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C H A P T E R

4

AC NETWORK ANALYSIS

hapter 4 is dedicated to two main ideas: energy storage (dynamic) circuit
elements and the analysis of AC circuits excited by sinusoidal voltages and
currents. First, dynamic circuit elements, that is, capacitors and inductors, are
defined. These are circuit elements that are described by an i-v characteristic

of differential or integral form. Next, time-dependent signal sources and the concepts
of average and root-mean-square (rms) values are introduced. Special emphasis is
placed on sinusoidal signals, as this class of signals is especially important in the
analysis of electric circuits (think, e.g., of the fact that all electric power for residential
and industrial uses comes in sinusoidal form). Once these basic elements have been
presented, the focus shifts to how to write circuit equations when time-dependent
sourcesanddynamicelementsarepresent.Theequationsthatresultfromtheapplication
of KVL and KCL take the form of differential equations. The general solution of
these differential equations is covered in Chapter 5. The remainder of the chapter
discusses one particular case: the solution of circuit differential equations when the
excitation is a sinusoidal voltage or current; a very powerful method, phasor anal-
ysis, is introduced along with the related concept of impedance. This methodology
effectively converts the circuit differential equations to algebraic equations in which
complex algebra notation is used to arrive at the solution. Phasor analysis is then used to
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MAKE THE
CONNECTION

Fluid (Hydraulic)
Capacitance

We continue the analogy
between electrical and
hydraulic circuits. If a vessel
has some elasticity, energy is
stored in the expansion and
contraction of the vessel
walls (this should remind you
of a mechanical spring). This
phenomenon gives rise to a
fluid capacitance effect very
similar to electrical
capacitance. The energy
stored in the compression
and expansion of the gas is
of the potential energytype.
Figure 4.1 depicts a gas-
bag accumulator: a two-
chamber arrangement that
permits fluid to displace a
membrane separating the
incompressible fluid from a
compressible fluid (e.g., air).
The analogy shown in
Figure 4.1 assumes that the
reference pressure p0 is zero
(“ground” or reference
pressure), and that v2 is
ground. The analog equa-
tions are given below.

qf = Cf
d�p

dt
= Cf
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dt

i = C
d�v

dt
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Figure 4.1 Analogy
between electrical and fluid
capacitance

demonstrate that all the network analysis techniques of Chapter 3 are applicable to the
analysis of dynamic circuits with sinusoidal excitations, and a number of examples are
presented.

➲ Learning Objectives

1. Compute currents, voltages, and energy stored in capacitors and inductors.
Section 1.

2. Calculate the average and root-mean-square value of an arbitrary (periodic) signal.
Section 2.

3. Write the differential equation(s) for circuits containing inductors and capacitors.
Section 3.

4. Convert time-domain sinusoidal voltages and currents to phasor notation, and vice
versa, and represent circuits using impedances. Section 4.

4.1 ENERGY STORAGE (DYNAMIC) CIRCUIT
ELEMENTS

The ideal resistor was introduced through Ohm’s law in Chapter 2 as a useful
idealization of many practical electrical devices. However, in addition to resistance
to the flow of electric current, which is purely a dissipative (i.e., an energy loss)
phenomenon, electric devices may exhibit energy storage properties, much in the same
way as a spring or a flywheel can store mechanical energy. Two distinct mechanisms
for energy storage exist in electric circuits: capacitance and inductance, both of
which lead to the storage of energy in an electromagnetic field. For the purpose
of this discussion, it will not be necessary to enter into a detailed electromagnetic
analysis of these devices. Rather, two ideal circuit elements will be introduced to
represent the ideal properties of capacitive and inductive energy storage: the ideal
capacitor and the ideal inductor. It should be stated clearly that ideal capacitors
and inductors do not exist, strictly speaking; however, just like the ideal resistor,
these “ideal” elements are very useful for understanding the behavior of physical
circuits. In practice, any component of an electric circuit will exhibit some resistance,
some inductance, and some capacitance—that is, some energy dissipation and some
energy storage. The sidebar on hydraulic analogs of electric circuits illustrates that
the concept of capacitance does not just apply to electric circuits.

The Ideal Capacitor

Aphysical capacitor is a device that can store energy in the form of a charge separation
when appropriately polarized by an electric field (i.e., a voltage). The simplest
capacitor configuration consists of two parallel conducting plates of cross-sectional
area A, separated by air (or another dielectric1 material, such as mica or Teflon).
Figure 4.2 depicts a typical configuration and the circuit symbol for a capacitor.

1A dielectric material is a material that is not an electrical conductor but contains a large number of
electric dipoles, which become polarized in the presence of an electric field.
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The presence of an insulating material between the conducting plates does not
allow for the flow of DC current; thus, a capacitor acts as an open circuit in the
presence of DC current. However, if the voltage present at the capacitor terminals
changes as a function of time, so will the charge that has accumulated at the two
capacitor plates, since the degree of polarization is a function of the applied electric
field, which is time-varying. In a capacitor, the charge separation caused by the polar-
ization of the dielectric is proportional to the external voltage, that is, to the applied
electric field

Q = CV (4.1)

where the parameter C is called the capacitance of the element and is a measure of
the ability of the device to accumulate, or store, charge. The unit of capacitance is
coulomb per volt and is called the farad (F). The farad is an unpractically large
unit for many common electronic circuit applications; therefore it is common to
use microfarads (1 μF = 10−6 F) or picofarads (1 pF = 10−12 F). From equa-
tion 4.1 it becomes apparent that if the external voltage applied to the capacitor
plates changes in time, so will the charge that is internally stored by the capaci-
tor:

q(t) = Cv(t) (4.2)

Thus, although no current can flow through a capacitor if the voltage across it is
constant, a time-varying voltage will cause charge to vary in time.

d

+

_

Parallel-plate capacitor with air
gap d (air is the dielectric)

+

_

Circuit
symbol

C

C = εA
d

 = 8.854 × 10 _12   F
m

ε = permittivity of air

A

Figure 4.2 Structure of
parallel-plate capacitorThe change with time in the stored charge is analogous to a current. You can

easily see this by recalling the definition of current given in Chapter 2, where it was
stated that

i(t) = dq(t)

dt
(4.3)

that is, electric current corresponds to the time rate of change of charge. Differentiating
equation 4.2, one can obtain a relationship between the current and voltage in a
capacitor:

➲

LO1i(t) = C
dv(t)

dt
i-v relation for capacitor (4.4)

Equation 4.4 is the defining circuit law for a capacitor. If the differential equation that
defines the i-v relationship for a capacitor is integrated, one can obtain the following
relationship for the voltage across a capacitor:

vC(t) = 1

C

∫ t

−∞
iC (t′)dt′ (4.5)

Equation 4.5 indicates that the capacitor voltage depends on the past current through
the capacitor, up until the present time t. Of course, one does not usually have precise
information regarding the flow of capacitor current for all past time, and so it is useful
to define the initial voltage (or initial condition) for the capacitor according to the
following, where t0 is an arbitrary initial time:

V0 = vC(t = t0) = 1

C

∫ t0

−∞
iC(t′) dt′ (4.6)
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The capacitor voltage is now given by the expression

vC(t) = 1

C

∫ t

t0

iC(t′) dt′ + V0 t ≥ t0 (4.7)

The significance of the initial voltage V0 is simply that at time t0 some charge is stored
in the capacitor, giving rise to a voltage vC(t0), according to the relationship Q = CV .
Knowledge of this initial condition is sufficient to account for the entire history of
the capacitor current.

Capacitors connected in series and parallel can be combined to yield a single
equivalent capacitance. The rule of thumb, which is illustrated in Figure 4.3, is the
following:

C3

C2
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i(t)

v (t)
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C1

Capacitances in series combine
like resistors in parallel

Capacitances in parallel add 
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Figure 4.3 Combining
capacitors in a circuit

➲

LO1
Capacitors in parallel add. Capacitors in series combine according to the same
rules used for resistors connected in parallel.

It is very easy to prove that capacitors in series combine as shown in
Figure 4.3, using the definition of equation 4.5. Consider the three capacitors in
series in the circuit of Figure 4.3. Using Kirchhoff’s voltage law and the definition of
the capacitor voltage, we can write

v(t) = v1(t) + v1(t) + v1(t)

= 1

C1

∫ t

−∞
i(t′) dt′ + 1

C2

∫ t

−∞
i(t′) dt′ + 1

C3

∫ t

−∞
i(t′) dt′

=
(

1

C1
+ 1

C2
+ 1

C3

) ∫ t

−∞
i(t′) dt′

(4.8)

Thus, the voltage across the three series capacitors is the same as would be seen
across a single equivalent capacitor Ceq with 1/Ceq = 1/C1 + 1/C2 + 1/C3, as
illustrated in Figure 4.3. You can easily use the same method to prove that the
three parallel capacitors in the bottom half of Figure 4.3 combine as do resistors
in series.

EXAMPLE 4.1 Charge Separation in Ultracapacitors➲LO1
Problem

Ultracapacitors are finding application in a variety of fields, including as a replacement or
supplement for batteries in hybrid-electric vehicles. In this example you will make your first
acquaintance with these devices.

An ultracapacitor, or “supercapacitor,” stores energy electrostatically by polarizing an
electrolytic solution.Although it is an electrochemical device (also known as an electrochemical
double-layercapacitor),therearenochemicalreactionsinvolvedinitsenergystoragemechanism.
This mechanism is highly reversible, allowing the ultracapacitor to be charged and discharged
hundreds of thousands of times. An ultracapacitor can be viewed as two nonreactive porous
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plates suspended within an electrolyte, with a voltage applied across the plates. The applied
potential on the positive plate attracts the negative ions in the electrolyte, while the potential
on the negative plate attracts the positive ions. This effectively creates two layers of capacitive
storage, one where the charges are separated at the positive plate and another at the negative
plate.

Recall that capacitors store energy in the form of separated electric charge. The greater
the area for storing charge and the closer the separated charges, the greater the capacitance.
A conventional capacitor gets its area from plates of a flat, conductive material. To achieve high
capacitance, this material can be wound in great lengths, and sometimes a texture is imprinted
on it to increase its surface area. A conventional capacitor separates its charged plates with a
dielectric material, sometimes a plastic or paper film, or a ceramic. These dielectrics can be
made only as thin as the available films or applied materials.

An ultracapacitor gets its area from a porous carbon-based electrode material, as shown
in Figure 4.4. The porous structure of this material allows its surface area to approach 2,000
square meters per gram (m2/g), much greater than can be accomplished using flat or tex-
tured films and plates. An ultracapacitor’s charge separation distance is determined by the
size of the ions in the electrolyte, which are attracted to the charged electrode. This charge
separation [less than 10 angstroms (Å)] is much smaller than can be achieved using conven-
tional dielectric materials. The combination of enormous surface area and extremely small
charge separation gives the ultracapacitor its outstanding capacitance relative to conventional
capacitors.

Current collector

Electrolyte
Separator

Porous electrode

+

–

ΔV

Figure 4.4 Ultracapacitor
structure

Use the data provided to calculate the charge stored in an ultracapacitor, and calculate
how long it will take to discharge the capacitor at the maximum current rate.

Solution

Known Quantities: Technical specifications are as follows:

Capacitance 100 F (−10%/ + 30%)

Series resistance DC 15 m�(±25%)

1 kHz 7 m�(±25%)

Voltage Continuous 2.5 V; Peak 2.7 V
Rated current 25 A

Find: Charge separation at nominal voltage and time to complete discharge at maximum
current rate.

Analysis: Based on the definition of charge storage in a capacitor, we calculate

Q = CV = 100 F × 2.5 V = 250 C

To calculate how long it would take to discharge the ultracapacitor, we approximate the defining
differential equation (4.4) as follows:

i = dq

dt
≈ �q

�t

Since we know that the discharge current is 25 A and the available charge separation is 250 F,
we can calculate the time to complete discharge, assuming a constant 25-A discharge:

�t = �q

i
= 250 C

25 A
= 10 s

Comments: We shall continue our exploration of ultracapacitors in Chapter 5. In particular,
we shall look more closely at the charging and discharging behavior of these devices, taking
into consideration their internal resistance.
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CHECK YOUR UNDERSTANDING

Compare the charge separation achieved in this ultracapacitor with a (similarly sized)
electrolytic capacitor used in power electronics applications, by calculating the charge sep-
aration for a 2,000-μF electrolytic capacitor rated at 400 V.

