
MATLAB

MATLAB has become a powerful tool of technical professionals world-
wide. The term MATLAB is an abbreviation for MATrix LABoratory,
implying that MATLAB is a computational tool that uses matrices and
vectors (or arrays) to carry out numerical analysis, signal processing,
and scientific visualization tasks. Because MATLAB uses matrices as
its fundamental building blocks, one can write mathematical expres-
sions involving matrices just as easily as one would on paper. MATLAB
is available for Macintosh, Unix, and Windows operating systems. A
student version of MATLAB is available for personal computers (PCs).
A copy of MATLAB can be obtained from

The Mathworks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Phone:(508) 647-7000
Website: http://www.mathworks.com

A brief introduction to MATLAB is presented in this appendix.
What is presented is sufficient for solving problems in this book. More
about MATLAB can be found in MATLAB books and from on-line help.
The best way to learn MATLAB is to work with it after having learned
the basics.

MATLAB Fundamentals
The Command window is the primary area where you interact with
MATLAB. A little later, we will learn how to use the text editor to cre-
ate M-files, which allow for execution of sequences of commands. For
now, we focus on how to work in the Command window. We will first
learn how to use MATLAB as a calculator.

Using MATLAB as a Calculator
The following are algebraic operators used in MATLAB:

+ Addition

- Subtraction

* Multiplication

^ Exponentiation

/ Right division (a/b means)

\ Left division (a\b means)

To begin to use MATLAB, we use these operators. Type com-
mands to the MATLAB prompt “>>” in the Command window

b � a

a � b

1

26

MATLAB.qxd 1/24/12 7:00 PM Page 26 CONFIRMING PAGES

TABLE 1

Typical elementary math functions.

Function Remark

abs(x) Absolute value or complex magnitude of x
acos, acosh(x) Inverse cosine and inverse hyperbolic cosine of x in

radians
acot, acoth(x) Inverse cotangent and inverse hyperbolic cotangent

of x in radians
angle(x) Phase angle (in radian) of a complex number x
asin, asinh(x) Inverse sine and inverse hyperbolic sine of x in radians
atan, atanh(x) Inverse tangent and inverse hyperbolic tangent of x

in radians
conj(x) Complex conjugate of x
cos, cosh(x) Cosine and hyperbolic cosine of x in radians
cot, coth(x) Cotangent and hyperbolic cotangent of x in radians
exp(x) Exponential of x
fix Round toward zero
imag(x) Imaginary part of a complex number x
log(x) Natural logarithm of x
log2(x) Logarithm of x to base 2
log10(x) Common logarithms (base 10) of x
real(x) Real part of a complex number x
sin, sinh(x) Sine and hyperbolic sine of x in radians
sqrt(x) Square root of x
tan, tanh Tangent and hyperbolic tangent of x in radians

(correct any mistakes by backspacing) and press the Enter key. For
example,

>> a = 2; b = 4;c = -6;

>> dat = b^2 - 4*a*c

dat =

64

>> e = sqrt(dat)/10

e =

0.8000

The first command assigns the values 2, 4, and to the variables a, b,
and c, respectively. MATLAB does not respond because this line ends with
a colon. The second command sets dat to and MATLAB returns
the answer as 64. Finally, the third line sets e equal to the square root of
dat and divides by 10. MATLAB prints the answer as 0.8. Other mathe-
matical functions, listed in Table 1, can be used similarly to how the func-
tion sqrt is used here. Table 1 provides just a tiny sample of MATLAB
functions. Others can be obtained from the on-line help. To get help, type

>> help

A long list of topics will come up. For a specific topic, type the com-
mand name. For example, to get help on “log to base 2,” type

>> help log2

A help message on the log function will be displayed. Note that
MATLAB is case sensitive, so sin(a) is not the same as sin(A).

b2 � 4ac

�6

MATLAB 27

MATLAB.qxd 1/24/12 7:00 PM Page 27 CONFIRMING PAGES

Try the following examples:

>> 3^(log10(25.6))

>> y = 2* sin(pi/3)

>> exp(y+4-1)

In addition to operating on mathematical functions, MATLAB
allows one to work easily with vectors and matrices. A vector (or array)
is a special matrix with one row or one column. For example,

>> a = [1 -3 6 10 -8 11 14];

is a row vector. Defining a matrix is similar to defining a vector. For
example, a matrix can be entered as

>> A = [1 2 3; 4 5 6; 7 8 9]

or as

>> A = [1 2 3

4 5 6

7 8 9]

In addition to the arithmetic operations that can be performed on a
matrix, the operations in Table 2 can be implemented.

