
CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 1 Page number 189 magenta black

189

c h a p t e r

4
Combinational-Circuit Building

Blocks

Chapter Objectives

In this chapter you will learn about:

• Commonly used combinational subcircuits

• Multiplexers, which can be used for selection of signals and for implementation
of general logic functions

• Circuits used for encoding, decoding, and code-conversion purposes

• Key Verilog constructs used to define combinational circuits

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 2 Page number 190 magenta black

190 C H A P T E R 4 • Combinational-Circuit Building Blocks

Previous chapters have introduced the basic techniques for design of logic circuits. In practice, a few types
of logic circuits are often used as building blocks in larger designs. This chapter discusses a number of these
blocks and gives examples of their use. The chapter also includes a major section on Verilog, which describes
several key features of the language.

4.1 Multiplexers

Multiplexers were introduced briefly in Chapter 2. A multiplexer circuit has a number
of data inputs, one or more select inputs, and one output. It passes the signal value on
one of the data inputs to the output. The data input is selected by the values of the select
inputs. Figure 4.1 shows a 2-to-1 multiplexer. Part (a) gives the symbol commonly used.
The select input, s, chooses as the output of the multiplexer either input w0 or w1. The
multiplexer’s functionality can be described in the form of a truth table as shown in part (b)

of the figure. Part (c) gives a sum-of-products implementation of the 2-to-1 multiplexer.
Part (d) illustrates how it can be constructed with transmission gates which are discussed
in Appendix B.

Figure 4.2a depicts a larger multiplexer with four data inputs, w0, . . . , w3, and two
select inputs, s1 and s0. As shown in the truth table in part (b) of the figure, the two-bit
number represented by s1s0 selects one of the data inputs as the output of the multiplexer.

(a) Graphical symbol

f

s

w0

w1

0

1

(b) Truth table

0
1

f

fs

w0

w1

(c) Sum-of-products circuit

s

w0

w1

f

s

w0

w1

(d) Circuit with transmission gates

Figure 4.1 A 2-to-1 multiplexer.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 3 Page number 191 magenta black

4.1 Multiplexers 191

(a) Graphical symbol

f

s1

w0
w1

00

01

(b) Truth table

w0
w1

s0

w2
w3

10

11

0
0
1
1

1
0
1

fs1

0

s0

w2
w3

f

(c) Circuit

s1

w0

w1

s0

w2

w3

Figure 4.2 A 4-to-1 multiplexer.

A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 4.2c. It
realizes the multiplexer function

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n, is an integer power of two. A multiplexer that has n data inputs,
w0, . . . , wn−1, requires � log2n � select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three
2-to-1 multiplexers as illustrated in Figure 4.3. Figure 4.4 shows how a 16-to-1 multiplexer
is constructed with five 4-to-1 multiplexers.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 4 Page number 192 magenta black

192 C H A P T E R 4 • Combinational-Circuit Building Blocks

s0

w0

w1

0

1

w2

w3

0

1

f
0

1

s1

Figure 4.3 Using 2-to-1 multiplexers to build a 4-to-1
multiplexer.

w8

w11

s1

w0

s0

w3

w4

w7

w12

w15

s3

s2

f

Figure 4.4 A 16-to-1 multiplexer.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 5 Page number 193 magenta black

4.1 Multiplexers 193

x1 0

1

x2 0

1

s

y1

y2

x1

x2

y1

y2

(a) A 2x2 crossbar switch

(b) Implementation using multiplexers

s

Figure 4.5 A practical application of multiplexers.

Example 4.1Figure 4.5 shows a circuit that has two inputs, x1 and x2, and two outputs, y1 and y2. As
indicated by the blue lines, the function of the circuit is to allow either of its inputs to be
connected to either of its outputs, under the control of another input, s. A circuit that has
n inputs and k outputs, whose sole function is to provide a capability to connect any input
to any output, is usually referred to as an n×k crossbar switch. Crossbars of various sizes
can be created, with different numbers of inputs and outputs. When there are two inputs
and two outputs, it is called a 2×2 crossbar.

Figure 4.5b shows how the 2×2 crossbar can be implemented using 2-to-1 multiplexers.
The multiplexer select inputs are controlled by the signal s. If s = 0, the crossbar connects
x1 to y1 and x2 to y2, while if s = 1, the crossbar connects x1 to y2 and x2 to y1. Crossbar
switches are useful in many practical applications in which it is necessary to be able to
connect one set of wires to another set of wires, where the connection pattern changes from
time to time.

4.1.1 Synthesis of Logic Functions Using Multiplexers

Multiplexers are useful in many practical applications, such as the one described above.
They can also be used in a more general way to synthesize logic functions. Consider the

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 6 Page number 194 magenta black

194 C H A P T E R 4 • Combinational-Circuit Building Blocks

(a) Implementation using a 4-to-1 multiplexer

f

w1

0
1

0
1

w2

1
0

0
0
1
1

1
0
1

fw1

0

w2

1
0

(b) Modified truth table

0
1

0
0
1
1

1
0
1

fw1

0

w2

1
0

f
w2

w1

0
1

fw1

w2

w2

(c) Circuit

Figure 4.6 Synthesis of a logic function using mutiplexers.

example in Figure 4.6a. The truth table defines the function f = w1 ⊕ w2. This function
can be implemented by a 4-to-1 multiplexer in which the values of f in each row of the
truth table are connected as constants to the multiplexer data inputs. The multiplexer select
inputs are driven by w1 and w2. Thus for each valuation of w1w2, the output f is equal to
the function value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 4.6b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
w1 in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value of f for each value of w1. When w1 = 0, f has the same
value as input w2, and when w1 = 1, f has the value of w2. The circuit that implements
this truth table is given in Figure 4.6c. This procedure can be applied to synthesize a circuit
that implements any logic function.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 7 Page number 195 magenta black

4.1 Multiplexers 195

w3

w3

f

w1

0

w2

1

(a) Modified truth table

(b) Circuit

00
0
1
1

1
0
1

fw1

0

w2

1

0 0

0 1

1 0

1 1

0

0

0

1

0 0

0 1

1 0

1 1

0

1

1

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

w3

Figure 4.7 Implementation of the three-input majority function
using a 4-to-1 multiplexer.

Example 4.2Figure 4.7a gives the truth table for the three-input majority function, and it shows how the
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two
of the three inputs may be chosen as the multiplexer select inputs. We have chosen w1 and
w2 for this purpose, resulting in the circuit in Figure 4.7b.

Example 4.3Figure 4.8a indicates how the function f = w1 ⊕ w2 ⊕ w3 can be implemented using 2-to-1
multiplexers. When w1 = 0, f is equal to the XOR of w2 and w3, and when w1 = 1, f
is the XNOR of w2 and w3. Part (b) of the figure gives a corresponding circuit. The left
multiplexer in the circuit produces w2 ⊕ w3, using the result from Figure 4.6, and the right
multiplexer uses the value of w1 to select either w2 ⊕ w3 or its complement. Note that we
could have derived this circuit directly by writing the function as f = (w2 ⊕ w3) ⊕ w1.

Figure 4.9 gives an implementation of the three-input XOR function using a 4-to-1
multiplexer. Choosing w1 and w2 for the select inputs results in the circuit shown.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 8 Page number 196 magenta black

196 C H A P T E R 4 • Combinational-Circuit Building Blocks

(a) Truth table

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w
�

w
�

w
�

f

0

0

0

0

1

1

1

1

w
�

w
�

⊕

w
�

w
�

⊕

f

w
�

w
�

(b) Circuit

w
�

Figure 4.8 Three-input XOR implemented with 2-to-1 multiplexers.

f

w1

w2

(a) Truth table (b) Circuit

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

w3

w3

w3

w3

w3

Figure 4.9 Three-input XOR implemented with a 4-to-1 multiplexer.

4.1.2 Multiplexer Synthesis Using Shannon’s Expansion

Figures 4.6 through 4.9 illustrate how truth tables can be interpreted to implement logic
functions using multiplexers. In each case the inputs to the multiplexers are the constants
0 and 1, or some variable or its complement. Besides using such simple inputs, it is
possible to connect more complex circuits as inputs to a multiplexer, allowing functions to
be synthesized using a combination of multiplexers and other logic gates. Suppose that we
want to implement the three-input majority function in Figure 4.7 using a 2-to-1 multiplexer

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 9 Page number 197 magenta black

4.1 Multiplexers 197

(a) Truth table

0 0

0 1

1 0

1 1

0

0

0

1

0 0

0 1

1 0

1 1

0

1

1

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

(b) Circuit

0
1

fw1

w2w3

w2 w3+

f

w3

w1w2

Figure 4.10 The three-input majority function implemented using a
2-to-1 multiplexer.

in this way. Figure 4.10 shows an intuitive way of realizing this function. The truth table
can be modified as shown on the right. If w1 = 0, then f = w2w3, and if w1 = 1, then
f = w2 + w3. Using w1 as the select input for a 2-to-1 multiplexer leads to the circuit in
Figure 4.10b.

This implementation can be derived using algebraic manipulation as follows. The
function in Figure 4.10a is expressed in sum-of-products form as

f = w1w2w3 + w1w2w3 + w1w2w3 + w1w2w3

It can be manipulated into

f = w1(w2w3) + w1(w2w3 + w2w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

which corresponds to the circuit in Figure 4.10b.
Multiplexer implementations of logic functions require that a given function be decom-

posed in terms of the variables that are used as the select inputs. This can be accomplished
by means of a theorem proposed by Claude Shannon [1].

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 10 Page number 198 magenta black

198 C H A P T E R 4 • Combinational-Circuit Building Blocks

Shannon’s Expansion Theorem Any Boolean function f (w1, . . . , wn) can be written in
the form

f (w1, w2, . . . , wn) = w1 · f (0, w2, . . . , wn) + w1 · f (1, w2, . . . , wn)

This expansion can be done in terms of any of the n variables. We will leave the proof of
the theorem as an exercise for the reader (see Problem 4.9).