Answer:0.8C

EXAMPLE 4.2 Calculating Capacitor Current from Voltage➲LO1
Problem

Calculate the current through a capacitor from knowledge of its terminal voltage.

Solution

Known Quantities: Capacitor terminal voltage; capacitance value.

Find: Capacitor current.

Assumptions: The initial current through the capacitor is zero.

Schematics, Diagrams, Circuits, and Given Data: v(t) = 5(1 − e−t/10−6
) volts; t ≥ 0 s;

C = 0.1 μF. The terminal voltage is plotted in Figure 4.5.

Assumptions: The capacitor is initially discharged: v(t = 0) = 0.

Analysis: Using the defining differential relationship for the capacitor, we may obtain the
current by differentiating the voltage:

iC(t) = C
dv(t)

dt
= 10−7 5

10−6

(
e−t/10−6

)
= 0.5e−t/10−6

A t ≥ 0

A plot of the capacitor current is shown in Figure 4.6. Note how the current jumps to 0.5 A
instantaneously as the voltage rises exponentially: The ability of a capacitor’s current to change
instantaneously is an important property of capacitors.

Comments: As the voltage approaches the constant value 5 V, the capacitor reaches its
maximum charge storage capability for that voltage (since Q = CV ) and no more cur-
rent flows through the capacitor. The total charge stored is Q = 0.5 × 10−6 C. This is a
fairly small amount of charge, but it can produce a substantial amount of current for a brief
time. For example, the fully charged capacitor could provide 100 mA of current for a time
equal to 5 μs:

I = �Q

�t
= 0.5 × 10−6

5 × 10−6
= 0.1 A

There are many useful applications of this energy storage property of capacitors in practical
circuits.
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CHECK YOUR UNDERSTANDING

The voltage waveform shown below appears across a 1,000-μF capacitor. Plot the capacitor
current iC(t).

v(t) (V)
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iC (t) (m
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0246810
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Capacitor current for Example 4.2
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2

1

0

EXAMPLE 4.3 Calculating Capacitor Voltage from Current and
Initial Conditions

➲

LO1

Problem

Calculate the voltage across a capacitor from knowledge of its current and initial state of charge.
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Solution

Known Quantities: Capacitor current; initial capacitor voltage; capacitance value.

Find: Capacitor voltage.

Schematics, Diagrams, Circuits, and Given Data:

iC(t) = I

⎧⎨
⎩

0 t < 0 s
10 mA 0 ≤ t ≤ 1 s

0 t > 1 s

vC(t = 0) = 2 V C = 1,000 μF

The capacitor current is plotted in Figure 4.7(a).
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Assumptions: The capacitor is initially charged such that vC(t = t0 = 0) = 2 V.

Analysis: Using the defining integral relationship for the capacitor, we may obtain the voltage
by integrating the current:

vC(t) = 1

C

∫ t

t0

iC(t′) dt′+vC(t0) t ≥ t0

=

⎧⎪⎨
⎪⎩

1

C

∫ 1

0
I dt′ + V0 = I

C
t + V0 = 10t + 2 V 0 ≤ t ≤ 1 s

12 V t > 1 s

Comments: Once the current stops, at t = 1 s, the capacitor voltage cannot develop any
further but remains at the maximum value it reached at t = 1 s: vC(t = 1) = 12 V. The
final value of the capacitor voltage after the current source has stopped charging the capacitor
depends on two factors: (1) the initial value of the capacitor voltage and (2) the history of the
capacitor current. Figure 4.7(a) and (b) depict the two waveforms.

CHECK YOUR UNDERSTANDING

Find the maximum current through the capacitor of Example 4.3 if the capacitor voltage is
described by vC(t) = 5t + 3 V for 0 ≤ t ≤ 5 s.

Answer:5mA
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Physical capacitors are rarely constructed of two parallel plates separated by
air, because this configuration yields very low values of capacitance, unless one is
willing to tolerate very large plate areas. To increase the capacitance (i.e., the abil-
ity to store energy), physical capacitors are often made of tightly rolled sheets of
metal film, with a dielectric (paper or Mylar) sandwiched in between. Table 4.1
illustrates typical values, materials, maximum voltage ratings, and useful frequency
ranges for various types of capacitors. The voltage rating is particularly impor-
tant, because any insulator will break down if a sufficiently high voltage is applied
across it.

Table 4.1 Capacitors

Capacitance Maximum voltage Frequency range
Material range (V) (Hz)

Mica 1 pF to 0.1 μF 100–600 103–1010

Ceramic 10 pF to 1 μF 50–1,000 103–1010

Mylar 0.001 μF to 10 μF 50–500 102–108

Paper 1,000 pF to 50 μF 100–105 102–108

Electrolytic 0.1 μF to 0.2 F 3–600 10–104

Energy Storage in Capacitors

You may recall that the capacitor was described earlier in this section as an
energy storage element. An expression for the energy stored in the capacitor WC(t)
may be derived easily if we recall that energy is the integral of power, and that the
instantaneous power in a circuit element is equal to the product of voltage and
current:

WC(t) =
∫

PC(t′) dt′

=
∫

vC(t′)iC(t′) dt′

=
∫

vC(t′)C
dvC(t′)

dt′
dt′

(4.9)

WC(t) = 1

2
Cv2

C(t) Energy stored in a capacitor (J)

Example 4.4 illustrates the calculation of the energy stored in a capacitor.

➲

LO1

EXAMPLE 4.4 Energy Storage in Ultracapacitors

Problem

Determine the energy stored in the ultracapacitor of Example 4.1.
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Solution

Known Quantities: See Example 4.1.

Find: Energy stored in capacitor.

Analysis: To calculate the energy, we use equation 4.9:

WC = 1

2
Cv2

C = 1

2
(100 F)(2.5 V)2 = 312.5 J

CHECK YOUR UNDERSTANDING

Compare the energy stored in this ultracapacitor with a (similarly sized) electrolytic capacitor
used in power electronics applications, by calculating the charge separation for a 2,000-μF
electrolytic capacitor rated at 400 V.

Answer:160J

The Ideal Inductor

The ideal inductor is an element that has the ability to store energy in a magnetic field.
Inductors are typically made by winding a coil of wire around a core, which can be an
insulator or a ferromagnetic material, as shown in Figure 4.8. When a current flows
through the coil, a magnetic field is established, as you may recall from early physics
experiments with electromagnets. Just as we found an analogy between electric and
fluid circuits for the capacitor, we can describe a phenomenon similar to inductance in
hydraulic circuits, as explained in the sidebar. In an ideal inductor, the resistance of the
wire is zero so that a constant current through the inductor will flow freely without
causing a voltage drop. In other words, the ideal inductor acts as a short circuit
in the presence of DC. If a time-varying voltage is established across the inductor,
a corresponding current will result, according to the following relationship:

➲LO1 vL(t) = L
diL(t)

dt
i-v relation for inductor (4.10)

where L is called the inductance of the coil and is measured in henrys (H), where

1 H = 1 V-s/A (4.11)

Henrys are reasonable units for practical inductors; millihenrys (mH) and micro-
henrys (μH) are also used.

It is instructive to compare equation 4.10, which defines the behavior of an ideal
inductor, with the expression relating capacitor current and voltage:

iC(t) = C
dvC(t)

dt
(4.12)
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i(t)
L

(a) Circuit symbol

(b) Magnetic flux lines in the vicinity of a current-carrying coil (c) Practical inductors

vL (t) = L di
dt
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+

i
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i
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r2
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r

l

Figure 4.8 Inductance and practical inductors

MAKE THE
CONNECTION

Fluid (Hydraulic)
Inertance

The fluid inertance
parameter is analogous to
inductance in the electric
circuit. Fluid inertance, as the
name suggests, is caused by
the inertial properties, i.e., the
mass, of the fluid in motion.
As you know from physics, a
particle in motion has kinetic
energy associated with it;
fluid in motion consists of a
collection of particles, and it
also therefore must have
kinetic energy storage
properties. ( Think of water
flowing out of a fire hose!)
The equations that define the
analogy are given below

�p = p1 − p2 = If
dqf

dt

�v = v1 − v2 = L
di

dt

Figure 4.9 depicts the
analogy between electrical
inductance and fluid
inertance. These analogies
and the energy equations
that apply to electrical and
fluid circuit elements are
summarized in Table 4.2.

i
v1

p2 Ifqf
p1

L v2
+  Δv  –

+  Δp  –

Figure 4.9 Analogy
between fluid inertance and
electrical inductance

We note that the roles of voltage and current are reversed in the two elements, but that
both are described by a differential equation of the same form. This duality between
inductors and capacitors can be exploited to derive the same basic results for the
inductor that we already have for the capacitor, simply by replacing the capacitance
parameter C with the inductance L and voltage with current (and vice versa) in

Table 4.2 Analogy between electric and fluid circuits

Electrical element
Property or equation Hydraulic analogy

Potential variable Voltage or potential difference Pressure difference

Flow variable Current flow Fluid volume flow rate

Resistance Resistor R Fluid resistor Rf

Capacitance Capacitor C Fluid capacitor Cf

Inductance Inductor L Fluid inertor If

Power dissipation P = i2R Pf = q2
f Rf

Potential energy storage Wp = 1
2 Cv2 Wp = 1

2 Cf p2

Kinetic energy storage Wk = 1
2 Li2 Wk = 1

2 If q2
f
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the equations we derived for the capacitor. Thus, the inductor current is found by
integrating the voltage across the inductor:

iL(t) = 1

L

∫ t

−∞
vL(t

′) dt′ (4.13)

If the current flowing through the inductor at time t = t0 is known to be I0, with

I0 = iL(t = t0) = 1

L

∫ t0

−∞
vL(t

′) dt′ (4.14)

then the inductor current can be found according to the equation

iL(t) = 1

L

∫ t

t0

vL(t
′) dt′ + I0 t ≥ t0 (4.15)

Series and parallel combinations of inductors behave as resistors, as illustrated in
Figure 4.10, and stated as follows:

➲LO1
Inductors in series add. Inductors in parallel combine according to the same
rules used for resistors connected in parallel.

LEQ = L1 + L2 + L3

L3

L1

L2v3

Inductances in series add

L1 L2 L3
LEQ =

1

1
L

1
+ 1

L
2

+ 1
L

3

Inductances in parallel combine
like resistors in parallel

v1 –+

v2– +
–

+

–

+

v (t)

i(t)

Figure 4.10 Combining inductors in a circuit

It is very easy to prove that inductors in series combine as shown in Figure 4.10,
using the definition of equation 4.10. Consider the three inductors in series in the
circuit on the left of Figure 4.10. Using Kirchhoff’s voltage law and the definition of
the capacitor voltage, we can write

v(t) = v1(t) + v1(t) + v1(t) = L1
di(t)

dt
+ L2

di(t)

dt
+ L3

di(t)

dt

= (L1 + L2 + L3)
di(t)

dt

(4.16)

Thus, the voltage across the three series inductors is the same that would be seen
across a single equivalent inductor Leq with Leq = L1 + L2 + L3, as illustrated in
Figure 4.10. You can easily use the same method to prove that the three parallel
inductors on the right half of Figure 4.10 combine as resistors in parallel do.

EXAMPLE 4.5 Calculating Inductor Voltage from Current➲LO1

Problem

Calculate the voltage across the inductor from knowledge of its current.



January 8, 2008 11:10 Chap04 Sheet number 13 Page number 141 magenta black

Part I Circuits 141

Solution

Known Quantities: Inductor current; inductance value.

Find: Inductor voltage.

