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A P P E N D I X

A

LINEAR ALGEBRA AND
COMPLEX NUMBERS

A.1 SOLVING SIMULTANEOUS LINEAR
EQUATIONS, CRAMER’S RULE,
AND MATRIX EQUATION

The solution of simultaneous equations, such as those that are often seen in circuit theory, may
be obtained relatively easily by using Cramer’s rule. This method applies to 2 × 2 or larger
systems of equations. Cramer’s rule requires the use of the concept of determinant. Linear, or
matrix, algebra is valuable because it is systematic, general, and useful in solving complicated
problems. A determinant is a scalar defined on a square array of numbers, or matrix, such as

det(A) = |A| =
∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ (A.1)

In this case the matrix is a 2 × 2 array with two rows and two columns, and its determinant is
defined as

det = a11a22 − a12a21 (A.2)
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A third-order, or 3 × 3, determinant such as

det(A) =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ (A.3)

is given by

det = a11(a22a33 − a23a32) − a12(a21a33 − a23a31)

+ a13(a21a32 − a22a31)
(A.4)

For higher-order determinants, you may refer to a linear algebra book. To illustrate
Cramer’s method, a set of two equations in general form will be solved here. A set of two linear
simultaneous algebraic equations in two unknowns can be written in the form

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2
(A.5)

where x1 and x2 are the two unknowns. The coefficients a11, a12, a21, and a22 are known
quantities. The two quantities on the right-hand sides, b1 and b2, are also known (these are
typically the source currents and voltages in a circuit problem). The set of equations can be
arranged in matrix form, as shown in equation A.6.[

a11 a12

a21 a22

] [
x1

x2

]
=

[
b1

b2

]
(A.6)

In equation A.6, a coefficient matrix multiplied by a vector of unknown variables is equated to a
right-hand-side vector. Cramer’s rule can then be applied to find x1 and x2, using the following
formulas:

x1 =

∣∣∣∣∣b1 a12

b2 a22

∣∣∣∣∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣
x2 =

∣∣∣∣∣a11 b1

a21 b2

∣∣∣∣∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣
(A.7)

Thus, the solution is given by the ratio of two determinants: the denominator is the determinant
of the matrix of coefficients, while the numerator is the determinant of the same matrix with the

right-hand-side vector (

[
b1

b2

]
in this case) substituted in place of the column of the coefficient

matrix corresponding to the desired variable (i.e., first column for x1, second column for x2, etc.).
In a circuit analysis problem, the coefficient matrix is formed by the resistance (or conductance)
values, the vector of unknowns is composed of the mesh currents (or node voltages), and the
right-hand-side vector contains the source currents or voltages.

In practice, many calculations involve solving higher-order systems of linear equations.
Therefore, a variety of computer software packages are often used to solve higher-order systems
of linear equations.

CHECK YOUR UNDERSTANDING

A.1 Use Cramer’s rule to solve the system

5v1 + 4v2 = 6

3v1 + 2v2 = 4
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A.2 Use Cramer’s rule to solve the system

i1 + 2i2 + i3 = 6

i1 + i2 − 2i3 = 1

i1 − i2 + i3 = 0

A.3 Convert the following system of linear equations into a matrix equation as shown in
equation A.6, and find matrices A and b.

2i1 − 2i2 + 3i3 = −10

−3i1 + 3i2 − 2i3 + i4 = −2

5i1 − i2 + 4i3 − 4i4 = 4

i1 − 4i2 + i3 + 2i4 = 0

Answers:v1=2,v2=−1;i1=1,i2=2,i3=1;

A=
⎡
⎢⎣

2−230
−53−21

5−14−4
1−412

⎤
⎥⎦,b=

⎡
⎢⎣

−10
−2

4
0

⎤
⎥⎦.