To illustrate its use, we can apply the theorem to the three-input majority function,
which can be written as

f (w1, w2, w3) = w1w2 + w1w3 + w2w3

Expanding this function in terms of w1 gives

f = w1(0 · w2 + 0 · w3 + w2w3) + w1(1 · w2 + 1 · w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

which is the expression that we derived above.
For the three-input XOR function, we have

f = w1 ⊕ w2 ⊕ w3

= w1(0 ⊕ w2 ⊕ w3) + w1(1 ⊕ w2 ⊕ w3)

= w1 · (w2 ⊕ w3) + w1 · (w2 ⊕ w3)

which gives the circuit in Figure 4.8b.
In Shannon’s expansion the term f (0, w2, . . . , wn) is called the cofactor of f with respect

to w1; it is denoted in shorthand notation as fw1 . Similarly, the term f (1, w2, . . . , wn) is
called the cofactor of f with respect to w1, written fw1 . Hence we can write

f = w1fw1 + w1fw1

In general, if the expansion is done with respect to variable wi, then fwi denotes
f (w1, . . . , wi−1, 0, wi+1, . . . , wn), fwi denotes f (w1, . . . , wi−1, 1, wi+1, . . . , wn), and

f (w1, . . . , wn) = wifwi + wifwi

The complexity of the logic expression may vary depending on which variable, wi, is used,
as illustrated in Example 4.4.

Example 4.4 For the function f = w1w3 + w2w3, decomposition using w1 gives

f = w1fw1 + w1fw1

= w1(w3 + w2) + w1(w2w3)

Using w2 instead of w1 produces

f = w2fw2 + w2fw2

= w2(w1w3) + w2(w1w3 + w3)

= w2(w1w3) + w2(w1 + w3)

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 11 Page number 199 magenta black

4.1 Multiplexers 199

Finally, using w3 gives

f = w3fw3 + w3fw3

= w3(w2) + w3(w1)

The results generated using w1 and w2 have the same cost, but the expression produced
using w3 has a lower cost. In practice, when performing decompositions of this type it is
useful to try a number of alternatives and choose the one that produces the best result.

Shannon’s expansion can be done in terms of more than one variable. For example,
expanding a function in terms of w1 and w2 gives

f (w1, . . . , wn) = w1w2 · f (0, 0, w3, . . . , wn) + w1w2 · f (0, 1, w3, . . . , wn)

+ w1w2 · f (1, 0, w3, . . . , wn) + w1w2 · f (1, 1, w3, . . . , wn)

This expansion gives a form that can be implemented using a 4-to-1 multiplexer. If Shan-
non’s expansion is done in terms of all n variables, then the result is the canonical sum-of-
products form, which was defined in Section 2.6.1.

Example 4.5Assume that we wish to implement the function

f = w1w3 + w1w2 + w1w3

using a 2-to-1 multiplexer and any other necessary gates. Shannon’s expansion using w1

gives

f = w1fw1 + w1fw1

= w1(w3) + w1(w2 + w3)

The corresponding circuit is shown in Figure 4.11a. Assume now that we wish to use a
4-to-1 multiplexer instead. Further decomposition using w2 gives

f = w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2

= w1w2(w3) + w1w2(w3) + w1w2(w3) + w1w2(1)

The circuit is shown in Figure 4.11b.

Example 4.6Consider the three-input majority function

f = w1w2 + w1w3 + w2w3

We wish to implement this function using only 2-to-1 multiplexers. Shannon’s expansion
using w1 yields

f = w1(w2w3) + w1(w2 + w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 12 Page number 200 magenta black

200 C H A P T E R 4 • Combinational-Circuit Building Blocks

(a) Using a 2-to-1 multiplexer

f

w2

w1

w3

f

w1

w2

w3

(b) Using a 4-to-1 multiplexer

1

Figure 4.11 The circuits synthesized in Example 4.5.

w2

0
w3

1

f

w1

Figure 4.12 The circuit synthesized in Example 4.6.

Let g = w2w3 and h = w2 + w3. Expansion of both g and h using w2 gives

g = w2(0) + w2(w3)

h = w2(w3) + w2(1)

The corresponding circuit is shown in Figure 4.12. It is equivalent to the 4-to-1 multiplexer
circuit derived using a truth table in Figure 4.7.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 13 Page number 201 magenta black

4.2 Decoders 201

4.2 Decoders

Consider the logic circuit in Figure 4.13. It has two inputs, w1 and w0, and four outputs,
y0, y1, y2, and y3. As shown in the truth table, only one of the outputs is asserted at a time,
and each output corresponds to one valuation of the inputs. Setting the inputs w1w0 to 00,
01, 10, or 11 causes the output y0, y1, y2, or y3 to be set to 1, respectively. This type of
circuit is called a binary decoder. Its inputs represent a binary number, which is decoded
to assert the corresponding output. A circuit symbol and logic circuit for this decoder are
shown in parts (b) and (c) of the figure. Each output is driven by an AND gate that decodes
the corresponding valuation of w1w0.

It is useful to include an enable input, En, in a decoder circuit, as illustrated in Fig-
ure 4.14. When enabled by setting En = 1 the decoder behaves as presented in Figure 4.13.

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y0w1

0

w0

(c) Logic circuit

w1

w0

0
0
0

1

y1

1
0
0

0

y2

0
1
0

0

y3

0
0
1

0

y0

y1

y2

y3

w0

y0

w1

y1

y2

y3

Figure 4.13 A 2-to-4 decoder.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 14 Page number 202 magenta black

202 C H A P T E R 4 • Combinational-Circuit Building Blocks

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y0w1

0

w0

(c) Logic circuit

w1

w0

x x

1
1

0

1
1

En

0
0
0

1

0

y1

1
0
0

0

0

y2

0
1
0

0

0

y3

0
0
1

0

0

y0

y1

y2

y3

En

w0

En

y0

w1 y1

y2

y3

w0

wn 1–

n
inputs

EnEnable

2n

outputs

y0

y2n 1–

(d) An n-to-2n decoder

Figure 4.14 Binary decoder.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 15 Page number 203 magenta black

4.2 Decoders 203

But, if it is disabled by setting En = 0, then none of the outputs are asserted. Note that
only five rows are shown in the truth table, because if En = 0 then all outputs are equal
to 0 regardless of the values of w1 and w0. The truth table indicates this by showing x
when it does not matter whether the variable in question has the value 0 or 1. A graphical
symbol for this decoder is given in Figure 4.14b. Part (c) of the figure shows how the enable
capability can be included in the decoder of Figure 4.13c. A binary decoder with n inputs
has 2n outputs. A graphical symbol for an n-to-2n decoder is shown in Figure 4.14d .

A k-bit binary code in which exactly one of the bits is set to 1 at a time is referred to
as one-hot encoded, meaning that the single bit that is set to 1 is deemed to be “hot.” The
outputs of an enabled binary decoder are one-hot encoded.

We should also note that decoders can be designed to have either active-high or active-
low outputs. In our discussion, we have assumed that active-high outputs are needed.

Larger decoders can be built using the sum-of-products structure in Figure 4.14c, or
else they can be constructed from smaller decoders. Figure 4.15 shows how a 3-to-8 decoder
is built with two 2-to-4 decoders. The w2 input drives the enable inputs of the two decoders.
The top decoder is enabled if w2 = 0, and the bottom decoder is enabled if w2 = 1. This
concept can be applied for decoders of any size. Figure 4.16 shows how five 2-to-4 decoders
can be used to construct a 4-to-16 decoder. Because of its treelike structure, this type of
circuit is often referred to as a decoder tree.

Example 4.7Decoders are useful for many practical purposes. In Figure 4.2c we showed the sum-of-
products implementation of the 4-to-1 multiplexer, which requiresAND gates to distinguish
the four different valuations of the select inputs s1 and s0. Since a decoder evaluates the
values on its inputs, it can be used to build a multiplexer as illustrated in Figure 4.17. The
enable input of the decoder is not needed in this case, and it is set to 1. The four outputs of
the decoder represent the four valuations of the select inputs.

4.2.1 Demultiplexers

We showed in Section 4.1 that a multiplexer has one output, n data inputs, and � log2n �
select inputs. The purpose of the multiplexer circuit is to multiplex the n data inputs onto
the single data output under control of the select inputs. A circuit that performs the opposite
function, namely, placing the value of a single data input onto multiple data outputs, is
called a demultiplexer. The demultiplexer can be implemented using a decoder circuit. For
example, the 2-to-4 decoder in Figure 4.14 can be used as a 1-to-4 demultiplexer. In this
case the En input serves as the data input for the demultiplexer, and the y0 to y3 outputs
are the data outputs. The valuation of w1w0 determines which of the outputs is set to the
value of En. To see how the circuit works, consider the truth table in Figure 4.14a. When
En = 0, all the outputs are set to 0, including the one selected by the valuation of w1w0.
When En = 1, the valuation of w1w0 sets the appropriate output to 1.

In general, an n-to-2n decoder circuit can be used as a 1-to-n demultiplexer. However, in
practice decoder circuits are used much more often as decoders rather than as demultiplexers.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 16 Page number 204 magenta black

204 C H A P T E R 4 • Combinational-Circuit Building Blocks

w2

w0 y0

y1

y2

y3

w0

En

y0

w1 y1

y2

y3

w0

En

y0

w1 y1

y2

y3

y4

y5

y6

y7

w1

En

Figure 4.15 A 3-to-8 decoder using two 2-to-4 decoders.

w0

En

y0

w1 y1

y2

y3

y8

y9

y10

y11

w2

w0 y0

y1

y2

y3

w0

En

y0

w1 y1

y2

y3

w0

En

y0

w1 y1

y2

y3

y4

y5

y6

y7

w1

w0

En

y0

w1 y1

y2

y3

y12

y13

y14

y15

w0

En

y0

w1 y1

y2

y3

w3

En

Figure 4.16 A 4-to-16 decoder built using a decoder tree.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 17 Page number 205 magenta black

4.3 Encoders 205

w1

w0

w0

En

y0

w1 y1

y2

y3

w2

w3

f

s0
s1

1

Figure 4.17 A 4-to-1 multiplexer built using a decoder.

4.3 Encoders

An encoder performs the opposite function of a decoder. It encodes given information into
a more compact form.

4.3.1 Binary Encoders

A binary encoder encodes information from 2n inputs into an n-bit code, as indicated in
Figure 4.18. Exactly one of the input signals should have a value of 1, and the outputs
present the binary number that identifies which input is equal to 1. The truth table for a
4-to-2 encoder is provided in Figure 4.19a. Observe that the output y0 is 1 when either
input w1 or w3 is 1, and output y1 is 1 when input w2 or w3 is 1. Hence these outputs can be
generated by the circuit in Figure 4.19b. Note that we assume that the inputs are one-hot
encoded. All input patterns that have multiple inputs set to 1 are not shown in the truth
table, and they are treated as don’t-care conditions.

Encoders are used to reduce the number of bits needed to represent given information.
A practical use of encoders is for transmitting information in a digital system. Encoding
the information allows the transmission link to be built using fewer wires. Encoding is also
useful if information is to be stored for later use because fewer bits need to be stored.