Schematics, Diagrams, Circuits, and Given Data:

iL(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 mA t < 1 ms

−0.1

4
+ 0.1

4
t mA 1 ≤ t ≤ 5 ms

0.1 mA 5 ≤ t ≤ 9 ms

13 × 0.1

4
− 0.1

4
t mA 9 ≤ t ≤ 13 ms

0 mA t > 13 ms

L = 10 H

The inductor current is plotted in Figure 4.11.

Assumptions: iL(t = 0) ≤ 0.

Analysis: Using the defining differential relationship for the inductor, we may obtain the
voltage by differentiating the current:

vL(t) = L
diL(t)

dt

Piecewise differentiating the expression for the inductor current, we obtain

vL(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 V t < 1 ms
0.25 V 1 < t ≤ 5 ms
0 V 5 < t ≤ 9 ms

−0.25 V 9 < t ≤ 13 ms
0 V t > 13 ms

The inductor voltage is plotted in Figure 4.12.

Comments: Note how the inductor voltage has the ability to change instantaneously!
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0.02

0.04
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0.08

0.1
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) 
(m

A
)

–

vL (t) L

+ iL (t)

Figure 4.11
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Figure 4.12
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CHECK YOUR UNDERSTANDING

The current waveform shown below flows through a 50-mH inductor. Plot the inductor
voltage vL(t).

i(t) (mA)

15

10

5

0 1 2 3 4 5 6 7 8
t (ms)

Answer:

v
L (t) (V

)

0246810
t (ms)

Inductor voltage for Exercise 4.5
0

–0.02

–0.04

–0.06

–0.08

–0.1

–0.12

–0.14

EXAMPLE 4.6 Calculating Inductor Current from Voltage➲LO1
Problem

Calculate the current through the inductor from knowledge of the terminal voltage and of the
initial current.

Solution

Known Quantities: Inductor voltage; initial condition (current at t = 0); inductance value.

Find: Inductor current.

Schematics, Diagrams, Circuits, and Given Data:

v(t) =
⎧⎨
⎩

0 V t < 0 s
−10 mV 0 < t ≤ 1 s

0 V t > 1 s

L = 10 mH; iL(t = 0) = I0 = 0 A

The terminal voltage is plotted in Figure 4.13(a).

Assumptions: iL(t = 0) = I0 = 0.

Analysis: Using the defining integral relationship for the inductor, we may obtain the voltage
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 (t
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(A
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Figure 4.13

by integrating the current:

iL(t) = 1

L

∫ t

t0

v(t) dt′ + iL(t0) t ≥ t0

=

⎧⎪⎪⎨
⎪⎪⎩

1

L

∫ t′

0
(−10 × 10−3) dt′+ I0 = −10−2

10−2
t + 0 = −t A 0 ≤ t ≤ 1 s

−1 A t > 1 s

The inductor current is plotted in Figure 4.13(b).

Comments: Note how the inductor voltage has the ability to change instantaneously!

CHECK YOUR UNDERSTANDING

Find the maximum voltage across the inductor of Example 4.6 if the inductor current voltage
is described by iL(t) = 2t amperes for 0 ≤ t ≤ 2 s.

Answer:20mV

Energy Storage in Inductors

The magnetic energy stored in an ideal inductor may be found from a power calculation
by following the same procedure employed for the ideal capacitor. The instantaneous
power in the inductor is given by

PL(t) = iL(t)vL(t) = iL(t)L
diL(t)

dt
= d

dt

[
1

2
Li2

L(t)

]
(4.17)

Integrating the power, we obtain the total energy stored in the inductor, as shown in
the following equation:

WL(t) =
∫

PL(t
′) dt′ =

∫
d

dt′

[
1

2
Li2

L(t
′)
]

dt′ (4.18)
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WL(t) = 1

2
Li2

L(t) Energy stored in an inductor (J)➲LO1

Note, once again, the duality with the expression for the energy stored in a capacitor,
in equation 4.9.

EXAMPLE 4.7 Energy Storage in an Ignition Coil➲LO1
Problem

Determine the energy stored in an automotive ignition coil.

Solution

Known Quantities: Inductor current initial condition (current at t = 0); inductance value.

Find: Energy stored in inductor.

Schematics, Diagrams, Circuits, and Given Data: L = 10 mH; iL = I0 = 8 A.

Analysis:

WL = 1

2
Li2

L = 1

2
× 10−2 × 64 = 32 × 10−2 = 320 mJ

Comments: A more detailed analysis of an automotive ignition coil is presented in Chapter 5
to accompany the discussion of transient voltages and currents.

CHECK YOUR UNDERSTANDING

Calculate and plot the inductor energy and power for a 50-mH inductor subject to the current
waveform shown below. What is the energy stored at t = 3 ms? Assume i(−∞) = 0.

i(t) (mA)

15

10

5

0 1 2 3 4 5 6 7 8
t (ms)

Answer:

w(t)=
⎧⎨
⎩

5.625×10−6J0≤t<2ms
0.156t2−(2.5×10−3)t+10−52≤t<6ms
0.625×10−6t≥6ms

p(t)={(20×10−3−2.5t)(−0.125W)2≤t<6ms
0otherwise

w(t=3ms)=3.9μJ
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4.2 TIME-DEPENDENT SIGNAL SOURCES

In Chapter 2, the general concept of an ideal energy source was introduced. In this
chapter, it will be useful to specifically consider sources that generate time-varying
voltages and currents and, in particular, sinusoidal sources. Figure 4.14 illustrates the
convention that will be employed to denote time-dependent signal sources.

+
_

+
_v (t) i (t) v (t), i(t) ∼

Generalized time-dependent sources Sinusoidal source

Figure 4.14 Time-dependent signal sources

One of the most important classes of time-dependent signals is that of periodic
signals. These signals appear frequently in practical applications and are a useful
approximation of many physical phenomena. A periodic signal x(t) is a signal that
satisfies the equation

x(t) = x(t + nT ) n = 1, 2, 3, . . . (4.19)

where T is the period of x(t). Figure 4.15 illustrates a number of periodic waveforms
that are typically encountered in the study of electric circuits. Waveforms such as the
sine, triangle, square, pulse, and sawtooth waves are provided in the form of volt-
ages (or, less frequently, currents) by commercially available signal (or waveform)
generators. Such instruments allow for selection of the waveform peak amplitude,
and of its period.

 A

0 T 2T 3T 4T Time
Sawtooth wave

x 
(t

)

Time2TT
0

x 
(t

)

Time

Time

2T

T

x 
(t

)

A

2T 3T

x 
(t

)

A

0

Square wave

Triangle wave

Pulse train

Time

Sine wave 

A

_A
x 

(t
)

τ

A

_A

_A
0

T

0
T 2T

Figure 4.15 Periodic signal
waveforms

t

A
T

_A

x 1
 (

t)

Reference cosine

t

A

_A

x 2
 (

t)

Arbitrary sinusoid

Δt

T

Figure 4.16 Sinusoidal
waveforms

As stated in the introduction, sinusoidal waveforms constitute by far the most
important class of time-dependent signals. Figure 4.16 depicts the relevant parameters
of a sinusoidal waveform. A generalized sinusoid is defined as

x(t) = A cos(ωt + φ) (4.20)

where A is the amplitude, ω the radian frequency, and φ the phase. Figure 4.16
summarizes the definitions of A, ω, and φ for the waveforms

x1(t) = A cos(ωt) and x2(t) = A cos(ωt + φ)

where

f = natural frequency = 1

T
cycles/s, or Hz

ω = radian frequency = 2π f rad/s

φ = 2π
�t

T
rad

= 360
�t

T
deg

(4.21)

The phase shift φ permits the representation of an arbitrary sinusoidal signal. Thus, the
choice of the reference cosine function to represent sinusoidal signals—arbitrary as it
may appear at first—does not restrict the ability to represent all sinusoids. For example,
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one can represent a sine wave in terms of a cosine wave simply by introducing a phase
shift of π/2 rad:

A sin(ωt) = A cos
(
ωt − π

2

)
(4.22)

MAKE THE
CONNECTION

Why Do We Use
Units of Radians
for the Phase
Angle φ?

The engineer finds it frequ-
ently more intuitive to refer to
the phase angle in units of
degrees; however, to use
consistent units in the argu-
ment (the quantity in the
parentheses) of the expres-
sion x(t) = A sin(ωt + φ), we
must express φ in units of
radians, since the units of ωt
are [ω] · [t] = (rad/s) ·s = rad.
Thus, we will consistently
use units of radians for the
phase angle φ in all expres-
sions of the form x(t)=
A sin (ωt + φ). To be
consistent is especially
important when one is
performing numerical
calculations; if one used
units of degrees for φ in
calculating the value of
x(t) = A sin(ωt + φ) at a
given t, the answer would
be incorrect.

Although one usually employs the variable ω (in units of radians per second)
to denote sinusoidal frequency, it is common to refer to natural frequency f in units
of cycles per second, or hertz (Hz). The reader with some training in music theory
knows that a sinusoid represents what in music is called a pure tone; an A-440,
for example, is a tone at a frequency of 440 Hz. It is important to be aware of the
factor of 2π that differentiates radian frequency (in units of radians per second)
from natural frequency (in units of hertz). The distinction between the two units of
frequency—which are otherwise completely equivalent—is whether one chooses to
define frequency in terms of revolutions around a trigonometric circle (in which case
the resulting units are radians per second) or to interpret frequency as a repetition rate
(cycles per second), in which case the units are hertz. The relationship between the
two is the following:

ω = 2π f Radian frequency (4.23)

Why Sinusoids?

By now you should have developed a healthy curiosity about why so much
attention is being devoted to sinusoidal signals. Perhaps the simplest explanation
is that the electric power used for industrial and household applications worldwide
is generated and delivered in the form of either 50- or 60-Hz sinusoidal voltages
and currents. Chapter 7 will provide more details regarding the analysis of elec-
tric power circuits. Note that the methods developed in this section and the subse-
quent sections apply to many engineering systems, not just to electric circuits, and
will be encountered again in the study of dynamic-system modeling and of control
systems.

Average and RMS Values

Now that a number of different signal waveforms have been defined, it is appropriate
to define suitable measurements for quantifying the strength of a time-varying electric
signal. The most common types of measurements are the average (or DC) value of a
signal waveform—which corresponds to just measuring the mean voltage or current
over a period of time—and the root-mean-square (or rms) value, which takes into
account the fluctuations of the signal about its average value. Formally, the operation
of computing the average value of a signal corresponds to integrating the signal
waveform over some (presumably, suitably chosen) period of time. We define the
time-averaged value of a signal x(t) as

➲LO2 〈x(t)〉 = 1

T

∫ T

0
x(t′) dt′ Average value (4.24)
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where T is the period of integration. Figure 4.17 illustrates how this process does,
in fact, correspond to computing the average amplitude of x(t) over a period of T
seconds.

x (t)

tT0

< x (t) >

Figure 4.17 Averaging a
signal waveform

EXAMPLE 4.8 Average Value of Sinusoidal Waveform

➲

LO2
Problem

Compute the average value of the signal x(t) = 10 cos(100t).

Solution

Known Quantities: Functional form of the periodic signal x(t).

Find: Average value of x(t).

Analysis: The signal is periodic with period T = 2π/ω = 2π/100; thus we need to integrate
over only one period to compute the average value:

〈x(t)〉 = 1

T

∫ T

0
x(t′) dt′ = 100

2π

∫ 2π/100

0
10 cos(100t) dt

= 10

2π
〈sin(2π) − sin(0)〉 = 0

Comments: The average value of a sinusoidal signal is zero, independent of its amplitude
and frequency.

CHECK YOUR UNDERSTANDING

Express the voltage v(t) = 155.6 sin(377t + π/6) in cosine form. You should note that the
radian frequency ω = 377 will recur very often, since 377 = 2π(60); that is, 377 is the radian
equivalent of the natural frequency of 60 cycles/s, which is the frequency of the electric power
generated in North America.