Using the operations in Table 2, we can manipulate matrices as
follows:

>> B = A’

B =
1 4 7

2 5 8

3 6 9

>> C = A + B

C =
2 6 10

6 10 14

10 14 18

>> D = A^3 - B*C

D =
372 432 492

948 1131 1314

1524 1830 2136

>> e = [1 2; 3 4]

e =
1 2

3 4

>> f = det(e)

f =

-2

>> g = inv(e)
g =

-2.0000 1.0000

1.5000 -0.5000

3 � 3

28 MATLAB

TABLE 2

Matrix operations.

Operation Remark

A’ Finds the transpose of
matrix A

det(A) Evaluates the determinant
of matrix A

inv(A) Calculates the inverse of
matrix A

eig(A) Determines the eigenval
ues of matrix A

diag(A) Finds the diagonal
elements of matrix A

MATLAB.qxd 1/24/12 7:00 PM Page 28 CONFIRMING PAGES

>> x = 0:pi/100:5*pi;
>> y = 10*sin(2*pi*x);
>> plot(x,y);

>> H = eig(g)

H =

-2.6861

0.1861

Note that not all matrices can be inverted. A matrix can be inverted if
and only if its determinant is nonzero. Special matrices, variables, and
constants are listed in Table 3. For example, type

>> eye(3)

ans =

1 0 0

0 1 0

0 0 1

to get a identity matrix.

Plotting
To plot using MATLAB is easy. For a two-dimensional plot, use the
plot command with two arguments as follows:

>> plot(xdata,ydata)

where xdata and ydata are vectors of the same length containing
the data to be plotted.

For example, suppose we want to plot y = 10*sin(2*pi*x)
from 0 to 5*pi. We will proceed with the following commands:

% x is a vector, 0 <= x <= 5*pi, increments of pi/100

% creates a vector y

% creates the plot

With this, MATLAB responds with the plot in Fig. 1.
MATLAB will let you graph multiple plots together and distin-

guish them with different colors. This is obtained with the format
plot(xdata, ydata, ‘color’), where the color is indicated
by using a character string from the options listed in Table 4.

For example,

>> plot (x1,y1, ‘r’, x2,y2, ‘b’, x3,y3, ‘--’);

will graph data (x1, y1) in red, data (x2, y2) in blue, and data
(x3, y3) in dashed line all on the same plot.

3 � 3

MATLAB 29

TABLE 3

Special matrices, variables, and constants.

Matrix, Variable, Constant Remark

eye Identity matrix
ones An array of 1s
zeros An array of 0s
i or j Imaginary unit or sqrt(-1)
pi 3.142
NaN Not a number
inf Infinity
eps A very small number, 2.2e - 16
rand Random element

MATLAB.qxd 1/24/12 7:00 PM Page 29 CONFIRMING PAGES

0.5

0

30

20

10
0 0

5
10

15
20

25

– 0.5

Figure 2
A three-dimensional plot.

TABLE 4

Various color and line types.

y Yellow . Point
m Magenta o Circle
c Cyan x x mark
r Red + Plus
g Green - Solid
b Blue * Star
w White : Dotted
k Black –. Dashdot

–– Dashed
0 2 4 6 8 10 12 14 16

–10

–8

–6

–4

–2

0

2

4

6

8

10

Figure 1
MATLAB plot of y = 10*sin(2*pi*x).

MATLAB also allows for logarithm scaling. Rather than using the
plot command, we use

loglog log(y) versus log(x)

semilogx y versus log(x)

semilogy log(y) versus x

Three-dimensional plots are drawn using the functions mesh
and meshdom (mesh domain). For example, to draw the graph of
z = x*exp(- x^2 - y^2)over the domain -1 < x, y < 1, we
type the following commands:

>> xx = -1:.1:1;

>> yy = xx;

>> [x,y] = meshgrid(xx,yy);

>> z = x.*exp(-x.^2 -y.^2);

>> mesh(z);

(The dot symbol used in x. and y. allows element-by-element mul-
tiplication.) The result is shown in Fig. 2.