4.3.2 Priority Encoders

Another useful class of encoders is based on the priority of input signals. In a priority
encoder each input has a priority level associated with it. The encoder outputs indicate the
active input that has the highest priority. When an input with a high priority is asserted, the

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 18 Page number 206 magenta black

206 C H A P T E R 4 • Combinational-Circuit Building Blocks

2n

inputs

w0

w2n 1–

y0

yn 1–

n
outputs

Figure 4.18 A 2n-to-n binary encoder.

(a) Truth table

0
0
1
1

1
0
1

w3 y1

0

y0

(b) Circuit

w1

w0

0
0
1

0

w2

0
1
0

0

w1

1
0
0

0

w0

0
0
0

1

y0

w2

w3
y1

Figure 4.19 A 4-to-2 binary encoder.

other inputs with lower priority are ignored. The truth table for a 4-to-2 priority encoder is
shown in Figure 4.20. It assumes that w0 has the lowest priority and w3 the highest. The
outputs y1 and y0 represent the binary number that identifies the highest priority input set
to 1. Since it is possible that none of the inputs is equal to 1, an output, z, is provided to
indicate this condition. It is set to 1 when at least one of the inputs is equal to 1. It is set to
0 when all inputs are equal to 0. The outputs y1 and y0 are not meaningful in this case, and
hence the first row of the truth table can be treated as a don’t-care condition for y1 and y0.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 19 Page number 207 magenta black

4.3 Encoders 207

d
0
0
1

0
1
0

w0 y1

d

y0

1 1

0
1

1

1
1

z

1
x
x

0

x

w1

0
1
x

0

x

w2

0
0
1

0

x

w3

0
0
0

0

1

Figure 4.20 Truth table for a 4-to-2 priority encoder.

The behavior of the priority encoder is most easily understood by first considering
the last row in the truth table. It specifies that if input w3 is 1, then the outputs are set to
y1y0 = 11. Because w3 has the highest priority level, the values of inputs w2, w1, and w0

do not matter. To reflect the fact that their values are irrelevant, w2, w1, and w0 are denoted
by the symbol x in the truth table. The second-last row in the truth table stipulates that
if w2 = 1, then the outputs are set to y1y0 = 10, but only if w3 = 0. Similarly, input w1

causes the outputs to be set to y1y0 = 01 only if both w3 and w2 are 0. Input w0 produces
the outputs y1y0 = 00 only if w0 is the only input that is asserted.

Alogic circuit that implements the truth table can be synthesized by using the techniques
developed in Chapter 2. However, a more convenient way to derive the circuit is to define
a set of intermediate signals, i0, . . . , i3, based on the observations above. Each signal, ik ,
is equal to 1 only if the input with the same index, wk , represents the highest-priority input
that is set to 1. The logic expressions for i0, . . . , i3 are

i0 = w3w2w1w0

i1 = w3w2w1

i2 = w3w2

i3 = w3

Using the intermediate signals, the rest of the circuit for the priority encoder has the same
structure as the binary encoder in Figure 4.19, namely

y0 = i1 + i3
y1 = i2 + i3

The output z is given by

z = i0 + i1 + i2 + i3

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 20 Page number 208 magenta black

208 C H A P T E R 4 • Combinational-Circuit Building Blocks

4.4 Code Converters

The purpose of the decoder and encoder circuits is to convert from one type of input
encoding to a different output encoding. For example, a 3-to-8 binary decoder converts
from a binary number on the input to a one-hot encoding at the output. An 8-to-3 binary
encoder performs the opposite conversion. There are many other possible types of code
converters. One common example is a BCD-to-7-segment decoder, which was introduced
in Section 2.14. A similar decoder is often used to display hexadecimal information on
seven-segment displays. As explained in Section 3.1.2, long binary numbers are easier to
deal with visually if they are represented in the hexadecimal form. A hex-to-7-segment
decoder can be implemented as shown in Figure 4.21. Digits 0 to 9 are displayed the same
as in the case of the BCD-to-7-segment decoder. Digits 10 to 15 are displayed as A, b, C,
d, E, and F.

We should note that although the word decoder is traditionally used for such circuits, a
more appropriate term is code converter. The term decoder is more appropriate for circuits
that produce one-hot encoded outputs.

4.5 Arithmetic Comparison Circuits

Chapter 3 presented arithmetic circuits that perform addition, subtraction, and multiplication
of binary numbers. Another useful type of arithmetic circuit compares the relative sizes
of two binary numbers. Such a circuit is called a comparator. This section considers the
design of a comparator that has two n-bit inputs, A and B, which represent unsigned binary
numbers. The comparator produces three outputs, called AeqB, AgtB, and AltB. The AeqB
output is set to 1 if A and B are equal. The AgtB output is 1 if A is greater than B, and the
AltB output is 1 if A is less than B.

The desired comparator can be designed by creating a truth table that specifies the three
outputs as functions of A and B. However, even for moderate values of n, the truth table is
large. A better approach is to derive the comparator circuit by considering the bits of A and
B in pairs. We can illustrate this by a small example, where n = 4.

Let A = a3a2a1a0 and B = b3b2b1b0. Define a set of intermediate signals called
i3, i2, i1, and i0. Each signal, ik , is 1 if the bits of A and B with the same index are equal.
That is, ik = ak ⊕ bk . The comparator’s AeqB output is then given by

AeqB = i3i2i1i0

An expression for the AgtB output can be derived by considering the bits of A and B in the
order from the most-significant bit to the least-significant bit. The first bit-position, k, at
which ak and bk differ determines whether A is less than or greater than B. If ak = 0 and
bk = 1, then A < B. But if ak = 1 and bk = 0, then A > B. The AgtB output is defined by

AgtB = a3b3 + i3a2b2 + i3i2a1b1 + i3i2i1a0b0

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 21 Page number 209 magenta black

4.5 Arithmetic Comparison Circuits 209

ce

1
0
1
1

1
1
1

w0 a

1

b

0 1

1
1

1

0
1

1
0
1

0

0

w1

0
1
1

0

0

w2

0
0
0

0

1

w3

0
0
0

0

0

c

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1001

1
1
1
1

0
1
1

0

1 1

1
1

1

1
1

0
1
1

1

d

0

1
0

0

1
0

e

1
0
1

1

1

0
1

0

0
1

0
0
0

1

f

1

0
0

1

1
1

g

1
0
1

1

1

1
1

1

0
1

(c) Truth table

(a) Code converter

w0

a

w1

b
c
dw2

w3
e
f
g

a

g

bf

d

(b) 7-segment display

1 1 10101
1
0
1
0

1
0
0
1

0
1
1
1

1
1
1
1

1111

0
1
0
1

0
1
0

0

1 0

1
0

0

1
0

0 1

1
1
1

1

0

1
1

1

1
1

1 1

1
0
1

1

1

1
0

1

1
1

Figure 4.21 A hex-to-7-segment display code converter.

The ik signals ensure that only the first bits, considered from the left to the right, of A and
B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB + AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 4.22. This
approach can be used to design a comparator for any value of n.

Comparator circuits, like most logic circuits, can be designed in different ways. Another
approach for designing a comparator circuit is presented in Example 3.9 in Chapter 3.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 22 Page number 210 magenta black

210 C H A P T E R 4 • Combinational-Circuit Building Blocks

i0

i1

i2

i3

b0

a0

b1

a1

b2

a2

b3

a3

AeqB

AgtB

AltB

Figure 4.22 A four-bit comparator circuit.

4.6 Verilog for Combinational Circuits

Having presented a number of useful building block circuits, we will now consider how
such circuits can be described in Verilog. Rather than using gates or logic expressions,
we will specify the circuits in terms of their behavior. We will also give a more rigorous
description of previously used behavioral Verilog constructs and introduce some new ones.

4.6.1 The Conditional Operator

In a logic circuit it is often necessary to choose between several possible signals or values
based on the state of some condition. A typical example is a multiplexer circuit in which
the output is equal to the data input signal chosen by the valuation of the select inputs. For
simple implementation of such choices Verilog provides a conditional operator (?:) which

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 23 Page number 211 magenta black

4.6 Verilog for Combinational Circuits 211

assigns one of two values depending on a conditional expression. It involves three operands
used in the syntax

conditional_expression ? true_expression : false_expression

If the conditional expression evaluates to 1 (true), then the value of true_expression is
chosen; otherwise, the value of false_expression is chosen. For example, the statement

A = (B < C) ? (D + 5) : (D + 2);

means that if B is less than C, the value of A will be D + 5, or else A will have the
value D + 2. We used parentheses in the expression to improve readability; they are not
necessary. The conditional operator can be used both in continuous assignment statements
and in procedural statements inside an always block.

Example 4.8A 2-to-1 multiplexer can be defined using the conditional operator in an assign statement
as shown in Figure 4.23. The module, named mux2to1, has the inputs w0, w1, and s, and
the output f . The signal s is used for the selection criterion. The output f is equal to w1 if
the select input s has the value 1; otherwise, f is equal to w0. Figure 4.24 shows how the
same multiplexer can be defined by using the conditional operator inside an always block.

The same approach can be used to define the 4-to-1 multiplexer from Figure 4.2. As
seen in the truth table in Figure 4.2b, if the select input s1 = 1, then f is set to either w2 or
w3 based on the value of s0. Similarly, if s1 = 0, then f is set to either w0 or w1. Figure 4.25
shows how nested conditional operators can be used to define this function. The module
is called mux4to1. Its select inputs are represented by the two-bit vector S. The first
conditional expression tests the value of bit s1. If s1 = 1, then s0 is tested and f is set to w3

if s0 = 1 and f is set to w2 if s0 = 0. This corresponds to the third and fourth rows of the
truth table in Figure 4.2b. Similarly, if s1 = 0 the conditional operator on the right chooses
f = w1 if s0 = 1 and f = w0 if s0 = 0, thus realizing the first two rows of the truth table.

module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output f;

assign f = s ? w1 : w0;

endmodule

Figure 4.23 A 2-to-1 multiplexer specified using the
conditional operator.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 24 Page number 212 magenta black

212 C H A P T E R 4 • Combinational-Circuit Building Blocks

module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output reg f;

always @(w0, w1, s)
f = s ? w1 : w0;

endmodule

Figure 4.24 An alternative specification of a 2-to-1
multiplexer using the conditional operator.

module mux4to1 (w0, w1, w2, w3, S, f);
input w0, w1, w2, w3;
input [1:0] S;
output f;

assign f = S[1] ? (S[0] ? w3 : w2) : (S[0] ? w1 : w0);

endmodule

Figure 4.25 A 4-to-1 multiplexer specified using the conditional operator.