Compute the average value of the sawtooth waveform shown in the figure below.

v (t) (V)

5

t (ms)0 2010

Compute the average value of the shifted triangle wave shown below.

v (t) (V)

3

t (ms)0 105

Answers:v(t)=155.6cos(377t−π/3);〈v(t)〉=2.5V;〈v(t)〉=1.5V
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The result of Example 4.8 can be generalized to state that

〈A cos (ωt + φ)〉 = 0 (4.25)

a result that might be perplexing at first: If any sinusoidal voltage or current has zero
average value, is its average power equal to zero? Clearly, the answer must be no.
Otherwise, it would be impossible to illuminate households and streets and power
industrial machinery with 60-Hz sinusoidal current! There must be another way, then,
of quantifying the strength of an AC signal.

Very conveniently, a useful measure of the voltage of an AC waveform is the
rms value of the signal x(t), defined as follows:

➲LO2 xrms =
√

1

T

∫ T

0
x2(t′) dt′ Root-mean-square value (4.26)

Note immediately that if x(t) is a voltage, the resulting xrms will also have units of
volts. If you analyze equation 4.26, you can see that, in effect, the rms value consists
of the square root of the average (or mean) of the square of the signal. Thus, the
notation rms indicates exactly the operations performed on x(t) in order to obtain its
rms value.

The definition of rms value does not help explain why one might be interested
in using this quantity. The usefulness of rms values for AC signals in general, and
for AC voltages and current in particular, can be explained easily with reference to
Figure 4.18. In this figure, the same resistor is connected to two different voltage
sources: a DC source and an AC source. We now ask, What is the effective value
of the current from the DC source such that the average power dissipated by the
resistor in the DC circuit is exactly the same as the average power dissipated by the
same resistor in the AC circuit? The direct current Ieff is called the effective value
of the alternating current, which is denoted by iac(t). To answer this question, we as-
sume that vac(t) and therefore iac(t) are periodic signals with period T . We then use
the definition of average value of a signal given in equation 4.24 to compute the total
energy dissipated by R during one period in the circuit of Figure 4.18(b):

W = TPAV = T 〈p(t)〉 =
∫ T

0
p(t′) dt′ =

∫ T

0
Ri2

ac(t
′) dt′ = I2

effR (4.27)

Ieff
R

(a)

+

–
Veff

Iac(t)
R

(b)

+

–
vac(t)

−
+
~

Figure 4.18 AC and DC circuits used to
illustrate the concept of effective and rms values
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Thus,

Ieff =
√∫ T

0
i2
ac(t

′) dt′ = Irms (4.28)

That is,

➲

LO2The rms, or effective, value of the current iac(t) is the DC that causes the same
average power (or energy) to be dissipated by the resistor.

From here on we shall use the notation Vrms, or Ṽ , and Irms, or Ĩ , to refer to the effective
(or rms) value of a voltage or current.

EXAMPLE 4.9 RMS Value of Sinusoidal Waveform

➲

LO2
Problem

Compute the rms value of the sinusoidal current i(t) = I cos(ωt).

Solution

Known Quantities: Functional form of the periodic signal i(t).

Find: RMS value of i(t).

Analysis: Applying the definition of rms value in equation 4.26, we compute

irms =
√

1

T

∫ T

0
i2(t′) dt′ =

√
ω

2π

∫ 2π/ω

0
I 2 cos2(ωt′) dt′

=
√

ω

2π

∫ 2π/ω

0
I 2

[
1

2
+ 1

2
cos(2ωt′)

]
dt′

=
√

1

2
I 2 + ω

2π

∫ 2π/ω

0

I 2

2
cos(2ωt′) dt′

At this point, we recognize that the integral under the square root sign is equal to zero
(see Example 4.8), because we are integrating a sinusoidal waveform over two periods.
Hence,

irms = I√
2

= 0.707I

where I is the peak value of the waveform i(t).

Comments: The rms value of a sinusoidal signal is equal to 0.707 times the peak value,
independent of its amplitude and frequency.
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CHECK YOUR UNDERSTANDING

Find the rms value of the sawtooth wave of the exercise accompanying Example 4.8.

Find the rms value of the half cosine wave shown in the next figure.

x (t)

1

_ π
2

π
2

3π
2

5π
22π0 ωt (rad)

x (t ) = cos t        for       ≤ ω t <–π
2

= 0 for     ≤ ω t <π
2

3π
2 ω = 1

π
2

Answers:2.89V;0.5V

Example 4.9 illustrates how the rms value of a sinusoid is proportional to its
peak amplitude. The factor of 0.707 = 1/

√
2 is a useful number to remember, since

it applies to any sinusoidal signal. It is not, however, generally applicable to signal
waveforms other than sinusoids, as the Check Your Understanding exercises have
illustrated.

4.3 SOLUTION OF CIRCUITS CONTAINING
ENERGY STORAGE ELEMENTS
(DYNAMIC CIRCUITS)

Sections 4.1 and 4.2 introduced energy storage elements and time-dependent signal
sources. The logical next task is to analyze the behavior of circuits containing such
elements. The major difference between the analysis of the resistive circuits studied in
Chapters 2 and 3 and the circuits we explore in the remainder of this chapter is that now
the equations that result from applying Kirchhoff’s laws are differential equations,
as opposed to the algebraic equations obtained in solving resistive circuits. Consider,
for example, the circuit of Figure 4.19, which consists of the series connection of a
voltage source, a resistor, and a capacitor. Applying KCL at the node connecting the
resistor to the capacitor and using the definition of capacitor current in equation 4.4,
we obtain the following equations:

iR(t) = vS(t) − vC(t)

R
= iC(t) = C

dvC(t)

dt
(4.29)

or

dvC(t)

dt
+ 1

RC
vC(t) = 1

RC
vS(t) (4.30)

+
_

vR

iR1

iC

vC (t)C
_

+
vS (t) ∼

R

+ _

diC
dt

+ 1
RC

iC = dvS
dt

A circuit containing energy-storage 
elements is described by a 
differential equation. The 
differential equation describing the 
series RC circuit shown is

Figure 4.19 Circuit
containing energy storage
element

➲

L
O

3

Equation 4.30 is a first-order, linear, ordinary differential equation in the variable vC .

Alternatively, we could derive an equivalent relationship by applying KVL around
the circuit of Figure 4.19:

−vS(t) + vR(t) + vC(t) = 0 (4.31)
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Observing that iR(t) = iC(t) and using the capacitor equation 4.5, we can write

−vS(t) + RiC(t) + 1

C

∫ t

−∞
iC(t′) dt′ = 0 (4.32)

Equation 4.32 is an integral equation, which may be converted to the more familiar
form of a differential equation by differentiating both sides; recalling that

d

dt

[∫ t

−∞
iC(t′) dt′

]
= iC(t) (4.33)

we obtain the first-order, linear, ordinary differential equation

diC(t)

dt
+ 1

RC
iC(t) = 1

R

dvS(t)

dt
(4.34)

Equations 4.30 and 4.34 are very similar; the principal differences are the variable in
the differential equation [vC(t) versus iC(t)] and the right-hand side. Solving either
equation for the unknown variable permits the computation of all voltages and currents
in the circuit.

Note to the Instructor: If so desired, the remainder of this
chapter can be skipped, and the course can continue with
Chapter 5 without any loss of continuity.

Forced Response of Circuits Excited
by Sinusoidal Sources

Consider again the circuit of Figure 4.19, where now the external source produces a
sinusoidal voltage, described by the expression

vS(t) = V cos ωt (4.35)

Substituting the expression V cos(ωt) in place of the source voltage vS(t) in the differ-
ential equation obtained earlier (equation 4.30), we obtain the following differential
equation:

d

dt
vC + 1

RC
vC = 1

RC
V cos ωt (4.36)

Since the forcing function is a sinusoid, the solution may also be assumed to be of
the same form. An expression for vC(t) is then

vC(t) = A sin ωt + B cos ωt (4.37)

which is equivalent to

vC(t) = C cos(ωt + φ) (4.38)

Substituting equation 4.37 in the differential equation for vC(t) and solving for the
coefficients A and B yield the expression

Aω cos ωt − Bω sin ωt + 1

RC
(A sin ωt + B cos ωt)

= 1

RC
V cos ωt

(4.39)
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and if the coefficients of like terms are grouped, the following equation is obtained:(
A

RC
− Bω

)
sin ωt +

(
Aω + B

RC
− V

RC

)
cos ωt = 0 (4.40)

The coefficients of sin ωt and cos ωt must both be identically zero in order for
equation 4.40 to hold. Thus,

A

RC
− Bω = 0

and

Aω + B

RC
− V

RC
= 0

(4.41)

The unknown coefficients A and B may now be determined by solving equation 4.41:

A = VωRC

1 + ω2(RC)2

B = V

1 + ω2(RC)2

(4.42)

Thus, the solution for vC(t) may be written as follows:

vC(t) = VωRC

1 + ω2(RC)2
sin ωt + V

1 + ω2(RC)2
cos ωt (4.43)

This response is plotted in Figure 4.20.

Time (ms)

vS (t)

vC (t)

v (t) (V)

1.670 3.33 5

Figure 4.20 Waveforms for
the AC circuit of Figure 4.19

The solution method outlined in the previous paragraphs can become quite
complicated for circuits containing a large number of elements; in particular, one
may need to solve higher-order differential equations if more than one energy storage
element is present in the circuit. A simpler and preferred method for the solution
of AC circuits is presented in Section 4.4. This brief section has provided a simple,
but complete illustration of the key elements of AC circuit analysis. These can be
summarized in the following statement:

➲LO3

In a sinusoidally excited linear circuit, all branch voltages and currents are
sinusoids at the same frequency as the excitation signal. The amplitudes of these
voltages and currents are a scaled version of the excitation amplitude, and the
voltages and currents may be shifted in phase with respect to the excitation
signal.

These observations indicate that three parameters uniquely define a sinusoid:
frequency, amplitude, and phase. But if this is the case, is it necessary to carry the
“excess luggage,” that is, the sinusoidal functions? Might it be possible to simply
keep track of the three parameters just mentioned? Fortunately, the answers to these
two questions are no and yes, respectively. Section 4.4 describes the use of a notation
that, with the aid of complex algebra, eliminates the need for the sinusoidal functions
of time, and for the formulation and solution of differential equations, permitting the
use of simpler algebraic methods.
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4.4 PHASOR SOLUTION OF CIRCUITS WITH
SINUSOIDAL EXCITATION

In this section, we introduce an efficient notation to make it possible to represent
sinusoidalsignalsascomplexnumbers,andtoeliminate theneedforsolvingdifferential
equations. The student who needs a brief review of complex algebra will find a
reasonably complete treatment in Appendix A (available online), including solved
examples and Check Your Understanding exercises. For the remainder of the chapter,
it will be assumed that you are familiar with both the rectangular and the polar forms
of complex number coordinates; with the conversion between these two forms; and
with the basic operations of addition, subtraction, multiplication, and division of
complex numbers.

Leonhard Euler (1707–1783).
Photograph courtesy of
Deutsches Museum, Munich.

Im
j

_ j

_1 1 Re

1sin θ  θ

cos θ

e jθ = cos θ + j sin θ

Figure 4.21 Euler’s
identity

Euler’s Identity

Named after the Swiss mathematician Leonhard Euler (the last name is pronounced
“Oiler”), Euler’s identity forms the basis of phasor notation. Simply stated, the identity
defines the complex exponential e jθ as a point in the complex plane, which may be
represented by real and imaginary components:

e jθ = cos θ + j sin θ (4.44)

Figure 4.21 illustrates how the complex exponential may be visualized as a point
(or vector, if referenced to the origin) in the complex plane. Note immediately that
the magnitude of e jθ is equal to 1:

|e jθ | = 1 (4.45)

since

| cos θ + j sin θ | =
√

cos2 θ + sin2 θ = 1 (4.46)

and note also that writing Euler’s identity corresponds to equating the polar form of a
complex number to its rectangular form. For example, consider a vector of length A
making an angle θ with the real axis. The following equation illustrates the relationship
between the rectangular and polar forms:

Ae jθ = A cos θ + jA sin θ = A∠θ (4.47)

In effect, Euler’s identity is simply a trigonometric relationship in the complex plane.