30 MATLAB

MATLAB.qxd 1/24/12 7:00 PM Page 30 CONFIRMING PAGES

0 2 4 6 8 10 12 14 16
–10

–8

–6

–4

–2

0

2

4

6

8

10

x (in radians)

10
*s

in
(2

*p
i*

x)

A sine function

Figure 3
MATLAB plot of y = 10*sin(2*pi*x) with title
and labels.

TABLE 5

Relational and logical
operators.

Operator Remark

< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
~= not equal
& and
| or
~ not

x = 0:pi/100:5*pi;
y = 10*sin(2*pi*x);
plot(x,y);
xlabel(‘x (in radians)’);
ylabel(‘10*sin(2*pi*x)’);
title(‘A sine functions’);
grid

Programming MATLAB
So far we have used MATLAB as a calculator. You can also use
MATLAB to create your own program. The command line editing in
MATLAB can be inconvenient if one has several lines to execute. To
avoid this problem, you can create a program that is a sequence of
statements to be executed. If you are in the Command window, click
File/New/M-files to open a new file in the MATLAB Editor/Debugger
or simple text editor. Type the program and save it in a file with an
extension .m, say filename.m; it is for this reason that it is called
an M-file. Once the program is saved as an M-file, exit the Debugger
window. You are now back in the Command window. Type the file
without the extension .m to get results. For example, the plot that was
made in Fig. 2 can be improved by adding title and labels and being
typed as an M-file called example1.m.

% x is a vector, 0 <= x <= 5*pi, increments of pi/100

% creates a vector y

% create the plot

% label the x axis

% label the y axis

% title the plot

% add grid

Once the file is saved as example1.m and you exit the text editor,
type

>> example1

in the Command window and hit Enter to obtain the result shown in
Fig. 3.

To allow flow control in a program, certain relational and logical
operators are necessary. They are shown in Table 5. Perhaps the most
commonly used flow control statements are for and if. The for

MATLAB 31

MATLAB.qxd 1/24/12 7:00 PM Page 31 CONFIRMING PAGES

statement is used to create a loop or a repetitive procedure and has the
general form

for x = array

[commands]

end

The if statement is used when certain conditions need to be met before
an expression is executed. It has the general form

if expression

[commands if expression is True]

else

[commands if expression is False]

end

For example, suppose we have an array y(x) and we want to
determine the minimum value of y and its corresponding index x. This
can be done by creating an M-file as shown here.

% example2.m

% This program finds the minimum y value and
its corresponding x index

x = [1 2 3 4 5 6 7 8 9 10]; %the nth term in y

y = [3 9 15 8 1 0 -2 4 12 5];

min1 = y(1); for k = 1:10

min2 = y(k);

if(min2 < min1)

min1 = min2;

xo = x(k);

else

min1 = min1;

end

end

diary

min1, xo

diary off

Note the use of the for and if statements. When this program is
saved as example2.m, we execute it in the Command window and
obtain the minimum value of y as -2 and the corresponding value of
x as 7, as expected.

>> example2

min1 =

-2

xo =

7

32 MATLAB

MATLAB.qxd 1/24/12 7:00 PM Page 32 CONFIRMING PAGES

If we are not interested in the corresponding index, we could do the
same thing using the command

>> min(y)

The following tips are helpful in working effectively with
MATLAB:

• Comment your M-file by adding lines beginning with a %
character.

• To suppress output, end each command with a semicolon (;); you
may remove the semicolon when debugging the file.

• Press the up and down arrow keys to retrieve previously executed
commands.

• If your expression does not fit on one line, use an ellipse at
the end of the line and continue on the next line. For example,
MATLAB considers

y = sin(x + log10(2x + 3)) + cos(x + ...
log10(2x + 3));

as one line of expression.
• Keep in mind that variable and function names are case sensitive.

Solving Equations
Consider the general system of n simultaneous equations:

or in matrix form

where

A is a square matrix and is known as the coefficient matrix, while X
and B are vectors. X is the solution vector we are seeking to get. There
are two ways to solve for X in MATLAB. First, we can use the back-
slash operator(\) so that

X = A\B

Second, we can solve for X as

which in MATLAB is the same as

X = inv(A)*B

X � A�1B

A � ≥
a11 a12

p a1n

a21 a22
p a2n

p p p p
an1 an2 an3 an4

¥ X � ≥
x1

x2

p
xn

¥ B � ≥
b1

b2

p
bn

¥

AX � B

 an1x1 � an2 x2 � p � ann xn � bn

o
 a21x1 � a22 x2 � p � a2n xn � b2

 a11x1 � a12
x2 � p � a1n xn � b1

(. . .)