4.6.2 The If-Else Statement

We have already used the if-else statement in previous chapters. It has the syntax

if (conditional_expression) statement;
else statement;

The conditional expression may use the operators given in Table A.1. If the expression
is evaluated to true then the first statement (or a block of statements delineated by begin
and end keywords) is executed, or else the second statement (or a block of statements) is
executed.

Example 4.9 Figure 4.26 shows how the if-else statement can be used to describe a 2-to-1 multiplexer.
The if clause states that f is assigned the value of w0 when s = 0. Else, f is assigned the
value of w1.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 25 Page number 213 magenta black

4.6 Verilog for Combinational Circuits 213

module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output reg f;

always @(w0, w1, s)
if (s == 0)

f = w0;
else

f = w1;

endmodule

Figure 4.26 Code for a 2-to-1 multiplexer using the
if-else statement.

The if-else statement can be used to implement larger multiplexers. A4-to-1 multiplexer
is shown in Figure 4.27. The if-else clauses set f to the value of one of the inputs w0, . . . , w3,
depending on the valuation of S.

Another way of defining the same circuit is presented in Figure 4.28. In this case, a
four-bit vector W is defined instead of single-bit signals w0, w1, w2, and w3. Also, the four
different values of S are specified as decimal rather than binary numbers.

Example 4.10Figure 4.4 shows how a 16-to-1 multiplexer can be built by using five 4-to-1 multiplexers.
Figure 4.29 presents Verilog code for this circuit using five instantiations of the mux4to1
module. The data inputs to the mux16to1 module are the 16-bit vector W , and the select
inputs are the four-bit vector S. In the Verilog code signal names are needed for the outputs
of the four 4-to-1 multiplexers on the left of Figure 4.4. A four-bit signal named M is used
for this purpose. The first multiplexer instantiated, Mux1, corresponds to the multiplexer
at the top left of Figure 4.4. Its first four ports are driven by the signals W [0], . . . , W [3].
The syntax S[1:0] is used to attach the signals S[1] and S[0] to the two-bit S port of the
mux4to1 module. The M [0] signal is connected to the multiplexer’s output port. Similarly,
Mux2, Mux3, and Mux4 are instantiations of the next three multiplexers on the left. The
multiplexer on the right of Figure 4.4 is instantiated as Mux5. The signals M [0], . . . , M [3]
are connected to its data inputs, and bits S[3] and S[2] are attached to the select inputs. The
output port generates the mux16to1 output f . Compiling the code results in the multiplexer
function

f = s3s2s1s0w0 + s3s2s1s0w1 + s3s2s1s0w2 + · · · + s3s2s1s0w14 + s3s2s1s0w15

Since the mux4to1 module is being instantiated in the code of Figure 4.29, it is nec-
essary to either include the code of Figure 4.28 in the same file as the mux16to1 module
or place the mux4to1 module in a separate file in the same directory, or a directory with a

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 26 Page number 214 magenta black

214 C H A P T E R 4 • Combinational-Circuit Building Blocks

module mux4to1 (w0, w1, w2, w3, S, f);
input w0, w1, w2, w3;
input [1:0] S;
output reg f;

always @(*)
if (S == 2’b00)

f = w0;
else if (S == 2’b01)

f = w1;
else if (S == 2’b10)

f = w2;
else

f = w3;

endmodule

Figure 4.27 Code for a 4-to-1 multiplexer using the if-else
statement.

module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output reg f;

always @(W, S)
if (S == 0)

f = W[0];
else if (S == 1)

f = W[1];
else if (S == 2)

f = W[2];
else

f = W[3];

endmodule

Figure 4.28 Alternative specification of a 4-to-1
multiplexer.

specified path so that the Verilog compiler can find it. Observe that if the code in Figure 4.27
were used as the required mux4to1 module, then we would have to list the ports separately,
as in W [0], W [1], W [2], W [3], rather than as the vector W [0:3].

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 27 Page number 215 magenta black

4.6 Verilog for Combinational Circuits 215

module mux16to1 (W, S, f);
input [0:15] W;
input [3:0] S;
output f;
wire [0:3] M;

mux4to1 Mux1 (W[0:3], S[1:0], M[0]);
mux4to1 Mux2 (W[4:7], S[1:0], M[1]);
mux4to1 Mux3 (W[8:11], S[1:0], M[2]);
mux4to1 Mux4 (W[12:15], S[1:0], M[3]);
mux4to1 Mux5 (M[0:3], S[3:2], f);

endmodule

Figure 4.29 Hierarchical code for a 16-to-1 multiplexer.

4.6.3 The Case Statement

The if-else statement provides the means for choosing an alternative based on the value of
an expression. When there are many possible alternatives, the code based on this statement
may become awkward to read. Instead, it is often possible to use the Verilog case statement
which is defined as

case (expression)
alternative1: statement;
alternative2: statement;
·
·
·
alternativej: statement;
[default: statement;]

endcase

The value of the controlling expression and each alternative are compared bit by bit. When
there is one or more matching alternative, the statement(s) associated with the first match
(only) is executed. When the specified alternatives do not cover all possible valuations of
the controlling expression, the optional default clause should be included. Otherwise, the
Verilog compiler will synthesize memory elements to deal with the unspecified possibilities;
we will discuss this issue in Chapter 5.

Example 4.11The case statement can be used to define a 4-to-1 multiplexer as shown in Figure 4.30. The
four values that the select vector S can have are given as decimal numbers, but they could
also be given as binary numbers.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 28 Page number 216 magenta black

216 C H A P T E R 4 • Combinational-Circuit Building Blocks

module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output reg f;

always @(W, S)
case (S)

0: f = W[0];
1: f = W[1];
2: f = W[2];
3: f = W[3];

endcase

endmodule

Figure 4.30 A 4-to-1 multiplexer defined using the
case statement.

Example 4.12 Figure 4.31 shows how a case statement can be used to describe the truth table for a 2-to-4
binary decoder. The module is called dec2to4. The data inputs are the two-bit vector W ,
and the enable input is En. The four outputs are represented by the four-bit vector Y .

In the truth table for the decoder in Figure 4.14a, the inputs are listed in the order
En w1 w0. To represent these three signals in the controlling expression, the Verilog code
uses the concatenate operator to combine the En and W signals into a three-bit vector. The
four alternatives in the case statement correspond to the truth table in Figure 4.14a where
En = 1, and the decoder outputs have the same patterns as in the first four rows of the
truth table. The last clause uses the default keyword and sets the decoder outputs to 0000,
because it represents all other cases, namely those where En = 0.

Example 4.13 The 2-to-4 decoder can be specified using a combination of if-else and case statements as
given in Figure 4.32. If En = 0, then all four bits of the output Y are set to the value 0, else
the case alternatives are evaluated if En = 1.

Example 4.14 The tree structure of the 4-to-16 decoder in Figure 4.16 can be defined as shown in Figure
4.33. The inputs are a four-bit vector W and an enable signal En. The outputs are represented
by the 16-bit vector Y . The circuit uses five instances of the 2-to-4 decoder defined in either
Figure 4.31 or 4.32. The outputs of the left-most decoder in Figure 4.16 are denoted as the
four-bit vector M in Figure 4.33.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 29 Page number 217 magenta black

4.6 Verilog for Combinational Circuits 217

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3] Y;

always @(W, En)
case ({En, W})

3’b100: Y = 4’b1000;
3’b101: Y = 4’b0100;
3’b110: Y = 4’b0010;
3’b111: Y = 4’b0001;
default: Y = 4’b0000;

endcase

endmodule

Figure 4.31 Verilog code for a 2-to-4 binary decoder.

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3] Y;

always @(W, En)
begin

if (En == 0)
Y = 4’b0000;

else
case (W)

0: Y = 4’b1000;
1: Y = 4’b0100;
2: Y = 4’b0010;
3: Y = 4’b0001;

endcase
end

endmodule

Figure 4.32 Alternative code for a 2-to-4 binary
decoder.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 30 Page number 218 magenta black

218 C H A P T E R 4 • Combinational-Circuit Building Blocks

module dec4to16 (W, En, Y);
input [3:0] W;
input En;
output [0:15] Y;
wire [0:3] M;

dec2to4 Dec1 (W[3:2], M[0:3], En);
dec2to4 Dec2 (W[1:0], Y[0:3], M[0]);
dec2to4 Dec3 (W[1:0], Y[4:7], M[1]);
dec2to4 Dec4 (W[1:0], Y[8:11], M[2]);
dec2to4 Dec5 (W[1:0], Y[12:15], M[3]);

endmodule

Figure 4.33 Verilog code for a 4-to-16 decoder.

Example 4.15 Another example of a case statement is given in Figure 4.34. The module, seg7, represents
the hex-to-7-segment decoder in Figure 4.21. The hexadecimal input is the four-bit vector
named hex, and the seven outputs are the seven-bit vector named leds. The case alternatives
are listed so that they resemble the truth table in Figure 4.21c. Note that there is a comment
to the right of the case statement, which labels the seven outputs with the letters from a
to g. These labels indicate to the reader the correlation between the bits of the leds vector
in the Verilog code and the seven segments in Figure 4.21b.

Example 4.16 An arithmetic logic unit (ALU) is a logic circuit that performs various Boolean and arithmetic
operations on n-bit operands. Table 4.1 specifies the functionality of a simple ALU, known
as the 74381 chip, which has been available in the form of a standard chip in the family
called the 7400-series. This ALU has 2 four-bit data inputs, A and B, a three-bit select
input, S, and a four-bit output, F . As the table shows, F is defined by various arithmetic or
Boolean operations on the inputs A and B. In this table + means arithmetic addition, and
− means arithmetic subtraction. To avoid confusion, the table uses the words XOR, OR,
and AND for the Boolean operations. Each Boolean operation is done in a bitwise fashion.
For example, F = A AND B produces the four-bit result f0 = a0b0, f1 = a1b1, f2 = a2b2,
and f3 = a3b3.

Figure 4.35 shows how the functionality of the 74381 ALU can be described in Verilog
code. The case statement shown corresponds directly to Table 4.1.

The Casex and Casez Statements
Logic circuits that we have considered so far operate using the logic values 0 and 1.

