Example 

2.34. Now use function   filter(num,den,x)   to cal-

culate the output   y[n]   of the filter. Calculate the 10–90% 

rise-time  t   r   of the output pulse.  

  c. Repeat (b) for  BT   5  1, 2, 5, 10. Derive an approximate 

relationship between  B  and  t   r  .     

   2.32. Consider the square wave  x ( t ) depicted in Figure P2.5. Assume 

 T   o    5  20 msec and sampling rate  5  3.2 kHz. 

   a. Generate the 2,048-point sequence   x[n]   of 50% duty 

cycle square wave using m-file   square    

  b. Obtain the DFT   X[k]   of   x[n] after appending zeros 

on both sides.   Plot using   stem   command the output 

of   fftshift(X).   What is the frequency resolution 

achieved by FFT here?  

  c. Compute the FS coefficients of the square wave and plot 

them using   stem   command. Compare with plot obtained 

in (b) and comment.    

   2.33. Consider the triangular wave  x ( t ) in  Figure P2.8 . Assume 

 T   o    5  50 msec. 

   a. Calculate and plot sketch the power spectral density of  x ( t ) 
using MATLAB.  

  b. The signal is passed through an ideal LP filter with fre-

quency response  H (  f  )  5  P (   f  / B ), where the filter band-

width  B  is chosen so that  BT   o    5  5. Plot the power spectral 

density of the output.  

  c. Repeat (b) for the Elliptic filter designed in Problem 2.31 

with  BT   o    5  5.   

        Why did you choose a career in 
the optical communication field? 
   You know that many of the early 

laser pioneers thought of opti-

cal communications as a primary 

laser application and anticipated 

many communications concepts. I 

was doing research at Oxford Uni-

versity in plasma physics applied 

to energy production via nuclear 

fusion. I was just finishing up and 

writing my PhD thesis in 1960, 

just after the first laser had been 

demonstrated by Maiman. There was a visitor from the 

United States. He was Rudi Kompfner from Bell Labs, and 

already in 1960 he went around the world looking for peo-

ple he was interested in, persuaded them to change fields, 

come to Bell Labs, and switch into the new field of lasers 

and optical communications. That’s indeed what he did with 

me also. I still remember his key words that convinced me. 

He talked about lasers and reminded me of their extremely 

high carrier frequency compared to microwave sources. 

Usually you get 5–10% of this as signal bandwidth, so with 

lasers you get an enormous bandwidth to transmit informa-

tion. He said “think of all this bandwidth.” I still remember 

it clearly, and it is still an important guideline today. And in 

many ways, this was the key line that persuaded me to quit 

the field of plasma physics, go to America, and join Bell 

Labs and their laser and optical communications effort.     

   In your opinion what are the major innovations that 
have contributed to the information age we live in? 
What has been the impact of semiconductor revolution? 
Optical fiber revolution? 
   Clearly, transistors and integrated circuits are a highly 

important part of the revolution in information technology 

during the past three decades. There has been fine progress 

in the speed of electronics, but its growth rate is only a 

factor of 10 every 10 years. On the other hand, comput-

ing power is growing 3 100 every 10 years, making our 
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computers obsolete very quickly. Computers achieve their 

growth in processing speed by using parallel processing 

in addition to faster ICs. Now, there is Amdahl’s law that 

says that networking speed has to match computing power: 

1 MIPS networked computing power requires 1 Mbps I/O 

bandwidth. So optical fiber transmission capacity has to 

grow 3 100 every 10 years to keep up. In recent years it 

has done this by using wavelength division multiplexing. 

It is hard to find such revolutionary growth rates in other 

modern technologies, but there is yet another one in infor-

mation technology. This is the information storage density 

in magnetic storage.     

   Tell us about the invention of the distributed-feedback 
(DFB) laser which is widely used in optical fiber commu-
nications. What were the challenges in developing this 
single-mode laser design necessary to exploit the huge 
bandwidth offered by single-mode fibers? 
   Up to then feedback in lasers was provided by mirrors, not 

easily integrated. Integrated optics had just been proposed. So 

Chuck Shank and I were wondering whether we could make 

a compact laser, integrable on a photonic integrated circuit 

(PIC), and possibly make it to work in a single frequency. I 

had early contact with periodic structures during my PhD the-

sis in Vienna. So we came up with the idea of using a peri-

odic structure for feedback and add gain to make an oscillator. 

Chuck was working on dye lasers. So, as a first test of the 

DFB principle, we thought of using a film of dichromated gel-

atin as in holography into which we dissolved a dye to provide 

the gain. This was pumped optically, and we were glad to see 

that DFB laser work. Of course we wanted the same principle 

applied to the semiconductor lasers envisaged for optical com-

munications, and we patented several ideas right away. But to 

translate that idea to semiconductor lasers was difficult at first. 