MATLAB 33

MATLAB.qxd 1/24/12 7:00 PM Page 33 CONFIRMING PAGES

DC Circuit Analysis
There is nothing special in applying MATLAB to resistive dc circuits.
We apply mesh and nodal analysis as usual and solve the resulting
simultaneous equations using MATLAB as is described in Section 1.
Examples 2 to 5 illustrate.

2

Use nodal analysis to solve for the nodal voltages in the circuit of Fig. 4.

Solution:
At node 1,

(2.1)2 �
V1 � V2

4
�

V1 � 0

8
S 16 � 3V1 � 2V2

Example 2

Practice Problem 1 Solve the problem in Practice Prob. A.2 (found in the fifth edition text)
using MATLAB.

Answer: x1 = 3 = x3, x2 = 2.

34 MATLAB

Use MATLAB to solve Example A.2, found in the fifth edition text.

Solution:
From Example A.2, we obtain matrix A and vector B and enter them
in MATLAB as follows.

>> A = [25 -5 -20; -5 10 -4; -5 -4 9]

A =

25 -5 -20

-5 10 -4

-5 -4 9

>> B = [50 0 0]’

B =

50

0

0

>> X = inv(A)*B

X =

29.6000

26.0000

28.0000

>> X = A\B

X =

29.6000

26.0000

28.0000

Thus, x1 = 29.6, x2 = 26, and x3 = 28.

Example 1

MATLAB.qxd 1/27/12 6:04 PM Page 34

2 A

4 Ω

2 Ω

2 Ω

4 Ω

8 Ω 3Ix 3 A

V1 V2 V3

V4
Ix

Figure 4
For Example 2.

At node 2,

But

so that

(2.2)

At node 3,

(2.3)

At node 4,

(2.4)

Combining Eqs. (2.1) to (2.4) gives

or

We now use MATLAB to determine the nodal voltages contained in
vector .

>> A = [3 -2 0 0;

-1 5 1 -5;

0 -2 3 -1;

0 -2 -1 3];

>> B = [16 0 12 -8]’;

>> V = inv(A)*B

V =

-6.0000

-17.0000

-13.5000

-18.5000

Hence and .V4 � �18.5 VV1 � �6.0, V2 � �17, V3 � �13.5,

V

AV � B

≥
3 �2 0 0

�1 5 1 �5

0 �2 3 �1

0 �2 �1 3

¥ ≥
V1

V2

V3

V4

¥ � ≥
16

0

12

�8

¥

0 � 2 �
V4 � V2

2
�

V4 � V3

4
S �8 � �2V2 � V3 � 3V4

3 �
V3 � V2

2
�

V3 � V4

4
S 12 � �2V2 � 3V3 � V4

 0 � �V1 � 5V2 � V3 � 5V4

 3 aV4 � V3

4
b �

V2 � V1

4
�

V2 � V3

2
�

V2 � V4

2
S

Ix �
V4 � V3

4

3Ix �
V2 � V1

4
�

V2 � V3

2
�

V2 � V4

2

MATLAB 35

MATLAB.qxd 1/24/12 7:00 PM Page 35 CONFIRMING PAGES

36 MATLAB

Find the nodal voltages in the circuit in Fig. 5 using MATLAB.Practice Problem 2

+
−

10 Ω

20 Ω

10 Ω

5 Ω 5 Ω 20 Ω20 Ω

V1 V4
V2

2 A

4Io
V3

Io

Figure 5
For Practice Prob. 2.

Answer:
and V4 � �3.636 V.V1 � 14.55, V2 � 38.18, V3 � �34.55,

Use MATLAB to solve for the mesh currents in the circuit in Fig. 6.Example 3

I4

I34 Ω

6 Ω2 Ω

3 Ω

2 Ω

10 Ω

4 Ω4 Ω6V I2I1

−
+

−
+

1 Ω

12 V

Figure 6
For Example 3.