When specifying the functionality of such circuits in the form of a truth table, we sometimes
encounter cases where it does not matter whether a given logic variable has the value 0 or
1, as seen in Figures 4.14a and 4.20. It is customary to use the letter x to denote such cases,
where x represents an unknown value.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 31 Page number 219 magenta black

4.6 Verilog for Combinational Circuits 219

module seg7 (hex, leds);
input [3:0] hex;
output reg [1:7] leds;

always @(hex)
case (hex) //abcdefg

0: leds = 7’b1111110;
1: leds = 7’b0110000;
2: leds = 7’b1101101;
3: leds = 7’b1111001;
4: leds = 7’b0110011;
5: leds = 7’b1011011;
6: leds = 7’b1011111;
7: leds = 7’b1110000;
8: leds = 7’b1111111;
9: leds = 7’b1111011;
10: leds = 7’b1110111;
11: leds = 7’b0011111;
12: leds = 7’b1001110;
13: leds = 7’b0111101;
14: leds = 7’b1001111;
15: leds = 7’b1000111;

endcase

endmodule

Figure 4.34 Code for a hex-to-7-segment decoder.

Table 4.1 The functionality
of the 74381
ALU.

Inputs Outputs
Operation s2 s1 s0 F

Clear 0 0 0 0 0 0 0

B−A 0 0 1 B − A

A−B 0 1 0 A − B

ADD 0 1 1 A + B

XOR 1 0 0 A XOR B

OR 1 0 1 A OR B

AND 1 1 0 A AND B

Preset 1 1 1 1 1 1 1

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 32 Page number 220 magenta black

220 C H A P T E R 4 • Combinational-Circuit Building Blocks

// 74381 ALU
module alu (S, A, B, F);

input [2:0] S;
input [3:0] A, B;
output reg [3:0] F;

always @(S, A, B)
case (S)

0: F = 4’b0000;
1: F = B – A;
2: F = A – B;
3: F = A + B;
4: F = A ^ B;
5: F = A | B;
6: F = A & B;
7: F = 4’b1111;

endcase

endmodule

Figure 4.35 Code that represents the functionality of
the 74381 ALU chip.

It is also possible to implement circuits that can produce three different types of output
signals. In addition to the usual 0 and 1 values, there is a third value that indicates that the
output line is not connected to any defined voltage level. In this state the output behaves like
an open circuit, as explained in Appendix B. We say that the output is in the high-impedance
state, which is usually denoted by using the letter z.

In Verilog, a signal can have four possible values: 0, 1, z, or x. The z and x values can
also be denoted by the capital letters Z and X . In the case statement it is possible to use
the logic values 0, 1, z, and x in the case alternatives. A bit-by-bit comparison is used to
determine the match between the expression and one of the alternatives.

Verilog provides two variants of the case statement that treat the z and x values in
a different way. The casez statement treats all z values in the case alternatives and the
controlling expression as don’t cares. The casex statement treats all z and x values as don’t
cares.

Example 4.17 Figure 4.36 gives Verilog code for the priority encoder defined in Figure 4.20. The desired
priority scheme is realized by using a casex statement. The first alternative specifies that
the output is set to y1y0 = 3 if the input w3 is 1. This assignment does not depend on the
values of inputs w2, w1, or w0; hence their values do not matter. The other alternatives in
the casex statement are evaluated only if w3 = 0. The second alternative states that if w2

is 1, then y1y0 = 2. If w2 = 0, then the next alternative results in y1y0 = 1 if w1 = 1. If
w3 = w2 = w1 = 0 and w0 = 1, then the fourth alternative results in y1y0 = 0.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 33 Page number 221 magenta black

4.6 Verilog for Combinational Circuits 221

module priority (W, Y, z);
input [3:0] W;
output reg [1:0] Y;
output reg z;

always @(W)
begin

z = 1;
casex (W)

4’b1xxx: Y = 3;
4’b01xx: Y = 2;
4’b001x: Y = 1;
4’b0001: Y = 0;
default: begin

z = 0;
Y = 2’bx;

end
endcase

end

endmodule

Figure 4.36 Verilog code for a priority encoder.

The priority encoder’s output z must be set to 1 whenever at least one of the data inputs
is 1. This output is set to 1 outside the casex statement in the always block. If none of the
four alternatives matches the value of W , then the default clause overrides the value of z
and sets it to 0. The default clause also indicates that the Y output can be set to any pattern
because it will be ignored.

4.6.4 The For Loop

If the structure of a desired circuit exhibits a certain regularity, it may be convenient to
define the circuit using a for loop. We introduced the for loop in Section 3.5.4, where it
was useful in a generic specification of a ripple-carry adder. The for loop has the syntax

for (initial_index; terminal_index; increment) statement;

A loop control variable, which has to be of type integer, is set to the value given as the
initial index. It is used in the statement or a block of statements delineated by begin and end
keywords. After each iteration, the control variable is changed as defined in the increment.
The iterations end after the control variable has reached the terminal index.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 34 Page number 222 magenta black

222 C H A P T E R 4 • Combinational-Circuit Building Blocks

Unlike for loops in high-level programming languages, the Verilog for loop does not
specify changes that take place in time through successive loop iterations. Instead, during
each iteration it specifies a different subcircuit. In Figure 3.25 the for loop was used to
define a cascade of full-adder subcircuits to form an n-bit ripple-carry adder. The for loop
can be used to define many other structures as illustrated by the next two examples.

Example 4.18 Figure 4.37 shows how the for loop can be used to specify a 2-to-4 decoder circuit. The
effect of the loop is to repeat the if-else statement four times, for k = 0, . . . , 3. The first
loop iteration sets y0 = 1 if W = 0 and En = 1. Similarly, the other three iterations set the
values of y1, y2, and y3 according to the values of W and En.

This arrangement can be used to specify a large n-to-2n decoder simply by increasing
the sizes of vectors W and Y accordingly, and making n − 1 be the terminal index value
of k.

Example 4.19 The priority encoder of Figure 4.20 can be defined by the Verilog code in Figure 4.38. In
the always block, the output bits y1 and y0 are first set to the don’t-care state and z is cleared
to 0. Then, if one or more of the four inputs w3, . . . , w0 is equal to 1, the for loop will set
the valuation of y1y0 to match the index of the highest priority input that has the value 1.
Note that each successive iteration through the loop corresponds to a higher priority. Verilog
semantics specify that a signal that receives multiple assignments in an always block retains
the last assignment. Thus the iteration that corresponds to the highest priority input that is
equal to 1 will override any setting of Y established during the previous iterations.

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3] Y;
integer k;

always @(W, En)
for (k = 0; k < = 3; k = k+1)

if ((W == k) && (En == 1))
Y[k] = 1;

else
Y[k] = 0;

endmodule

Figure 4.37 A 2-to-4 binary decoder specified using the for
loop.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 35 Page number 223 magenta black

4.6 Verilog for Combinational Circuits 223

module priority (W, Y, z);
input [3:0] W;
output reg [1:0] Y;
output reg z;
integer k;

always @(W)
begin

Y = 2’bx;
z = 0;
for (k = 0; k < 4; k = k+1)

if (W[k])
begin

Y = k;
z = 1;

end
end

endmodule

Figure 4.38 A priority encoder specified using the for
loop.

4.6.5 Verilog Operators

In this section we discuss the Verilog operators that are useful for synthesizing logic circuits.
Table 4.2 lists these operators in groups that reflect the type of operation performed. A more
complete listing of the operators is given in Table A.1.

To illustrate the results produced by the various operators, we will use three-bit vectors
A[2:0], B[2:0], and C[2:0], as well as scalars f and w.

Bitwise Operators
Bitwise operators operate on individual bits of operands. The ∼ operator forms the 1’s

complement of the operand such that the statement

C = ∼A;

produces the result c2 = a2, c1 = a1, and c0 = a0, where ai and ci are the bits of the vectors
A and C.

Most bitwise operators operate on pairs of bits. The statement

C = A & B;

generates c2 = a2 · b2, c1 = a1 · b1, and c0 = a0 · b0. Similarly, the | and ∧ operators per-
form bitwise OR and XOR operations. The ∧∼ operator, which can also be written as ∼∧,
produces the XNOR such that

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 36 Page number 224 magenta black

224 C H A P T E R 4 • Combinational-Circuit Building Blocks

Table 4.2 Verilog operators.

Operator type Operator symbols Operation performed Number of operands

Bitwise ∼ 1’s complement 1
& Bitwise AND 2
| Bitwise OR 2
∧ Bitwise XOR 2

∼ ∧ or ∧ ∼ Bitwise XNOR 2

Logical ! NOT 1
&& AND 2
‖ OR 2

Reduction & Reduction AND 1
∼& Reduction NAND 1
| Reduction OR 1

∼ | Reduction NOR 1
∧ Reduction XOR 1

∼∧ or ∧ ∼ Reduction XNOR 1

Arithmetic + Addition 2
− Subtraction 2
− 2’s complement 1
∗ Multiplication 2
/ Division 2

Relational > Greater than 2
< Less than 2

>= Greater than or equal to 2
<= Less than or equal to 2

Equality == Logical equality 2
! = Logical inequality 2

Shift >> Right shift 2
<< Left shift 2

Concatenation {,} Concatenation Any number

Replication {{}} Replication Any number

Conditional ?: Conditional 3

C = A ∼∧ B;

gives c2 = a2 ⊕ b2, c1 = a1 ⊕ b1, and c0 = a0 ⊕ b0. If the operands are of unequal size,
then the shorter operand is extended by padding 0s to the left.

A scalar function may be assigned a value as a result of a bitwise operation on two
vector operands. In this case, it is only the least-significant bits of the operands that are
involved in the operation. Hence the statement

f = A ∧ B;

yields f = a0 ⊕ b0.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 37 Page number 225 magenta black

4.6 Verilog for Combinational Circuits 225

& 0 1 x 0 1 x

0 0 0 0 0 0 1 x

1 0 1 x 1 1 1 1

x 0 x x x x 1 x

0 1 x 0 1 x

0 0 1 x 0 1 0 x

1 1 0 x 1 0 1 x

x x x x x x x x

Figure 4.39 Truth tables for bitwise operators.

The bitwise operations may involve operands that include the unknown logic value x.
Then the operations are performed according to the truth tables in Figure 4.39. For example,
if P = 4’b101x and Q = 4’b1001, then P & Q = 4’b100x while P | Q = 4’b1011.

Logical Operators
The ! operator has the same effect on a scalar operand as the ∼ operator. Thus, f = !w

= ∼w. But the effect on a vector operand is different, namely if

f = !A;

then f will be equal to 1 (true) only if all bits of A are equal to 0 (false). Hence, f =
a2 + a1 + a0.

The && operator implements the AND operation such that

f = A && B;

produces f = (a2 + a1 + a0) · (b2 + b1 + b0). Similarly, using the || operator in

f = A || B;

gives f = (a2 + a1 + a0) + (b2 + b1 + b0).