Phasors

To see how complex numbers can be used to represent sinusoidal signals, rewrite the
expression for a generalized sinusoid in light of Euler’s equation:

A cos(ωt + θ) = Re (Ae j(ωt+θ)) (4.48)

This equality is easily verified by expanding the right-hand side, as follows:

Re (Ae j(ωt+θ)) = Re [A cos(ωt + θ) + jA sin(ωt + θ)]
= A cos(ωt + θ)

We see, then, that it is possible to express a generalized sinusoid as the real part of
a complex vector whose argument, or angle, is given by ωt + θ and whose length,
or magnitude, is equal to the peak amplitude of the sinusoid. The complex phasor
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corresponding to the sinusoidal signal A cos(ωt + θ) is therefore defined to be the
complex number Ae jθ :

Ae jθ = complex phasor notation for A cos(ωt + θ) = A∠θ (4.49)

It is important to explicitly point out that this is a definition. Phasor notation arises
from equation 4.48; however, this expression is simplified (for convenience, as will
be promptly shown) by removing the “real part of” operator (Re) and factoring out
and deleting the term ejωt . Equation 4.50 illustrates the simplification:

A cos(ωt + θ) = Re (Ae j(ωt+θ)) = Re (Ae jθe jωt) (4.50)

The reason for this simplification is simply mathematical convenience, as will become
apparent in the following examples; you will have to remember that the ejωt term that
was removed from the complex form of the sinusoid is really still present, indicating
the specific frequency of the sinusoidal signal ω. With these caveats, you should now
be prepared to use the newly found phasor to analyze AC circuits. The following
comments summarize the important points developed thus far in the section. Please
note that the concept of phasor has no real physical significance. It is a convenient
mathematical tool that simplifies the solution of AC circuits.

➲LO4 F O C U S O N M E T H O D O L O G Y

1. Any sinusoidal signal may be mathematically represented in one of two
ways: a time-domain form

v(t) = A cos(ωt + θ)

and a frequency-domain (or phasor) form

V( jω) = Ae jθ = A∠θ

Note the jω in the notation V( jω), indicating the e jωt dependence of the
phasor. In the remainder of this chapter, bold uppercase quantities indicate
phasor voltages or currents.

2. A phasor is a complex number, expressed in polar form, consisting of a
magnitude equal to the peak amplitude of the sinusoidal signal and a
phase angle equal to the phase shift of the sinusoidal signal referenced to
a cosine signal.

3. When one is using phasor notation, it is important to note the specific
frequency ω of the sinusoidal signal, since this is not explicitly apparent in
the phasor expression.

EXAMPLE 4.10 Addition of Two Sinusoidal Sources in Phasor
Notation➲LO4

Problem

Compute the phasor voltage resulting from the series connection of two sinusoidal voltage
sources (Figure 4.22).
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Solution

Known Quantities:

v1(t) = 15 cos
(

377t + π

4

)
V

v2(t) = 15 cos
(

377t + π

12

)
V

Find: Equivalent phasor voltage vS(t).

v2(t)

v1(t)

vS(t)

+~–

+~–

+~–

Figure 4.22

Analysis: Write the two voltages in phasor form:

V1( jω) = 15∠π

4
V

V2( jω) = 15e jπ/12 = 15∠ π

12
V

Convert the phasor voltages from polar to rectangular form:

V1( jω) = 10.61 + j10.61 V

V2( jω) = 14.49 + j3.88 V

Then

VS( jω) = V1( jω) + V2( jω) = 25.10 + j14.49 = 28.98ejπ/6 = 28.98∠π

6
V

Now we can convert VS( jω) to its time-domain form:

vS(t) = 28.98 cos
(

377t + π

6

)
V

Comments: Note that we could have obtained the same result by adding the two sinusoids in
the time domain, using trigonometric identities:

v1(t) = 15 cos
(

377t + π

4

)
= 15 cos

π

4
cos(377t) − 15 sin

π

4
sin(377t) V

v2(t) = 15 cos
(

377t + π

12

)
= 15 cos

π

12
cos(377t) − 15 sin

π

12
sin(377t) V

Combining like terms, we obtain

v1(t) + v2(t) = 15
(

cos
π

4
+ cos

π

12

)
cos(377t) − 15

(
sin

π

4
+ sin

π

12

)
sin(377t)

= 15[1.673 cos(377t) − 0.966 sin(377t)]

= 15
√

(1.673)2 + (0.966)2 × cos

[
377t + arctan

(
0.966

1.673

)]

= 15
[
1.932 cos

(
377t + π

6

)]
= 28.98 cos

(
377t + π

6

)
V

The above expression is, of course, identical to the one obtained by using phasor notation,
but it required a greater amount of computation. In general, phasor analysis greatly simplifies
calculations related to sinusoidal voltages and currents.
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CHECK YOUR UNDERSTANDING

Add the sinusoidal voltages v1(t) = A cos(ωt + φ) and v2(t) = B cos(ωt + θ) using phasor
notation, and then convert back to time-domain form.

a. A = 1.5 V, φ = 10◦; B = 3.2 V, θ = 25◦.

b. A = 50 V, φ = −60◦; B = 24 V, θ = 15◦.

Answers:(a)v1+v2=4.67cos(ωt+0.3526rad);
(b)v1+v2=60.8cos(ωt−0.6562rad)

It should be apparent by now that phasor notation can be a very efficient tech-
nique to solve AC circuit problems. The following sections continue to develop this
new method to build your confidence in using it.

Superposition of AC Signals

Example 4.10 explored the combined effect of two sinusoidal sources of different
phase and amplitude, but of the same frequency. It is important to realize that the
simple answer obtained there does not apply to the superposition of two (or more)
sinusoidal sources that are not at the same frequency. In this subsection, the case of
two sinusoidal sources oscillating at different frequencies is used to illustrate how
phasor analysis can deal with this, more general case.

I2(t)I1(t) Load

Figure 4.23 Superposition
of AC

The circuit shown in Figure 4.23 depicts a source excited by two current sources
connected in parallel, where

i1(t) = A1 cos(ω1t)

i2(t) = A2 cos(ω2t)
(4.51)

The load current is equal to the sum of the two source currents; that is,

iL(t) = i1(t) + i2(t) (4.52)

or, in phasor form,

IL = I1 + I2 (4.53)

At this point, you might be tempted to write I1 and I2 in a more explicit phasor
form as

I1 = A1e j0

I2 = A2e j0 (4.54)

and to add the two phasors, using the familiar techniques of complex algebra. How-
ever, this approach would be incorrect. Whenever a sinusoidal signal is expressed
in phasor notation, the term e jωt is implicitly present, where ω is the actual radian
frequency of the signal. In our example, the two frequencies are not the same, as can
be verified by writing the phasor currents in the form of equation 4.50:

I1 = Re (A1e j0e jω1t)

I2 = Re (A2e j0e jω2t)
(4.55)

Since phasor notation does not explicitly include the e jωt factor, this can lead to
serious errors if you are not careful! The two phasors of equation 4.54 cannot be
added, but must be kept separate; thus, the only unambiguous expression for the load
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current in this case is equation 4.52. To complete the analysis of any circuit with
multiple sinusoidal sources at different frequencies using phasors, it is necessary
to solve the circuit separately for each signal and then add the individual answers
obtained for the different excitation sources. Example 4.11 illustrates the response of
a circuit with two separate AC excitations using AC superposition.

EXAMPLE 4.11 AC Superposition

➲

LO4

Problem

This example underscores the importance of the principles of superposition. In the case of
sinusoidal sources at different frequencies, solution by superposition is the only viable method.
Compute the voltages vR1(t) and vR2(t) in the circuit of Figure 4.24.

vS(t)iS(t) +
_

vR2
(t)+ –

vR1
(t)

+

–
R1

R2

R1 = 150 Ω, R2 = 50 Ω

Figure 4.24

Solution

Known Quantities:

iS(t) = 0.5 cos[2π(100t)] A

vS(t) = 20 cos[2π(1,000t)] V

Find: vR1(t) and vR2(t).

iS(t)

vR2
(t)+ –

vR1
(t)

+

–
R1

R2

Figure 4.25

vS(t)+
_

vR2
(t)+ –

vR1
(t)

+

–
R1

R2

Figure 4.26

Analysis: Since the two sources are at different frequencies, we must compute a separate
solution for each. Consider the current source first, with the voltage source set to zero (short
circuit) as shown in Figure 4.25. The circuit thus obtained is a simple current divider. Write
the source current in phasor notation:

IS( jω) = 0.5e j0 = 0.5∠0 A ω = 2π100 rad/s

Then

VR1(IS) = IS
R2

R1 + R2
R1 = 0.5 ∠0

(
50

150 + 50

)
150 = 18.75∠0 V

ω = 2π(100) rad/s

VR2(IS) = IS
R1

R1 + R2
R2 = 0.5 ∠0

(
150

150 + 50

)
50 = 18.75∠0 V

ω = 2π(100) rad/s

Next, we consider the voltage source, with the current source set to zero (open circuit), as
shown in Figure 4.26. We first write the source voltage in phasor notation:

VS( jω) = 20e j0 = 20∠0 V ω = 2π(1,000) rad/s

Then we apply the voltage divider law, to obtain

VR1(VS) = VS
R1

R1 + R2
= 20∠0

(
150

150 + 50

)
= 15∠0 V

ω = 2π(1,000) rad/s

VR2(VS) = −VS
R2

R1 + R2
= −20∠0

(
50

150 + 50

)
= −5∠0 = 5∠π V

ω = 2π(1,000) rad/s
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Now we can determine the voltage across each resistor by adding the contributions from each
source and converting the phasor form to time-domain representation:

VR1 = VR1(IS) + VR1(VS)

vR1(t) = 18.75 cos[2π(100t)] + 15 cos[2π(1,000t)] V

and

VR2 = VR2(IS) + VR2(VS)

vR2(t) = 18.75 cos[2π(100t)] + 5 cos[2π(1,000t) + π ] V

Comments: Note that it is impossible to simplify the final expression any further because the
two components of each voltage are at different frequencies.

CHECK YOUR UNDERSTANDING

Add the sinusoidal currents i1(t) = A cos(ωt + φ) and i2(t) = B cos(ωt + θ) for

a. A = 0.09 A, φ = 72◦; B = 0.12 A, θ = 20◦.

b. A = 0.82 A, φ = −30◦; B = 0.5 A, θ = −36◦.

Answers:(a)i1+i2=0.19cos(ωt+0.733);(b)i1+i2=1.32cos(ωt−0.5637)

Impedance

We now analyze the i-v relationship of the three ideal circuit elements in light of
the new phasor notation. The result will be a new formulation in which resistors,
capacitors, and inductors will be described in the same notation. A direct consequence
of this result will be that the circuit theorems of Chapter 3 will be extended to AC
circuits. In the context ofAC circuits, any one of the three ideal circuit elements defined
so far will be described by a parameter called impedance, which may be viewed as a
complex resistance. The impedance concept is equivalent to stating that capacitors and
inductors act as frequency-dependent resistors, that is, as resistors whose resistance
is a function of the frequency of the sinusoidal excitation. Figure 4.27 depicts the
same circuit represented in conventional form (top) and in phasor-impedance form
(bottom); the latter representation explicitly shows phasor voltages and currents and
treats the circuit element as a generalized “impedance.” It will presently be shown that
each of the three ideal circuit elements may be represented by one such impedance
element.