A.2 INTRODUCTION TO COMPLEX ALGEBRA

From your earliest training in arithmetic, you have dealt with real numbers such as 4, −2, 5
9 ,

π , e, and so on, which may be used to measure distances in one direction or another from a
fixed point. However, a number that satisfies the equation

x2 + 9 = 0 (A.8)

is not a real number. Imaginary numbers were introduced to solve equations such as equation
A.8. Imaginary numbers add a new dimension to our number system. To deal with imaginary
numbers, a new element, j, is added to the number system having the property

j2 = −1

j = √−1

(A.9)
or

Thus, we have j3 = −j, j4 = 1, j5 = j, and so on. Using equation A.9, you can see that the
solutions to equation A.8 are ± j3. In mathematics, the symbol i is used for the imaginary unit,
but this might be confused with current in electrical engineering. Therefore, the symbol j is
used in this book.

(a + jb) = r∠θ 

a
θ

r

jb

Imaginary axis

Real axis

θ

Figure A.1 Polar
form representation of
complex numbers

A complex number (indicated in boldface notation) is an expression of the form

A = a + jb (A.10)

where a and b are real numbers. The complex number A has a real part a and an imaginary
part b, which can be expressed as

a = ReA

b = ImA
(A.11)

It is important to note that a and b are both real numbers. The complex number a + jb can be
represented on a rectangular coordinate plane, called the complex plane, by interpreting it as
a point (a, b). That is, the horizontal coordinate is a in real axis, and the vertical coordinate
is b in imaginary axis, as shown in Figure A.1. The complex number A = a + jb can also be
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uniquely located in the complex plane by specifying the distance r along a straight line from
the origin and the angle θ , which this line makes with the real axis, as shown in Figure A.1.
From the right triangle of Figure A.1, we can see that

r = √
a2 + b2

θ = tan−1

(
b

a

)
a = r cos θ

b = r sin θ

(A.12)

Then we can represent a complex number by the expression

A = re jθ = r∠θ (A.13)

which is called the polar form of the complex number. The number r is called the magnitude (or
amplitude), and the number θ is called the angle (or argument). The two numbers are usually
denoted by r = |A| and θ = argA = ∠A.

Given a complex number A = a + jb, the complex conjugate of A, denoted by the
symbol A∗, is defined by the following equalities:

ReA∗ = ReA

Im A∗ = −Im A
(A.14)

That is, the sign of the imaginary part is reversed in the complex conjugate.
Finally, we should remark that two complex numbers are equal if and only if the real

parts are equal and the imaginary parts are equal. This is equivalent to stating that two complex
numbers are equal only if their magnitudes are equal and their arguments are equal.

The following examples and exercises should help clarify these explanations.

EXAMPLE A.1

Convert the complex number A = 3 + j4 to its polar form.

Solution:

r = √
32 + 42 = 5 θ = tan−1

(
4

3

)
= 53.13◦

A = 5∠53.13◦

EXAMPLE A.2

Convert the number A = 4∠(−60◦) to its complex form.

Solution:

a = 4 cos(−60◦) = 4 cos(60◦) = 2

b = 4 sin(−60◦) = −4 sin(60◦) = −2
√

3

Thus, A = 2 − j2
√

3
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Addition and subtraction of complex numbers take place according to the following
rules:

(a1 + jb1) + (a2 + jb2) = (a1 + a2) + j(b1 + b2)

(a1 + jb1) − (a2 + jb2) = (a1 − a2) + j(b1 − b2)
(A.15)

Multiplication of complex numbers in polar form follows the law of exponents. That is,
the magnitude of the product is the product of the individual magnitudes, and the angle of the
product is the sum of the individual angles, as shown below.

(A)(B) = (Ae jθ )(Be jφ) = ABe j(θ+φ) = AB∠(θ + φ) (A.16)

If the numbers are given in rectangular form and the product is desired in rectangular form,
it may be more convenient to perform the multiplication directly, using the rule that j2 = −1,
as illustrated in equation A.17.

(a1 + jb1)(a2 + jb2) = a1a2 + ja1b2 + ja2b1 + j2b1b2

= (a1a2 + j2b1b2) + j(a1b2 + a2b1)

= (a1a2 − b1b2) + j(a1b2 + a2b1)

(A.17)

Division of complex numbers in polar form follows the law of exponents. That is, the
magnitude of the quotient is the quotient of the magnitudes, and the angle of the quotient is the
difference of the angles, as shown in equation A.18.