Reduction Operators
The reduction operators perform an operation on the bits of a single vector operand

and produce a one-bit result. Using the & operator in

f = &A;

produces f = a2 · a1 · a0. Similarly,

f = ∧A;

gives f = a2 ⊕ a1 ⊕ a0, and so on.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 38 Page number 226 magenta black

226 C H A P T E R 4 • Combinational-Circuit Building Blocks

Arithmetic Operators
We have already encountered the arithmetic operators in Chapter 3. They perform

standard arithmetic operations. Thus

C = A + B;

puts the three-bit sum of A plus B into C, while

C = A − B;

puts the difference of A and B into C. The operation

C = −A;

places the 2’s complement of A into C.
The addition, subtraction, and multiplication operations are supported by most CAD

synthesis tools. However, the division operation is often not supported. When the Verilog
compiler encounters an arithmetic operator, it usually synthesizes it by using an appropriate
module from a library.

Relational Operators
The relational operators are typically used as conditions in if-else and for statements.

These operators have the same meaning as the corresponding operators in the C program-
ming language. An expression that uses the relational operators returns the value 1 if it is
evaluated as true, and the value 0 if evaluated as false. If there are any x (unknown) or z
bits in the operands, then the expression takes the value x.

Example 4.20 The use of relational operators in the if-else statement is illustrated in Figure 4.40. The
defined circuit is the four-bit comparator described in Section 4.5.

Equality Operators
The expression (A== B) is evaluated as true if A is equal to B and false otherwise. The

!= operator has the opposite effect. The result is ambiguous (x) if either operand contains
x or z values.

Shift Operators
A vector operand can be shifted to the right or left by a number of bits specified as a

constant. When bits are shifted, the vacant bit positions are filled with 0s. For example,

B = A << 1;

results in b2 = a1, b1 = a0, and b0 = 0. Similarly,

B = A >> 2;

yields b2 = b1 = 0 and b0 = a2.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 39 Page number 227 magenta black

4.6 Verilog for Combinational Circuits 227

module compare (A, B, AeqB, AgtB, AltB);
input [3:0] A, B;
output reg AeqB, AgtB, AltB;

always @(A, B)
begin

AeqB = 0;
AgtB = 0;
AltB = 0;
if (A == B)

AeqB = 1;
else if (A > B)

AgtB = 1;
else

AltB = 1;
end

endmodule

Figure 4.40 Verilog code for a four-bit comparator.

Concatenate Operator
This operator concatenates two or more vectors to create a larger vector. For example,

D = {A, B};

defines the six-bit vector D = a2a1a0b2b1b0. Similarly, the concatenation

E = {3’b111, A, 2’b00};

produces the eight-bit vector E = 111a2a1a000.

Replication Operator
This operator allows repetitive concatenation of the same vector, which is replicated the

number of times indicated in the replication constant. For example, {3{A}} is equivalent to
writing {A, A, A}. The specification {4{2’b10}} produces the eight-bit vector 10101010.

The replication operator may be used in conjunction with the concatenate operator. For
instance, {2{A}, 3{B}} is equivalent to {A, A, B, B, B}. We introduced the concatenate
and replication operators in Sections 3.5.6 and 3.5.8, respectively, and illustrated their use
in specifying the adder circuits.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 40 Page number 228 magenta black

228 C H A P T E R 4 • Combinational-Circuit Building Blocks

Table 4.3 Precedence of Verilog operators.

Operator type Operator symbols Precedence

Complement ! ∼ − Highest precedence

Arithmetic ∗ /
+ −

Shift << >>

Relational < <= > >=
Equality == ! =
Reduction & ∼&

∧ ∼ ∧
| ∼ |

Logical &&
‖

Conditional ?: Lowest precedence

Conditional Operator
The conditional operator is discussed fully in Section 4.6.1.

Operator Precedence
The Verilog operators are assumed to have the precedence indicated in Table 4.3.

The order of precedence is from top to bottom; operators in the top row have the highest
precedence and those in the bottom row have the lowest precedence. The operators listed
in the same row have the same precedence.

The designer can use parentheses to change the precedence of operators in Verilog code
or remove any possible misinterpretation. It is a good practice to use parentheses to make
the code unambiguous and easy to read.

4.6.6 The Generate Construct

In Section 3.5.4 we introduced the generate loop capability which can be used to create
multiple instances of subcircuits. A subcircuit may be defined in a block of statements
delineated by the generate and endgenerate keywords. The subcircuit is instantiated
multiple times using a generate-index variable. This variable is defined using the genvar
keyword and it can have only positive integer values. It is not possible to use an index
declared as a normal integer variable.

Example 4.21 Figure 4.41 shows how the generate construct can be used to specify an n-bit ripple-carry
adder. The subcircuit is a full-adder defined structurally in terms of primitive gates as
introduced in Figure 3.18. The for loop causes the full-adder block to be instantiated n
times.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 41 Page number 229 magenta black

4.6 Verilog for Combinational Circuits 229

module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n –1:0] X, Y;
output [n –1:0] S;
output carryout;
wire [n:0] C;

genvar k;
assign C[0] = carryin;
assign carryout = C[n];
generate

for (k = 0; k < n; k = k+1)
begin: fulladd_stage

wire z1, z2, z3; //wires within full-adder
xor (S[k], X[k], Y[k], C[k]);
and (z1, X[k], Y[k]);
and (z2, X[k], C[k]);
and (z3, Y[k], C[k]);
or (C[k+1], z1, z2, z3);

end
endgenerate

endmodule

Figure 4.41 Using the generate loop to define an n-bit
ripple-carry adder.

In this example, the for statement is used in the generate block to control the selection
of the generated objects. The generate block can also contain if-else and case statements
to determine which objects are generated.

4.6.7 Tasks and Functions

In high-level programming languages it is possible to use subroutines and functions to
avoid replicating specific routines that may be needed in several places of a given program.
Verilog provides similar capabilities, known as tasks and functions. They can be used to
modularize large designs and make the Verilog code easier to understand.

Verilog Task
A task is declared by the keyword task and it comprises a block of statements that ends

with the keyword endtask. The task must be included in the module that calls it. It may

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 42 Page number 230 magenta black

230 C H A P T E R 4 • Combinational-Circuit Building Blocks

have input and output ports. These are not the ports of the module that contains the task,
which are used to make external connections to the module. The task ports are used only
to pass values between the module and the task.

Example 4.22 In Figure 4.29 we showed the Verilog code for a 16-to-1 multiplexer that instantiates five
copies of a 4-to-1 multiplexer circuit given in a separate module named mux4to1. The same
circuit can be specified using the task approach as shown in Figure 4.42. Observe the key
differences. The task mux4to1 is included in the module mux16to1. It is called from an
always block by means of an appropriate case statement. The output of a task must be a
variable, hence g is of reg type.

module mux16to1 (W, S16, f);
input [0:15] W;
input [3:0] S16;
output reg f;

always @(W, S16)
case (S16[3:2])

0: mux4to1 (W[0:3], S16[1:0], f);
1: mux4to1 (W[4:7], S16[1:0], f);
2: mux4to1 (W[8:11], S16[1:0], f);
3: mux4to1 (W[12:15], S16[1:0], f);

endcase

// Task that specifies a 4-to-1 multiplexer
task mux4to1;

input [0:3] X;
input [1:0] S4;
output reg g;

case (S4)
0: g = X[0];
1: g = X[1];
2: g = X[2];
3: g = X[3];

endcase
endtask

endmodule

Figure 4.42 Use of a task in Verilog code.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 43 Page number 231 magenta black

4.6 Verilog for Combinational Circuits 231

Verilog Function
A function is declared by the keyword function and it comprises a block of statements

that ends with the keyword endfunction. The function must have at least one input and it
returns a single value that is placed where the function is invoked.

Example 4.23Figure 4.43 shows how the code in Figure 4.42 can be written to use a function. The Verilog
compiler essentially inserts the body of the function at each place where it is called. Hence
the clause

0: f = mux4to1 (W[0:3], S16[1:0]);

becomes

module mux16to1 (W, S16, f);
input [0:15] W;
input [3:0] S16;
output reg f;

// Function that specifies a 4-to-1 multiplexer
function mux4to1;

input [0:3] X;
input [1:0] S4;

case (S4)
0: mux4to1 = X[0];
1: mux4to1 = X[1];
2: mux4to1 = X[2];
3: mux4to1 = X[3];

endcase
endfunction

always @(W, S16)
case (S16[3:2])

0: f = mux4to1 (W[0:3], S16[1:0]);
1: f = mux4to1 (W[4:7], S16[1:0]);
2: f = mux4to1 (W[8:11], S16[1:0]);
3: f = mux4to1 (W[12:15], S16[1:0]);

endcase

endmodule

Figure 4.43 The code from Figure 4.42 using a function.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 44 Page number 232 magenta black

232 C H A P T E R 4 • Combinational-Circuit Building Blocks

0: case (S16[1:0])
0: f = W[0];
1: f = W[1];
2: f = W[2];
3: f = W[3];

endcase

The function serves as a convenience that makes the mux16to1 module more compact.

A Verilog function can invoke another function but it cannot call a Verilog task. A task
may call another task and it may invoke a function. In Figure 4.42 we defined the task after
the always block that calls it. In contrast, in Figure 4.43 we defined the function before
the always block that invokes it. Both possibilities are allowed in the Verilog standard for
both tasks and functions. However, some tools require functions to be defined before the
statements that invoke them.

4.7 Concluding Remarks

This chapter has introduced a number of circuit building blocks. Examples using these
blocks to construct larger circuits will be presented in later chapters. To describe the
building block circuits efficiently, several Verilog constructs have been introduced. In
many cases a given circuit can be described in various ways, using different constructs. A
circuit that can be described using an if-else statement can also be described using a case
statement or perhaps a for loop. In general, there are no strict rules that dictate when one
style should be preferred over another. With experience the user develops a sense for which
types of statements work well in a particular design situation. Personal preference also
influences how the code is written.

Verilog is not a programming language, and Verilog code should not be written as if it
were a computer program. The statements discussed in this chapter can be used to create
large, complex circuits. A good way to design such circuits is to construct them using well-
defined modules, in the manner that we illustrated for the multiplexers, decoders, encoders,
and so on. Additional examples using the Verilog statements introduced in this chapter are
given in Chapters 5 and 6. In Chapter 7 we provide a number of examples of using Verilog
code to describe larger digital systems. For more information on Verilog, the reader can
consult more specialized books [2–8].

In the next chapter we introduce logic circuits that include the ability to store logic
signal values in memory elements.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 45 Page number 233 magenta black

4.8 Examples of Solved Problems 233

4.8 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 4.24Problem: Implement the function f (w1, w2, w3) = ∑
m(0, 1, 3, 4, 6, 7) by using a 3-to-8

binary decoder and an OR gate.