+~–
vS(t)

+~–
vS(t)

+~–
vS(t)

+~–
VS ( jω)

i(t) R

i(t) L

i(t) C

I ( jω)

AC  circuits

AC  circuits in
phasor/impedance form

Z

+

−

vR(t)

+

−

vL(t)

+

−

vC(t)

+

−

VZ( jω)

Figure 4.27 The impedance
element

➲

L
O

4

Let the source voltage in the circuit of Figure 4.27 be defined by

vS(t) = A cos ωt or VS( jω) = Ae j0◦ = A∠0 (4.56)

without loss of generality. Then the current i(t) is defined by the i-v relationship
for each circuit element. Let us examine the frequency-dependent properties of the
resistor, inductor, and capacitor, one at a time.
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The Resistor

Ohm’s law dictates the well-known relationship v = iR. In the case of sinusoidal
sources, then, the current flowing through the resistor of Figure 4.27 may be
expressed as

i(t) = vS(t)

R
= A

R
cos ωt (4.57)

Converting the voltage vS(t) and the current i(t) to phasor notation, we obtain the
following expressions:

VZ( jω) = A∠0

I( jω) = A

R
∠0

(4.58)

The relationship between VZ and I in the complex plane is shown in Figure 4.28.
Finally, the impedance of the resistor is defined as the ratio of the phasor voltage
across the resistor to the phasor current flowing through it, and the symbol ZR is used
to denote it:

➲

LO4ZR( jω) = VZ( jω)

I( jω)
= R Impedance of a resistor (4.59)

Equation 4.59 corresponds to Ohm’s law in phasor form, and the result should be
intuitively appealing: Ohm’s law applies to a resistor independent of the particular
form of the voltages and currents (whetherAC or DC, for instance). The ratio of phasor
voltage to phasor current has a very simple form in the case of the resistor. In general,
however, the impedance of an element is a complex function of frequency, as it must
be, since it is the ratio of two phasor quantities, which are frequency-dependent. This
property will become apparent when the impedances of the inductor and capacitor
are defined.

Imaginary

Real

VI

Figure 4.28 Phasor
voltage and current
relationships for a resistor

The Inductor

Recall the defining relationships for the ideal inductor (equations 4.10 and 4.13),
repeated here for convenience:

vL(t) = L
diL(t)

dt

iL(t) = 1

L

∫
vL(t

′)
(4.60)

Let vL(t) = vS(t) and iL(t) = i(t) in the circuit of Figure 4.27. Then the following
expression may be derived for the inductor current:

iL(t) = i(t) = 1

L

∫
vS(t

′) dt′

iL(t) = 1

L

∫
A cos ωt′ dt′

= A

ωL
sin ωt

(4.61)
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Note how a dependence on the radian frequency of the source is clearly present in the
expression for the inductor current. Further, the inductor current is shifted in phase
(by 90◦) with respect to the voltage. This fact can be seen by writing the inductor
voltage and current in time-domain form:

vS(t) = vL(t) = A cos ωt

i(t) = iL(t) = A

ωL
cos

(
ωt − π

2

) (4.62)

It is evident that the current is not just a scaled version of the source voltage, as it was
for the resistor. Its magnitude depends on the frequency ω, and it is shifted (delayed)
in phase by π/2 rad, or 90◦. Using phasor notation, equation 4.62 becomes

VZ( jω) = A∠0

I( jω) = A

ωL
∠ −π

2

(4.63)

The relationship between the phasor voltage and current is shown in Figure 4.29.
Thus, the impedance of the inductor is defined as follows:

➲LO4 ZL( jω) = VZ( jω)

I( jω)
= ωL∠π

2
= jωL

Impedance of
an inductor

(4.64)

Note that the inductor now appears to behave as a complex frequency-dependent
resistor, and that the magnitude of this complex resistor ωL is proportional to the
signal frequency ω. Thus, an inductor will “impede” current flow in proportion to the
sinusoidal frequency of the source signal. This means that at low signal frequencies,
an inductor acts somewhat as a short circuit, while at high frequencies it tends to
behave more as an open circuit.

Imaginary

Real–� ⁄ 2

V

I

Figure 4.29 Phasor
voltage and current
relationships for an
inductor

The Capacitor

An analogous procedure may be followed to derive the equivalent result for a
capacitor. Beginning with the defining relationships for the ideal capacitor

iC(t) = C
dvC(t)

dt

vC(t) = 1

C

∫
iC(t′) dt′

(4.65)

with iC = i and vC = vS in Figure 4.27, we can express the capacitor current as

iC(t) = C
dvC(t)

dt

= C
d

dt
(A cos ωt)

= −C(Aω sin ωt)

= ωCA cos
(
ωt + π

2

)
(4.66)
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so that, in phasor form,

VZ( jω) = A∠0

I( jω) = ωCA∠π

2

(4.67)

The relationship between the phasor voltage and current is shown in Figure 4.30. The
impedance of the ideal capacitor ZC( jω) is therefore defined as follows:

ZC( jω) = VZ( jω)

I( jω)
= 1

ωC
∠−π

2

= −j

ωC
= 1

jωC

Impedance of
a capacitor

(4.68)

where we have used the fact that 1/j = e−jπ/2 = −j. Thus, the impedance of a
capacitor is also a frequency-dependent complex quantity, with the impedance of
the capacitor varying as an inverse function of frequency; and so a capacitor acts
as a short circuit at high frequencies, whereas it behaves more as an open circuit at
low frequencies. Figure 4.31 depicts ZC( jω) in the complex plane, alongside ZR( jω)

and ZL( jω).

Imaginary

Real

� ⁄ 2

VI

Figure 4.30 Phasor
voltage and current
relationships for a
capacitor

ZR = R

ZL = jωL

ZC = 1 
jωC

ωL

ZL

Im

Re

R

ZC

ZR

1
ωC

–

π
2

π
2

–

Figure 4.31 Impedances of
R, L, and C in the complex
plane

The impedance parameter defined in this section is extremely useful in solving
AC circuit analysis problems, because it will make it possible to take advantage of
most of the network theorems developed for DC circuits by replacing resistances with
complex-valued impedances. Examples 4.12 to 4.14 illustrate how branches contain-
ing series and parallel elements may be reduced to a single equivalent impedance,
much in the same way as resistive circuits were reduced to equivalent forms. It is
important to emphasize that although the impedance of simple circuit elements is
either purely real (for resistors) or purely imaginary (for capacitors and inductors),
the general definition of impedance for an arbitrary circuit must allow for the possi-
bility of having both a real and an imaginary part, since practical circuits are made
up of more or less complex interconnections of different circuit elements. In its most
general form, the impedance of a circuit element is defined as the sum of a real part
and an imaginary part

Z( jω) = R( jω) + j X ( jω) (4.69)

where R is the real part of the impedence, sometimes called the AC resistance
and X is the imaginary part of the impedence, also called the reactance. The fre-
quency dependence of R and X has been indicated explicitly, since it is possible for a
circuit to have a frequency-dependent resistance. Note that the reactances of equations
4.64 and 4.68 have units of ohms, and that inductive reactance is always positive,
while capacitive reactance is always negative. Examples 4.12 to 4.14 illustrate how
a complex impedance containing both real and imaginary parts arises in a circuit.
Impedance is another useful mathematical tool that is convenient in solving AC cir-
cuits, but has no real physical significance. Please note that the impedance Z( jω) is
not a phasor, but just a complex number.
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EXAMPLE 4.12 Impedance of a Practical Capacitor➲LO4
Problem

A practical capacitor can be modeled by an ideal capacitor in parallel with a resistor. The
parallel resistance represents leakage losses in the capacitor and is usually quite large. Find
the impedance of a practical capacitor at the radian frequency ω = 377 rad/s (60 Hz).
How will the impedance change if the capacitor is used at a much higher frequency, say,
800 kHz?

Solution

Known Quantities: Figure 4.32; C1 = 0.001 μF = 1 × 10−9 F; R1 = 1 M�.

C1R1

Z1

Figure 4.32

Find: The equivalent impedance of the parallel circuit Z1.

Analysis: To determine the equivalent impedance, we combine the two impedances in
parallel.

Z1 = R1

∥∥∥∥ 1

jωC1
= R1(1/jωC1)

R1 + 1/jωC1
= R1

1 + jωC1R1

Substituting numerical values, we find

Z1(ω = 377) = 106

1 + j377 × 106 × 10−9
= 106

1 + j0.377

= 9.3571 × 105∠(−0.3605) �

The impedance of the capacitor alone at this frequency would be

ZC1(ω = 377) = 1

j377 × 10−9
= 2.6525 × 106∠

(
−π

2

)
�

You can easily see that the parallel impedance Z1 is quite different from the impedance of the
capacitor alone, ZC1.

If the frequency is increased to 800 kHz, or 1600π × 103 rad/s—a radio frequency in the
AM range—we can recompute the impedance to be

Z1(ω = 1600π × 103) = 106

1 + j1,600π × 103 × 10−9 × 106

= 106

1 + j1,600π
= 198.9∠(−1.5706) �

The impedance of the capacitor alone at this frequency would be

ZC1(ω = 1,600π × 103) = 1

j1,600π × 103 × 10−9
= 198.9 ∠

(
−π

2

)
�

Now, the impedances Z1 and ZC1 are virtually identical (note that π/2 = 1.5708 rad). Thus,
the effect of the parallel resistance is negligible at high frequencies.

Comments: The effect of the parallel resistance at the lower frequency (corresponding to
the well-known 60-Hz AC power frequency) is significant: The effective impedance of the
practical capacitor is substantially different from that of the ideal capacitor. On the other



January 8, 2008 11:10 Chap04 Sheet number 35 Page number 163 magenta black

Part I Circuits 163

hand, at much higher frequency, the parallel resistance has an impedance so much larger
than that of the capacitor that it effectively acts as an open circuit, and there is no difference
between the ideal and practical capacitor impedances. This example suggests that the behavior
of a circuit element depends very much on the frequency of the voltages and currents in the
circuit.

EXAMPLE 4.13 Impedance of a Practical Inductor

➲

LO4
Problem

A practical inductor can be modeled by an ideal inductor in series with a resistor. Figure 4.33
shows a toroidal (doughnut-shaped) inductor. The series resistance represents the resistance
of the coil wire and is usually small. Find the range of frequencies over which the impedance
of this practical inductor is largely inductive (i.e., due to the inductance in the circuit). We
shall consider the impedance to be inductive if the impedance of the inductor in the circuit of
Figure 4.34 is at least 10 times as large as that of the resistor.

Leads

Toroid

n turns

0.25 cm

0.5 cm

Cross section

a

b

Figure 4.33 A practical
inductor

Solution

Known Quantities: L = 0.098 H; lead length = lc = 2 × 10 cm; n = 250 turns; wire is
30-gauge. Resistance of 30-gauge wire = 0.344 �/m.

Find: The range of frequencies over which the practical inductor acts nearly as an ideal
inductor.

Analysis: We first determine the equivalent resistance of the wire used in the practical inductor,
using the cross section as an indication of the wire length lw in the coil:

lw = 250(2 × 0.25 + 2 × 0.5) = 375 cm

l = total length = lw + lc = 375 + 20 = 395 cm

The total resistance is therefore

R = 0.344 �/m × 0.395 m = 0.136 �

Thus, we wish to determine the range of radian frequencies, ω, over which the magnitude of
jωL is greater than 10 × 0.136 �:

ωL > 1.36 or ω >
1.36

L
= 1.36

0.098
= 1.39 rad/s

Alternatively, the range is f = ω/2π > 0.22 Hz.

L

R

a

b

Figure 4.34
Comments: Note how the resistance of the coil wire is relatively insignificant. This is true
because the inductor is rather large; wire resistance can become significant for very small
inductance values. At high frequencies, a capacitance should be added to the model because
of the effect of the insulator separating the coil wires.

EXAMPLE 4.14 Impedance of a More Complex Circuit

➲

LO4

Problem

Find the equivalent impedance of the circuit shown in Figure 4.35.
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Solution

CR2

ZEQ

L

R1

10 mH

10 mF

100 Ω

50 Ω

Figure 4.35

Known Quantities: ω = 104 rad/s; R1 = 100 �; L = 10 mH; R2 = 50 �; C = 10 μF.

Find: The equivalent impedance of the series-parallel circuit.