A
B

= Ae jθ

Be jφ
= A∠θ

B∠φ
= A

B
∠(θ − φ) (A.18)

Division in the rectangular form can be accomplished by multiplying the numerator and
denominator by the complex conjugate of the denominator. Multiplying the denominator by its
complex conjugate converts the denominator to a real number and simplifies division. This is
shown in Example A.4. Powers and roots of a complex number in polar form follow the laws
of exponents, as shown in equations A.19 and A.20.

An = (Ae jθ )n = Ane jnθ = An∠nθ (A.19)

A1/n = (Ae jθ )1/n = A1/ne j1/nθ

= n
√

A∠
(

θ + k2π

n

)
k = 0, ±1, ±2, . . .

(A.20)

EXAMPLE A.3

Perform the following operations, given that A = 2 + j3 and B = 5 − j4.

(a) A + B (b) A − B (c) 2A + 3B

Solution:

A + B = (2 + 5) + j[3 + (−4)] = 7 − j

A − B = (2 − 5) + j[3 − (−4)] = −3 + j7

For part (c), 2A = 4 + j6 and 3B = 15 − j12. Thus, 2A + 3B = (4 + 15) +
j[6 + (−12)] = 19 − j6
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EXAMPLE A.4

Perform the following operations in both rectangular and polar form, given that A = 3 + j3
and B = 1 + j

√
3.

(a) AB (b) A ÷ B

Solution:

(a) In rectangular form:

AB = (3 + j3)(1 + j
√

3) = 3 + j3
√

3 + j3 + j23
√

3

= (3 + j23
√

3) + j(3 + 3
√

3)

= (3 − 3
√

3) + j(3 + 3
√

3)

To obtain the answer in polar form, we need to convert A and B to their polar forms:

A = 3
√

2e j45◦ = 3
√

2∠45◦

B = √
4e j60◦ = 2∠60◦

Then

AB = (3
√

2e j45◦
)(

√
4e j60◦

) = 6
√

2∠105◦

(b) To find A ÷ B in rectangular form, we can multiply A and B by B∗.

A
B

= 3 + j3

1 + j
√

3

1 − j
√

3

1 − j
√

3

Then

A
B

= (3 + 3
√

3) + j(3 − 3
√

3)

4

In polar form, the same operation may be performed as follows:

A
B

= 3
√

2∠45◦

2∠60◦ = 3
√

2

2
∠(45◦ − 60◦) = 3

√
2

2
∠(−15◦)

Euler’s Identity

This formula extends the usual definition of the exponential function to allow for complex
numbers as arguments. Euler’s identity states that

e jθ = cos θ + j sin θ (A.21)

All the standard trigonometry formulas in the complex plane are direct consequences of Euler’s
identity. The two important formulas are

cos θ = e jθ + e−jθ

2
sin θ = e jθ − e−jθ

2j
(A.22)

EXAMPLE A.5

Using Euler’s formula, show that

cos θ = e jθ + e−jθ

2
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Solution:

Using Euler’s formula gives

e jθ = cos θ + j sin θ

Extending the above formula, we can obtain

e−jθ = cos(−θ) + j sin(−θ) = cos θ − j sin θ

Thus,

cos θ = e jθ + e−jθ

2

CHECK YOUR UNDERSTANDING

A.4 In a certain AC circuit, V = ZI, where Z = 7.75∠90◦ and I = 2∠−45◦. Find V.

A.5 In a certain AC circuit, V = ZI, where Z = 5∠82◦ and V = 30∠45◦. Find I.

A.6 Show that the polar form of AB in Example A.4 is equivalent to its rectangular form.

A.7 Show that the polar form of A÷ B in Example A.4 is equivalent to its rectangular form.

A.8 Using Euler’s formula, show that sin θ = (e jθ − e−jθ )/2j.
Answers:V=15.5∠45◦;I=6∠(−37◦)
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