Solution: The decoder generates a separate output for each minterm of the required function.
These outputs are then combined in the OR gate, giving the circuit in Figure 4.44.

Example 4.25Problem: Derive a circuit that implements an 8-to-3 binary encoder.

Solution: The truth table for the encoder is shown in Figure 4.45. Only those rows for
which a single input variable is equal to 1 are shown; the other rows can be treated as don’t
care cases. From the truth table it is seen that the desired circuit is defined by the equations

y2 = w4 + w5 + w6 + w7

y1 = w2 + w3 + w6 + w7

y0 = w1 + w3 + w5 + w7

Example 4.26Problem: Implement the function

f (w1, w2, w3, w4, w5) = w1w2w4w5 + w1w2 + w1w3 + w1w4 + w3w4w5

by using a 4-to-1 multiplexer and as few other gates as possible. Assume that only the
uncomplemented inputs w1, w2, w3, w4, and w5 are available.

w0

En

y0

w1 y1

y2

y3

y7

y6

y5

y4

w2

f

1

w1

w2

w3

Figure 4.44 Circuit for Example 4.24.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 46 Page number 234 magenta black

234 C H A P T E R 4 • Combinational-Circuit Building Blocks

0
0
0
0

0
1
1

w0 y2

0

y1

0
1
0
1

0
0
0

1

w1

1
0
0

0

w2

0
1
0

0

w3

0
0
1

0

w4

0
0
0

0

w5

0
0
0

0

w6

0
0
0

0

w7

0
0
0

0

y0

1
1
1
1

0
1
1

0 0
1
0
1

0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1
1
0
0

0
0
1
0

0
0
0
1

0

Figure 4.45 Truth table for an 8-to-3 binary encoder.

f

w2w5

w3 w5

w2 w3+

w1 w4

w2

w5

w3

1

Figure 4.46 Circuit for Example 4.26.

Solution: Since variables w1 and w4 appear in more product terms in the expression for
f than the other three variables, let us perform Shannon’s expansion with respect to these
two variables. The expansion gives

f = w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4

= w1w4(w2w5) + w1w4(w3w5) + w1w4(w2 + w3) + w1w4(1)

We can use a NOR gate to implement w2w5 = w2 + w5. We also need an AND gate and an
OR gate. The complete circuit is presented in Figure 4.46.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 47 Page number 235 magenta black

4.8 Examples of Solved Problems 235

0
0
0
0

0
1
1

b0 g2

0

g1

0
1
1
0

b1b2 g0

1
1
1
1

1
0
0

1 0
1
1
0

0
0
0
0

0
1
1

0 0
1
0
1

1
1
1
1

0
1
1

0 0
1
0
1

Figure 4.47 Binary to Gray code coversion.

Example 4.27Problem: In Chapter 2 we pointed out that the rows and columns of a Karnaugh map
are labeled using Gray code. This is a code in which consecutive valuations differ in one
variable only. Figure 4.47 depicts the conversion between three-bit binary and Gray codes.
Design a circuit that can convert a binary code into Gray code according to the figure.

Solution: From the figure it follows that

g2 = b2

g1 = b1b2 + b1b2

= b1 ⊕ b2

g0 = b0b1 + b0b1

= b0 ⊕ b1

Example 4.28Problem: In Section 4.1.2 we showed that any logic function can be decomposed using
Shannon’s expansion theorem. For a four-variable function, f (w1, . . . , w4), the expansion
with respect to w1 is

f (w1, . . . , w4) = w1fw1 + w1fw1

A circuit that implements this expression is given in Figure 4.48a.
(a) If the decomposition yields fw1 = 0, then the multiplexer in the figure can be replaced
by a single logic gate. Show this circuit.
(b) Repeat part (a) for the case where fw1 = 1.

Solution: The desired circuits are shown in parts (b) and (c) of Figure 4.48.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 48 Page number 236 magenta black

236 C H A P T E R 4 • Combinational-Circuit Building Blocks

f

w1

w2

w3

w4

f w1

fw1

0

1

(a) Shannon’s expansion of the function f.

fw1

w1

w2

w3

w4

f

(b) Solution for part a.

w1

w2

w3

w4

f
f w1

(c) Solution for part b.

Figure 4.48 Circuits for Example 4.28.

Example 4.29 Problem: In Section 2.17 we said that field-programmable gate arrays (FPGAs) contain
lookup tables (LUTs) that are used to implement logic functions. Each LUT can be pro-
grammed to implement any logic function of its inputs. FPGAs are discussed in detail in
Appendix B. Many commercial FPGAs contain four-input lookup tables (4-LUTs). What
is the minimum number of 4-LUTs needed to construct a 4-to-1 multiplexer with select
inputs s1 and s0 and data inputs w3, w2, w1, and w0?

Solution: A straightforward attempt is to use directly the expression that defines the 4-to-1
multiplexer

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

Let g = s1s0w0 + s1s0w1 and h = s1s0w2 + s1s0w3, so that f = g + h. This decomposition
leads to the circuit in Figure 4.49a, which requires three LUTs.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 49 Page number 237 magenta black

4.8 Examples of Solved Problems 237

w0

w1

s0

s1

w2

w3

f

k

(b) Using two LUTs

(a) Using three LUTs

s0

s1

w0

w1

w2

w3

f
0

0

g

h

LUT

LUT

LUT

LUT

LUT

Figure 4.49 Circuits for Example 4.29.

When designing logic circuits, one can sometimes come up with a clever idea which
leads to a superior implementation. Figure 4.49b shows how it is possible to implement
the multiplexer with just two LUTs, based on the following observation. The truth table in
Figure 4.2b indicates that when s1 = 0 the output must be either w0 or w1, as determined
by the value of s0. This can be generated by the first LUT, with the output k. The second
LUT must make the choice between w2 and w3 when s1 = 1. But, the choice can be made
only by knowing the value of s0. Since it is impossible to have five inputs in the LUT, more
information has to be passed from the first to the second LUT. Observe that when s1 = 1
the output f will be equal to either w2 or w3, in which case it is not necessary to know the
values of w0 and w1. Hence, in this case we can pass on the value of s0 through the first
LUT, rather than w0 or w1. This can be done by making the function of this LUT

k = s1(s0w0 + s0w1) + s1s0

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 50 Page number 238 magenta black

238 C H A P T E R 4 • Combinational-Circuit Building Blocks

w3 w2 w1 w00

Shift

y3 y2 y1 y0 k

1 0 1 0 1 0 1 0 1 0

0

Figure 4.50 A shifter circuit.

Then, the second LUT performs the function

f = s1k + s1(kw3 + kw4)

Example 4.30 Problem: In digital systems it is often necessary to have circuits that can shift the bits of
a vector by one or more bit positions to the left or right. Design a circuit that can shift a
four-bit vector W = w3w2w1w0 one bit position to the right when a control signal Shift is
equal to 1. Let the outputs of the circuit be a four-bit vector Y = y3y2y1y0 and a signal k,
such that if Shift = 1 then y3 = 0, y2 = w3, y1 = w2, y0 = w1, and k = w0. If Shift = 0
then Y = W and k = 0.

Solution: The required circuit can be implemented with five 2-to-1 multiplexers as shown
in Figure 4.50. The Shift signal is used as the select input to each multiplexer.

Example 4.31 Problem: The shifter circuit in Example 4.30 shifts the bits of an input vector by one bit
position to the right. It fills the vacated bit on the left side with 0. A more versatile shifter
circuit may be able to shift by more bit positions at a time. If the bits that are shifted out are
placed into the vacated positions on the left, then the circuit effectively rotates the bits of
the input vector by a specified number of bit positions. Such a circuit is often called a barrel
shifter. Design a four-bit barrel shifter that rotates the bits by 0, 1, 2, or 3 bit positions as
determined by the valuation of two control signals s1 and s0.

Solution: The required action is given in Figure 4.51a. The barrel shifter can be imple-
mented with four 4-to-1 multiplexers as shown in Figure 4.51b. The control signals s1 and
s0 are used as the select inputs to the multiplexers.

Example 4.32 Problem: Write Verilog code that represents the circuit in Figure 4.17. Use the dec2to4
module in Figure 4.31 as a subcircuit in your code.

Solution: The code is shown in Figure 4.52. Note that the dec2to4 module can be included
in the same file as we have done in the figure, but it can also be in a separate file in the
project directory.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 51 Page number 239 magenta black

4.8 Examples of Solved Problems 239

w3 w2 w1 w0

y3 y2 y1 y0

s1

s0

0
0
1
1

1
0
1

y3s1

0

s0 y2 y1 y0

w3 w2 w1 w0
w0 w3 w2 w1
w1 w0 w3 w2
w2 w1 w0 w3

(a) Truth table

(b) Circuit

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 4.51 A barrel shifter circuit.

Example 4.33Problem: Write Verilog code that represents the shifter circuit in Figure 4.50.

Solution: One possibility is to specify the structure of this circuit as shown in Figure 4.53.
The if-else construct is used to define the desired shifting of individual bits. A typical
Verilog compiler will implement this code with 2-to-1 multiplexers as depicted in Fig-
ure 4.50.

An alternative is to make use of the shift operator defined in Section 4.6.5, as indicated
in Figure 4.54.

Example 4.34Problem: Write Verilog code that defines the barrel shifter in Figure 4.51.

Solution: The code in Figure 4.55 is a possible solution. The rotate function is accomplished
by concatenating two copies of the input vector W and shifting the obtained 8-bit vector to
the right by the number of bit positions specified as the input S. The four least-significant
bits of the resulting 8-bit vector are the desired output Y.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 52 Page number 240 magenta black

240 C H A P T E R 4 • Combinational-Circuit Building Blocks

module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output f;
wire [0:3] Y;

dec2to4 decoder (S, 1, Y);
assign f = |(W & Y);

endmodule

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3] Y;

always @(W, En)
case ({En, W})

3’b100: Y = 4’b1000;
3’b101: Y = 4’b0100;
3’b110: Y = 4’b0010;
3’b111: Y = 4’b0001;
default: Y = 4’b0000;

endcase

endmodule

Figure 4.52 Verilog code for Example 4.32.