The first room-temperature continuously operating double 

heterostructure lasers had just barely been demonstrated at the 

time. They required very delicate chemistry for their prepara-

tion. So it took time and effort by researchers worldwide to 

develop a practical DFB junction laser.     

   Multi-wavelength optical systems that can achieve 1 
Tbps capacity are now widely available. What is the sta-
tus of key component technologies, such as wide-range 
tunable lasers, cost-effective WDM devices, etc.? To 
build optical fiber rings, we need wavelength division 
multiplex add/drop devices which are remotely config-
urable. Are these devices commercially available for 
deployment in carrier networks? 
   Advances in optical fiber transmission are due to innovations 

such as wavelength-division-multiplexing and advanced 

modulation formats. The most recent innovation is coher-

ent detection which can handle advanced modulation for-

mats, correct linear impairments, and provide ideal optical 

filtering for high spectral efficiencies. The associated system 

complexity must be handled with ever higher levels of inte-

gration in PICs. Several of these PICs are already deployed 

in commercial systems. Examples are tunable optical dis-

persion compensator modules, tunable laser PICs, and the 

integrated coherent receivers of the recent transmission sys-

tems using 100 Gbps channels. The research community has 

already demonstrated highly sophisticated PICs, such as a 

monolithic four-channel dual polarization dual quadrature 

coherent receiver and the InP 16 QAM modulator PIC. How-

ever it will take time for the more sophisticated technologies 

to mature until they are ready for commercial introduction.     

   Although optical fiber provides almost infinite band-
width, service providers continue to invest in extend-
ing the life of TWP plant (using technologies like DSL) 
instead of fiber infrastructure for the last mile. Do we 
need some major innovation in this area to make fiber a 
more attractive option? 
   Fiber-to-the-home (FTTH) technology, which provides the 

broadband communications infrastructure for the last mile, 

is a complex issue and the answers throughout the world 

depend strongly on local cost regulations and policies. 

Recent OECD statistics show that the U.S. is not among the 

top 10 countries with the most broadband subscribers where 

there are up to 35 subscribers per 100 inhabitants. While 

there is still quite a bit of DSL deployed, FTTH deployment 

is already larger than DSL deployment in advanced coun-

tries such as South Korea and Japan. As demand for band-

width continues to increase worldwide, FTTH is regarded 

as a future-proof installation. Of course, reduction of costs 

will make it an even more attractive option. And it appears 

that fiber is already getting cheaper than copper. In the U.S., 

FTTH service is now available to about 18 million homes 

with about 6 million subscribing to the service. About 60% of 

this is provided by Verizon. Google has announced recently 

that it is planning to provide fiber-optic connections for up to 

500,000 users with a capacity of 1 Gbps per user. They are 

starting with a small 1 Gbps pilot project at Stanford.     

   What are the new frontiers of innovation in optical fiber 
communications? High-spectral efficiency coherent com-
munications? 
   In the past three decades, the capacity of long-haul optical 

fiber transmission has increased by a factor of 100 every 10 

years. The latest advances have used wavelength division mul-

tiplexing and erbium doped fiber amplifiers. Recent research 

demonstrations have achieved capacities of up to 70 Tbps 

per fiber. This is approaching the Shannon capacity limits of 

a fiber, as modified for impairments due to fiber nonlineari-

ties. New approaches are needed to continue this trend in the 

future. Among these are advanced modulation formats and the 

use of coherent detection allowing higher spectral efficiencies, 

as you mention. In addition, researchers are exploring amplifi-

ers with larger bandwidth as well as the use of multimode and 
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multicore fibers to increase the degrees of freedom available 

for higher capacity transmission via modal multiplexing.     

   Who inspired you professionally the most? 
   This was clearly Rudi Kompfner, the man who had recruited 

and hired me to Bell Labs. Rudi was a director in the Bell 

Labs Research area at the time, and he was the primary 

champion of optical communications at Bell Labs. He was 

building up a strong and broad research effort in all the rele-

vant enabling technologies, and this was more than 20 years 

before fiber communications was a success in the market. I 

learned from him another line: “You have to have a hundred 

new ideas before you have a really good one.” He practiced 

that one diligently, and asked us to help him throw out the 

bad ideas among the many he created.     

   Do you have any advice for the new generation of stu-
dents and researchers entering the optical fiber commu-
nications field? 
   Well, in information technology we live in a time of tre-

mendous innovation and constant change. Learn to use 

and enjoy that change, even though it may appear painful 

at first. Think of the line “Change is inevitable, suffering 

is optional.” Switching fields can bring a tremendous ben-

efit, namely cross-fertilization by transporting the ideas and 

experiences of one field to the other.      
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