Analysis: We determine first the parallel impedance Z|| of the R2-C circuit.

Z|| = R2

∥∥∥∥ 1

jωC
= R2(1/jωC)

R2 + 1/jωC
= R2

1 + jωCR2

= 50

1 + j104 × 10 × 10−6 × 50
= 50

1 + j5
= 1.92 − j9.62

= 9.81∠(−1.3734) �

Next, we determine the equivalent impedance Zeq:

Zeq = R1 + jωL + Z|| = 100 + j104 × 10−2 + 1.92 − j9.62

= 101.92 + j90.38 = 136.2∠0.723 �

Is this impedance inductive or capacitive?

Comments: At the frequency used in this example, the circuit has an inductive impedance,
since the reactance is positive (or, alternatively, the phase angle is positive).

CHECK YOUR UNDERSTANDING

Compute the equivalent impedance of the circuit of Example 4.14 for ω = 1,000 and
100,000 rad/s.
Calculate the equivalent series capacitance of the parallel R2C circuit of Example 4.14 at the
frequency ω = 10 rad/s.

Answers:Z(1,000)=140−j10;Z(100,000)=100+j999;X||=0.25;C=0.4F

Admittance

In Chapter 3, it was suggested that the solution of certain circuit analysis problems
was handled more easily in terms of conductances than resistances. This is true, for
example, when one is using node analysis, or in circuits with many parallel elements,
since conductances in parallel add as resistors in series do. In AC circuit analysis,
an analogous quantity may be defined—the reciprocal of complex impedance. Just as
the conductance G of a resistive element was defined as the inverse of the resistance,
the admittance of a branch is defined as follows:

➲LO4 Y = 1

Z
S (4.70)

Note immediately that whenever Z is purely real, that is, when Z = R + j0,
the admittance Y is identical to the conductance G. In general, however, Y is the
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complex number ➲

LO4Y = G + jB (4.71)

where G is called the AC conductance and B is called the susceptance; the latter
plays a role analogous to that of reactance in the definition of impedance. Clearly, G
and B are related to R and X . However, this relationship is not as simple as an inverse.
Let Z = R + jX be an arbitrary impedance. Then the corresponding admittance is

Y = 1

Z
= 1

R + jX
(4.72)

To express Y in the form Y = G + jB, we multiply numerator and denominator by
R − jX :

Y = 1

R + jX

R − jX

R − jX
= R − jX

R2 + X 2

= R

R2 + X 2
− j

X

R2 + X 2

(4.73)

and conclude that

G = R

R2 + X 2

B = −X

R2 + X 2

(4.74)

Notice in particular that G is not the reciprocal of R in the general case!
Example 4.15 illustrates the determination of Y for some common circuits.

EXAMPLE 4.15 Admittance

➲

LO4
Problem

Find the equivalent admittance of the two circuits shown in Figure 4.36.

Yab

R1

L

(a)

Yab C

(b)

R2

a

b

a

b

Figure 4.36

Solution

Known Quantities: ω = 2π × 103 rad/s; R1 = 50 �; L = 16 mH; R2 = 100 �; C = 3 μF.

Find: The equivalent admittance of the two circuits.

Analysis: Circuit (a): First, determine the equivalent impedance of the circuit:

Zab = R1 + jωL

Then compute the inverse of Zab to obtain the admittance:

Yab = 1

R1 + jωL
= R1 − jωL

R2
1 + (ωL)2

Substituting numerical values gives

Yab = 1

50 + j2π × 103 × 0.016
= 1

50 + j100.5
= 3.968 × 10−3 − j7.976 × 10−3 S
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Circuit (b): First, determine the equivalent impedance of the circuit:

Zab = R2

∥∥∥∥ 1

jωC
= R2

1 + jωR2C

Then compute the inverse of Zab to obtain the admittance:

Yab = 1 + jωR2C

R2
= 1

R2
+ jωC = 0.01 + j0.019 S

Comments: Note that the units of admittance are siemens (S), that is, the same as the units
of conductance.

CHECK YOUR UNDERSTANDING

Compute the equivalent admittance of the circuit of Example 4.14.

Answer:YEQ=5.492×10−3−j4.871×10−3

Conclusion

In this chapter we have introduced concepts and tools useful in the analysis of AC circuits.
The importance of AC circuit analysis cannot be overemphasized, for a number of reasons.
First, circuits made up of resistors, inductors, and capacitors constitute reasonable models
for more complex devices, such as transformers, electric motors, and electronic amplifiers.
Second, sinusoidal signals are ever-present in the analysis of many physical systems, not
just circuits. The skills developed in Chapter 4 will be called upon in the remainder of the
book. In particular, they form the basis of Chapters 5 and 6. You should have achieved the
following objectives, upon completion of this chapter.

1. Compute currents, voltages, and energy stored in capacitors and inductors. In addition
to elements that dissipate electric power, there exist electric energy storage elements, the
capacitor and the inductor.

2. Calculate the average and root-mean-square value of an arbitrary (periodic) signal.
Energy storage elements are important whenever the excitation voltages and currents in a
circuit are time-dependent. Average and rms values describe two important properties of
time-dependent signals.

3. Write the differential equation(s) for circuits containing inductors and capacitors.
Circuits excited by time-dependent sources and containing energy storage (dynamic)
circuit elements give rise to differential equations.

4. Convert time-domain sinusoidal voltages and currents to phasor notation, and vice
versa, and represent circuits using impedances. For the special case of sinusoidal
sources, one can use phasor representation to convert sinusoidal voltages and currents
into complex phasors, and use the impedance concept to represent circuit
elements.



January 8, 2008 11:10 Chap04 Sheet number 39 Page number 167 magenta black

Part I Circuits 167

HOMEWORK PROBLEMS

Section 4.1 Energy Storage Circuit
Elements

4.1 The current through a 0.5-H inductor is given by
iL = 2 cos(377t + π/6). Write the expression for the
voltage across the inductor.

4.2 The voltage across a 100-μF capacitor takes the
following values. Calculate the expression for the
current through the capacitor in each case.

a. vC(t) = 40 cos(20t − π/2) V

b. vC(t) = 20 sin 100t V

c. vC(t) = −60 sin(80t + π/6) V

d. vC(t) = 30 cos(100t + π/4) V

4.3 The current through a 250-mH inductor takes the
following values. Calculate the expression for the
voltage across the inductor in each case.

a. iL(t) = 5 sin 25t A

b. iL(t) = −10 cos 50t A

c. iL(t) = 25 cos(100t + π/3) A

d. iL(t) = 20 sin(10t − π/12) A

4.4 In the circuit shown in Figure P4.4, let

i(t) =

⎧⎪⎨
⎪⎩

0 for − ∞ < t < 0

t for 0 ≤ t < 10 s

10 for 10 s ≤ t < ∞
Find the energy stored in the inductor for all time.

1 Ω

2 Hi(t)

Figure P4.4

4.5 With reference to Problem 4.4, find the energy
delivered by the source for all time.

4.6 In the circuit shown in Figure P4.4 let

i(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for − ∞ < t < 0

t for 0 ≤ t < 10 s

20 − t for 10 ≤ t < 20 s

0 for 20 s ≤ t < ∞
Find

a. The energy stored in the inductor for all time

b. The energy delivered by the source for all time

4.7 In the circuit shown in Figure P4.7, let

v(t) =

⎧⎪⎨
⎪⎩

0 for − ∞ < t < 0

t for 0 ≤ t < 10 s

10 for 10 s ≤ t < ∞

Find the energy stored in the capacitor for all time.

2 Ωv(t) 0.1 F+
_

Figure P4.7

4.8 With reference to Problem 4.7, find the energy
delivered by the source for all time.

4.9 In the circuit shown in Figure P4.7 let

v(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for − ∞ < t < 0

t for 0 ≤ t < 10 s

20 − t for 10 ≤ t < 20 s

0 for 20 s ≤ t < ∞

Find

a. The energy stored in the capacitor for all time

b. The energy delivered by the source for all time

4.10 Find the energy stored in each capacitor and
inductor, under steady-state conditions, in the circuit
shown in Figure P4.10.

2 Ω

1 F

4 Ω 8 Ω
6 Ω

2 F

3 F

6 V

2 H

+
−

Figure P4.10

4.11 Find the energy stored in each capacitor and
inductor, under steady-state conditions, in the circuit
shown in Figure P4.11.
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3 Ω

2 F

6 Ω

12 V
2 H

1 F

1 H

3 Ω 12 V

Figure P4.11

4.12 The plot of time-dependent voltage is shown in
Figure P4.12. The waveform is piecewise continuous.
If this is the voltage across a capacitor and C = 80 μF,
determine the current through the capacitor. How can
current flow “through” a capacitor?

v(t) (V)

t (ms)

20

10

–10

5 10 15

Figure P4.12

4.13 The plot of a time-dependent voltage is shown in
Figure P4.12. The waveform is piecewise continuous.
If this is the voltage across an inductor L = 35 mH,
determine the current through the inductor. Assume the
initial current is iL(0) = 0.

4.14 The voltage across an inductor plotted as a function
of time is shown in Figure P4.14. If L = 0.75 mH,
determine the current through the inductor at
t = 15 μs.

v(t) (V)

t (ms)

3.5

Ð1.9

5 10 15

Figure P4.14

4.15 If the waveform shown in Figure P4.15 is the
voltage across a capacitor plotted as a function of time
with

vPK = 20 V T = 40 μs C = 680nF

determine and plot the waveform for the current
through the capacitor as a function of time.

t

vPK

T 2T

Figure P4.15

4.16 If the current through a 16-μH inductor is zero at
t = 0 and the voltage across the inductor (shown in
Figure P4.16) is

vL(f ) =

⎧⎪⎨
⎪⎩

0 t < 0

3t2 0 < t < 20 μs

1.2 nV t > 20 μs

determine the current through the inductor at
t = 30 μs.

v(t) (nV)

t (ms)

1.2

20 40

Figure P4.16

4.17 Determine and plot as a function of time the
current through a component if the voltage across it
has the waveform shown in Figure P4.17 and the
component is a

a. Resistor R = 7 �

b. Capacitor C = 0.5 μF

c. Inductor L = 7 mH

v(t) (V)

t (ms)

10

5

15

5 10

Figure P4.17

4.18 If the plots shown in Figure P4.18 are the voltage
across and the current through an ideal capacitor,
determine the capacitance.
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v(t) (V)

t (ms)

10

–10

5

10

15

5 µs
i(t) (A)

t (ms)

12

–12

5

10

15

Figure P4.18

4.19 If the plots shown in Figure P4.19 are the voltage
across and the current through an ideal inductor,
determine the inductance.

i(t) (A)

t (ms)

2

1

3

5 1510

v(t) (V)

t (ms)

2

1

5 1510

Figure P4.19

4.20 The voltage across and the current through a
capacitor are shown in Figure P4.20. Determine the
value of the capacitance.

v(t) (V)

t (ms)

10

5

15

5 10

ic(t) (mA)

t (ms)

1.5

5 10

Figure P4.20

4.21 The voltage across and the current through a
capacitor are shown in Figure P4.21. Determine the
value of the capacitance.

vc (v)

t (ms)

7

5

ic (mA)

t (ms)

3

5

Figure P4.21

4.22 The voltage v(t) shown in Figure P4.22 is applied
to a 10-mH inductor. Find the current through the
inductor. Assume iL(0) = 0 A.

1 2 3 t (s)
0

5 V 

v (t)
L

−5 V 

4 5

Figure P4.22

4.23 The current waveform shown in Figure P4.23 flows
through a 2-H inductor. Plot the inductor voltage vL(t).

0

5

10

15

–5

–10

–15

1 2

3

4 5 6 7 8 t  (ms)

i(t) (mA)

Figure P4.23

4.24 The voltage waveform shown in Figure P4.24
appears across a 100-mH inductor and a 500-μF
capacitor. Plot the capacitor and inductor currents,
iC(t) and iL(t), assuming iL(0) = 0 A.
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0

5

10

15

1 2 3 4 5 6

v(t) (V)

Figure P4.24

4.25 In the circuit shown in Figure P4.25, let

i(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for − ∞ < t < 0
t for 0 ≤ t < 1 s
−(t − 2) for 1 s ≤ t < 2 s
0 for 2 s ≤ t < ∞

Find the energy stored in the inductor for all time.