Example 4.35 The concept of parity is widely used in digital systems for error-checking purposes. When
digital information is transmitted from one point to another, perhaps by long wires, it is
possible for some bits to become corrupted during the transmission process. For example,
the sender may transmit a bit whose value is equal to 1, but the receiver observes a bit whose
value is 0. Suppose that a data item consists of n bits. A simple error-checking mechanism
can be implemented by including an extra bit, p, which indicates the parity of the n-bit item.
Two kinds of parity can be used. For even parity the p bit is given the value such that the
total number of 1s in the n + 1 transmitted bits (comprising the n-bit data and the parity bit
p) is even. For odd parity the p bit is given the value that makes the total number of 1s odd.
The sender generates the p bit based on the n-bit data item that is to be transmitted. The
receiver checks whether the parity of the received item is correct.

Parity generating and checking circuits can be realized with XOR gates. For example,
for a four-bit data item consisting of bits x3x2x1x0, the even parity bit can be generated as

p = x3 ⊕ x2 ⊕ x1 ⊕ x0

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 53 Page number 241 magenta black

4.8 Examples of Solved Problems 241

module shifter (W, Shift, Y, k);
input [3:0] W;
input Shift;
output reg [3:0] Y;
output reg k;

always @(W, Shift)
begin

if (Shift)
begin

Y[3] = 0;
Y[2:0] = W[3:1];
k = W[0];

end
else
begin

Y = W;
k = 0;

end
end

endmodule

Figure 4.53 Verilog code for the circuit in Figure 4.50.

At the receiving end the checking is done using

c = p ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0

If c = 0, then the received item shows the correct parity. If c = 1, then an error has occurred.
Note that observing c = 0 is not a guarantee that the received item is correct. If two or any
even number of bits have their values inverted during the transmission, the parity of the
data item will not be changed; hence the error will not be detected. But if an odd number
of bits are corrupted, then the error will be detected.

Problem: The ASCII code, discussed in Section 1.5.3, uses seven-bit patterns to represent
characters. In computer applications it is common to use one byte per character. The eighth
bit, b7, is usually set to 0 for use in digital processing. But, if the the character data is to be
transmitted from one digital system to another, it may be prudent to use bit b7 as a parity
bit. Write Verilog code that specifies a circuit that accepts an input byte (where b7 = 0) and
produces an output byte where b7 is the even parity bit.

Solution: Let X and Y be the input and output bytes, respectively. Then, the desired
solution is given in Figure 4.56.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 54 Page number 242 magenta black

242 C H A P T E R 4 • Combinational-Circuit Building Blocks

module shifter (W, Shift, Y, k);
input [3:0] W;
input Shift;
output reg [3:0] Y;
output reg k;

always @(W, Shift)
begin

if (Shift)
begin

Y = W > > 1;
k = W[0];

end
else
begin

Y = W;
k = 0;

end
end

endmodule

Figure 4.54 Alternative Verilog code for the circuit in
Figure 4.50.

module barrel (W, S, Y);
input [3:0] W;
input [1:0] S;
output [3:0] Y;
wire [3:0] T;

assign {T, Y} = {W, W} >> S;

endmodule

Figure 4.55 Verilog code for the barrel shifter.

module parity (X, Y);
input [7:0] X;
output [7:0] Y;

assign Y = {^X[6:0], X[6:0]};

endmodule

Figure 4.56 Verilog code for Example 4.35.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 55 Page number 243 magenta black

Problems 243

Problems

Answers to problems marked by an asterisk are given at the back of the book.

4.1 Show how the function f (w1, w2, w3) = ∑
m(0, 2, 3, 4, 5, 7) can be implemented using a

3-to-8 binary decoder and an OR gate.

4.2 Show how the function f (w1, w2, w3) = ∑
m(1, 2, 3, 5, 6) can be implemented using a

3-to-8 binary decoder and an OR gate.

*4.3 Consider the function f = w1w3 + w2w3 + w1w2. Use the truth table to derive a circuit for
f that uses a 2-to-1 multiplexer.

4.4 Repeat Problem 4.3 for the function f = w2w3 + w1w2.

*4.5 For the function f (w1, w2, w3) = ∑
m(0, 2, 3, 6), use Shannon’s expansion to derive an

implementation using a 2-to-1 multiplexer and any other necessary gates.

4.6 Repeat Problem 4.5 for the function f (w1, w2, w3) = ∑
m(0, 4, 6, 7).

4.7 Consider the function f = w2 + w1w3 + w1w3. Show how repeated application of Shan-
non’s expansion can be used to derive the minterms of f .

4.8 Repeat Problem 4.7 for f = w2 + w1w3.

4.9 Prove Shannon’s expansion theorem presented in Section 4.1.2.

*4.10 Section 4.1.2 shows Shannon’s expansion in sum-of-products form. Using the principle of
duality, derive the equivalent expression in product-of-sums form.

*4.11 Consider the function f = w1w2 + w2w3 + w1w2w3. The cost of this minimal sum-of-
products expression is 14, which includes four gates and 10 inputs to the gates. Use
Shannon’s expansion to derive a multilevel circuit that has a lower cost and give the cost
of your circuit.

4.12 Use multiplexers to implement the circuit for stage 0 of the carry-lookahead adder in Figure
3.15 (included in the right-most shaded area).

*4.13 Derive minimal sum-of-products expressions for the outputs a, b, and c of the 7-segment
display in Figure 4.21.

4.14 Derive minimal sum-of-products expressions for the outputs d , e, f , and g of the 7-segment
display in Figure 4.21.

4.15 For the function, f , in Example 4.26 perform Shannon’s expansion with respect to variables
w1 and w2, rather than w1 and w4. How does the resulting circuit compare with the circuit
in Figure 4.46?

4.16 Consider the multiplexer-based circuit illustrated in Figure P4.1. Show how the function
f = w2w3 + w1w3 + w2w3 can be implemented using only one instance of this circuit.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 56 Page number 244 magenta black

244 C H A P T E R 4 • Combinational-Circuit Building Blocks

i3

i4
i5

i8

f

i2

i6

i1

i7

Figure P4.1 A multiplexer-based circuit.

4.17 Show how the function f = w1w3 + w1w3 + w2w3 + w1w2 can be realized using one or
more instances of the circuit in Figure P4.1. Note that there are no NOT gates in the circuit;
hence complements of signals have to be generated using the multiplexers in the logic block.

*4.18 Consider the Verilog code in Figure P4.2. What type of circuit does the code represent?
Comment on whether or not the style of code used is a good choice for the circuit that it
represents.

module problem4_18 (W, En, y0, y1, y2, y3);
input [1:0] W;
input En;
output reg y0, y1, y2, y3;

always @(W, En)
begin

y0 = 0;
y1 = 0;
y2 = 0;
y3 = 0;
if (En)

if (W == 0) y0 = 1;
else if (W == 1) y1 = 1;
else if (W == 2) y2 = 1;
else y3 = 1;

end

endmodule

Figure P4.2 Code for Problem 4.18.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 57 Page number 245 magenta black

Problems 245

4.19 Write Verilog code that represents the function in Problem 4.2, using a case statement.

4.20 Write Verilog code for a 4-to-2 binary encoder.

4.21 Write Verilog code for an 8-to-3 binary encoder.

4.22 Figure P4.3 shows a modified version of the code for a 2-to-4 decoder in Figure 4.37. This
code is almost correct but contains one error. What is the error?

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3] Y;
integer k;

always @(W, En)
for (k = 0; k < = 3; k = k+1)

if (W == k)
Y[k] = En;

endmodule

Figure P4.3 Code for Problem 4.22.

4.23 Derive the circuit for an 8-to-3 priority encoder.

4.24 Using a casex statement, write Verilog code for an 8-to-3 priority encoder.

4.25 Repeat Problem 4.24, using a for loop.

4.26 Create a Verilog module named if2to4 that represents a 2-to-4 binary decoder using an
if-else statement. Create a second module named h3to8 that represents the 3-to-8 binary
decoder in Figure 4.15 using two instances of the if2to4 module.

4.27 Create a Verilog module named h6to64 that represents a 6-to-64 binary decoder. Use the
treelike structure in Figure 4.16, in which the 6-to-64 decoder is built using nine instances
of the h3to8 decoder created in Problem 4.26.

4.28 Write Verilog code that represents the circuit in Figure 4.17. Use the dec2to4 module in
Figure 4.31 as a subcircuit in your code.

4.29 Design a shifter circuit, similar to the one in Figure 4.50, which can shift a four-bit input
vector, W = w3w2w1w0, one bit-position to the right when the control signal Right is equal
to 1, and one bit-position to the left when the control signal Left is equal to 1. When Right
= Left = 0, the output of the circuit should be the same as the input vector. Assume that
the condition Right = Left = 1 will never occur.

4.30 Design a circuit that can multiply an eight-bit number, A = a7, . . . , a0, by 1, 2, 3 or 4 to
produce the result A, 2A, 3A or 4A, respectively.

CONFIRMING PROOFS
December 14, 2012 14:06 vra80547_ch04 Sheet number 58 Page number 246 magenta black

246 C H A P T E R 4 • Combinational-Circuit Building Blocks

4.31 Write Verilog code that implements the task in Problem 4.30.

4.32 Figure 4.47 depicts the relationship between the binary and Gray codes. Design a circuit
that can convert Gray code into binary code.

4.33 Example 4.35 and Figure 4.56 show how a circuit that generates an ASCII byte suitable for
sending over a communications link may be defined. Write Verilog code for its counterpart
at the receiving end, where byte Y (which includes the parity bit) has to be converted into
byte X in which the bit x7 has to be 0. An error signal has to be produced, which is set to
0 or 1 depending on whether the parity check indicates correct or erroneous transmission,
respectively.

References

1. C. E. Shannon, “Symbolic Analysis of Relay and Switching Circuits,” Transactions
AIEE 57 (1938), pp. 713–723.

2. D. A. Thomas and P. R. Moorby, The Verilog Hardware Description Language, 5th
ed., (Kluwer: Norwell, MA, 2002).

3. Z. Navabi, Verilog Digital System Design, 2nd ed., (McGraw-Hill: New York, 2006).

4. S. Palnitkar, Verilog HDL—A Guide to Digital Design and Synthesis, 2nd ed.,
(Prentice-Hall: Upper Saddle River, NJ, 2003).

5. D. R. Smith and P. D. Franzon, Verilog Styles for Synthesis of Digital Systems,
(Prentice-Hall: Upper Saddle River, NJ, 2000).

6. J. Bhasker, Verilog HDL Synthesis—A Practical Primer, (Star Galaxy Publishing:
Allentown, PA, 1998).

7. D. J. Smith, HDL Chip Design, (Doone Publications: Madison, AL, 1996).

8. S. Sutherland, Verilog 2001—A Guide to the New Features of the Verilog Hardware
Description Language, (Kluwer: Hingham, MA, 2001).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