1 Ω

i(t) 2 H 

Figure P4.25

4.26 In the circuit shown in Figure P4.26, let

v(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for − ∞ < t < 0
2t for 0 ≤ t < 1 s
−(2t − 4) for 1 ≤ t < 2 s
0 for 2 s ≤ t < ∞

Find the energy stored in the capacitor for all time.

v(t) 0.1 F 2 Ω–
+

Figure P4.26

4.27 Use the defining law for a capacitor to find the
current iC(t) corresponding to the voltage shown in
Figure P4.27. Sketch your result.

vC(t)

t (s)

+

vC(t)

iC(t)

0.01 F

15 V

0 0.5 1 1.5 2

_

Figure P4.27

4.28 Use the defining law for an inductor to find the
current iL(t) corresponding to the voltage shown in
Figure P4.28. Sketch your result.

t (s)

vL(t)

0 0.40.2 0.30.1

vL

vL t( ) = 0.5 − 0.5e−t/0.02

t( ) = 0.5−0.5e(t−0.3)/0.02

+

_

vL(t)

iL(t)

1 H

Figure P4.28

Section 4.2 Time-Dependent Signals
Sources

4.29 Find the average and rms value of x(t).

x(t) = 2 cos(ωt) + 2.5

4.30 A controlled rectifier circuit is generating the
waveform of Figure P4.30 starting from a sinusoidal
voltage of 110 V rms. Find the average and rms
voltage.

150

100

50

0

0 1 2 3
Radians

Output waveform of controlled rectifier

V
ol

ts

�
�

4 5 6

Ð50

Ð100

Ð150

Figure P4.30
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4.31 With reference to Problem 4.30, find the angle θ

that corresponds to delivering exactly one-half of the
total available power in the waveform to a resistive
load.

4.32 Find the ratio between average and rms value of
the waveform of Figure P4.32.

v(t) (V)

t (ms)

1

0 2 4 6

...

–9

Figure P4.32

4.33 Given the current waveform shown in
Figure P4.33, find the power dissipated by a 1-�
resistor.

i(t) (A)

t (s)

10

π 2π 3π0

10 sin2t

Figure P4.33

4.34 Find the ratio between average and rms value of
the waveform of Figure P4.34.

v(t)

Vm

t0 τ

T

Figure P4.34

4.35 Find the rms value of the waveform shown in
Figure P4.35.

4.36 Determine the rms (or effective) value of

v(t) = VDC + vAC = 50 + 70.7 cos(377t) V

i(t) (A)

t

2

–T
2

–T
4

T
4

T
2

3T
4

T

–2

Figure P4.35

4.37 Find the phasor form of the following functions:

a. v(t) = 155 cos (377t − 25◦) V

b. v(t) = 5 sin (1,000t − 40◦) V

c. i(t) = 10 cos (10t + 63◦) + 15 cos (10t − 42◦) A

d. i(t) = 460 cos (500π t − 25◦)
− 220 sin (500π t + 15◦) A

4.38 Convert the following complex numbers to polar
form:

a. 4 + j4

b. −3 + j4

c. j + 2 − j4 − 3

4.39 Convert the following to polar form and compute
the product. Compare the result with that obtained
using rectangular form.

a. (50 + j10) (4 + j8)

b. (j2 − 2) (4 + j5) (2 +j7)

4.40 Complete the following exercises in complex
arithmetic.

a. Find the complex conjugate of (4 +j4), (2 −j8),
(−5 + j2).

b. Convert the following to polar form by multiplying
the numerator and denominator by the complex
conjugate of the denominator and then performing
the conversion to polar coordinates:

1 + j7

4 + j4
,

j4

2 − j8
,

1

−5 + j2
.

c. Repeat part b but this time convert to polar
coordinates before performing the division.

4.41 Convert the following expressions to
real-imaginary form: jj , e jπ .

4.42 Given the two voltages v1(t) = 10 cos(ωt + 30◦)
and v2(t) = 20 cos(ωt + 60◦), find v(t) = v1(t)+v2(t)
using

a. Trigonometric identities.

b. Phasors.
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Section 4.4: Phasor Solution of Circuits
with Sinusoidal Excitation

4.43 If the current through and the voltage across a
component in an electric circuit are

i(t) = 17 cos(ωt − π/12) mA

v(t) = 3.5 cos(ωt + 1.309) V

where ω = 628.3 rad/s, determine

a. Whether the component is a resistor, capacitor, or
inductor.

b. The value of the component in ohms, farads, or
henrys.

4.44 Describe the sinusoidal waveform shown in
Figure P4.44, using time-dependent and phasor
notation.

170

v (wt) (V)

wt (rad)π
2

π
2

–170

–

Figure P4.44

4.45 Describe the sinusoidal waveform shown in
Figure P4.45, using time-dependent and phasor
notation.

8
i (wt) (mA)

wt (rad)–π π

–8

T = 4 ms

π
2

π
2

–

Figure P4.45

4.46 The current through and the voltage across an
electrical component are

i(t) = Io cos
(
ωt + π

4

)
v(t) = Vo cos ωt

where

Io = 3 mA Vo = 700 mV ω = 6.283 rad/s

a. Is the component inductive or capacitive?

b. Plot the instantaneous power p(t) as a function of
ωt over the range 0 < ωt < 2π .

c. Determine the average power dissipated as heat in
the component.

d. Repeat parts (b) and (c) if the phase angle of the
current is changed to 0◦.

4.47 Determine the equivalent impedance in the circuit
shown in Figure P4.47:

vs(t) = 7 cos
(

3,000t + π

6

)
V

R1 = 2.3 k� R2 = 1.1 k�

L = 190 mH C = 55 nF

R1

vS

L

R2

C

+

_
+
_

Figure P4.47

4.48 Determine the equivalent impedance in the circuit
shown in Figure P4.47:

vs(t) = 636 cos
(

3,000t + π

12

)
V

R1 = 3.3 k� R2 = 22 k�

L = 1.90 H C = 6.8 nF

4.49 In the circuit of Figure P4.49,

is(t) = Io cos
(
ωt + π

6

)
Io = 13 mA ω = 1,000 rad/s

C = 0.5 μF

a. State, using phasor notation, the source current.

b. Determine the impedance of the capacitor.

c. Using phasor notation only and showing all work,
determine the voltage across the capacitor,
including its polarity.

Is C

Figure P4.49

4.50 Determine i3(t) in the circuit shown in
Figure P4.50 if

i1(t) = 141.4 cos(ωt + 2.356) mA

i2(t) = 50 sin(ωt − 0.927) mA

ω = 377 rad/s
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Z2

Z1

Z3

i1 i2 i3

VS

+

_
+
_

Figure P4.50

4.51 Determine the current through Z3 in the circuit of
Figure P4.51.

vs1 = vs2 = 170 cos(377t) V

Z1 = 5.9∠0.122 �

Z2 = 2.3∠0 �

Z3 = 17∠0.192 �

Z1

Z2

Z3

VS1

+

_

VS2

+

_
+
_

+
_

Figure P4.51

4.52 Determine the frequency so that the current Ii and
the voltage Vo in the circuit of of Figure P4.52 are in
phase.

Zs = 13,000 + jω3 �

R = 120 �

L = 19 mH C = 220 pF

RZs

Vi

Vo

L

CC

Ii

+
_

+

_

Figure P4.52

4.53 The coil resistor in series with L models the internal
losses of an inductor in the circuit of Figure P4.53.
Determine the current supplied by the source if

vs(t) = Vo cos(ωt + 0)

Vo = 10 V ω = 6 M rad/s Rs = 50 �

Rc = 40 � L = 20 μH C = 1.25 nF

RcRs

L
CC

vS

+

_
+
_

Figure P4.53

4.54 Using phasor techniques, solve for the current in
the circuit shown in Figure P4.54.

3 H3 Ω

vs(t) = 12 cos 3t V +
_ 1/3 F

i

Figure P4.54

4.55 Using phasor techniques, solve for the voltage v in
the circuit shown in Figure P4.55.

3 Ωis(t) = 10 cos 2t A 1/3 F3 H

+
v(t)
–

Figure P4.55

4.56 Solve for I1 in the circuit shown in Figure P4.56.

2 ΩI = 10∠ A –j4 Ω

I1 I2

π
8

–

Figure P4.56

4.57 Solve for V2 in the circuit shown in Figure P4.57.
Assume ω = 2. 6 H12 Ω

V = 25∠0 V

V1

+
_

+ –

6 Ω V2

+

–

Figure P4.57

4.58 With reference to Problem 4.55, find the value of ω

for which the current through the resistor is maximum.

4.59 Find the current through the resistor in the circuit
shown in Figure P4.59.
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iS(t) =1 cos (200πt)

100 Ω100 mF

iR(t)

iS(t)

Figure P4.59

4.60 Find vout(t) for the circuit shown in Figure P4.60.

+

vout

–

10∠    mA XL = 1 kΩ

XC = 10 kΩ

π
4

Figure P4.60

4.61 For the circuit shown in Figure P4.61, find the
impedance Z , given ω = 4 rad/s.

1/8 F

1/4 H

2 ΩZ

Figure P4.61

4.62 Find the sinusoidal steady-state outputs for each of
the circuits shown in Figure P4.62.

_

+

vout(t)
10 mF

(a) AiS (t) = 10 cos100pt

iS (t)

Figure P4.62 (Continued )

_

+

vout (t)
0.1 H 

(b)

iS (t)

iS(t) =

_

++

_

10

(c) vS(t) = 50

vS (t)

20 sin10t A

sin100t V

vout (t)
mF

1 mH

~

Figure P4.62

4.63 Determine the voltage across the inductor in the
circuit shown in Figure P4.63.

VL(t)

+

_

vS (t) = 24 cos(1,000t)

3 mH

4 Ω

+
~−

Figure P4.63

4.64 Determine the current through the capacitor in the
circuit shown in Figure P4.64.

100 μF

iS (t) = 3 cos(100pt)
iR (t)

100 Ω

Figure P4.64

4.65 For the circuit shown in the Figure P4.65, find the
frequency that causes the equivalent impedance to
appear purely resistive.
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1 mF

1 mH 15 Ω
Zeq

Figure P4.65

4.66

a. Find the equivalent impedance ZL shown in
Figure P4.66(a), as seen by the source, if the
frequency is 377 rad/s.

b. If we wanted the source to see the load as
completely resistive, what value of capacitance
should we place between the terminals a and b as
shown in Figure P4.66(b)? Hint: Find an expression
for the equivalent impedance ZL, and then find C so
that the phase angle of the impedance is zero.

vS

vS

a

b

1 Ω

13.26 mH

ZL

ZL

a

b

13.26 mH C = ?

1 Ω

(a)

(b)

+~–

+~–

Figure P4.66

c. What is the actual impedance that the source sees
with the capacitor included in the circuit?

4.67 The capacitor model we have used so far has been
treated as an ideal circuit element. A more accurate
model for a capacitor is shown in Figure P4.67. The
ideal capacitor, C, has a large “leakage” resistance, RC ,
in parallel with it. RC models the leakage current
through the capacitor. R1 and R2 represent the lead
wire resistances, and L1 and L2 represent the lead wire
inductances.

a. If C = 1 μF, RC = 100 M�, R1 = R2 = 1 μ� and
L1 = L2 = 0.1 μH, find the equivalent impedance
seen at the terminals a and b as a function of
frequency ω.

b. Find the range of frequencies for which Zab is
capacitive, i.e., Xab > 10|Rab.

Hint: Assume that RC is is much greater than 1/wC so that
you can replace RC by an infinite resistance in part b.

a

b

L1

R1

RC

R2

L2

C

Figure P4.67
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