Solution:
For the four meshes,

(3.1)

(3.2)

(3.3)

(3.4)
20I4 � 2I1 � 6I2 � 2I3 � 0 ¡ 0 � �2I1 � 6I2 � 2I3 � 20I4

�12 � 10I3 � 4I2 � 2I4 � 0 ¡ 12 � �4I2 � 10I3 � 2I4

�12 � �4I1 � 15I2 � 4I3 � 6I4

12 � 15I2 � 4I1 � 4I3 � 6I4 � 0 ¡

�6 � 9I1 � 4I2 � 2I4 � 0 ¡ 6 � 9I1 � 4I2 � 2I4

MATLAB.qxd 1/24/12 7:00 PM Page 36 CONFIRMING PAGES

Find the mesh currents in the circuit in Fig. 7 using MATLAB. Practice Problem 3

I1

I3

I2

I4

2 Ω 2 Ω

2 Ω

4 Ω 4 Ω

2 Ω

8 V−
+

10 V −
+

4 Ω

4 Ω

Figure 7
For Practice Prob. 3.

Answer: , and I4 � 0.2222 A.I1 � 0.2222, I2 � �0.6222, I3 � 1.1778

Putting Eqs. (3.1) to (3.4) together in matrix form, we have

or where the vector I contains the unknown mesh currents.
We now use MATLAB to determine I as follows:

>> A = [9 -4 0 -2; -4 15 -4 -6;
0 -4 10 -2; -2 -6 -2 20]

A =

9 -4 0 -2

-4 15 -4 -6

0 -4 10 -2

-2 -6 -2 20

>> B = [6 -12 12 0]’

B =

6

-12

12

0

>> I = inv(A)*B

I =

0.5203

-0.3555

1.0682

0.0522

Thus, and .I4 � 0.0522 AI1 � 0.5203, I2 � �0.3555, I3 � 1.0682,

AI � B,

≥
9 �4 0 �2

�4 15 �4 �6

0 �4 10 �2

�2 �6 �2 20

¥ ≥
I1

I2

I3

I4

¥ � ≥
6

�12

12

0

¥

MATLAB 37

MATLAB.qxd 1/24/12 7:00 PM Page 37 CONFIRMING PAGES

10 Ω 20 Ω 0.8 A−
+

– j10 Ω j10 Ω

4 –30°

V1 V2

Figure 9
The frequency-domain equivalent circuit of the
circuit in Fig. 8.

Example 4 In the circuit of Fig. 8, let and
Find and .

Solution:
As usual, we convert the circuit in the time-domain to its frequency-
domain equivalent.

Thus, the frequency-domain equivalent circuit is shown in Fig. 9. We
now apply nodal analysis to this.

20 mF ¡
1

j�C
�

1

j10 � � 10�3 � �j10

2 H ¡ j�L � j5 � 2 � j10

 i � 0.8 cos 5t ¡ I � 8l0	

 v � 4 cos(5t � 30) ¡ V � 4l�30	, � � 5

v2v1

i � 0.8 cos 5t A.v � 4 cos(5t � 30) V

v1 v2

10 Ω 20 Ω i−
+v

20 mF 2 H

Figure 8
For Example 4.

AC Circuit Analysis
Using MATLAB in ac circuit analysis is similar to how MATLAB is
used for dc circuit analysis. We must first apply nodal or mesh analy-
sis to the circuit and then use MATLAB to solve the resulting system
of equations. However, the circuit is in the frequency domain, and we
are dealing with phasors or complex numbers. So in addition to what
we learned in Section 2, we need to understand how MATLAB handles
complex numbers.

MATLAB expresses complex numbers in the usual manner, except
that the imaginary part can be either or representing . Thus,

can be written in MATLAB as 3 - j4, 3 - j*4, 3 - i4, or
3 - I*4. Here are the other complex functions:

abs(A) Absolute value of magnitude of A

angle(A) Angle of A in radians

conj(A) Complex conjugate of A

imag(A) Imaginary part of A

real(A) Real part of A

Keep in mind that an angle in radians must be multiplied by to
convert it to degrees, and vice versa. Also, the transpose operator (‘)
gives the complex conjugate transpose, whereas the dot-transpose (.‘)
transposes an array without conjugating it.

180�p

3 � j4
1�1ij

3

38 MATLAB

MATLAB.qxd 1/24/12 7:00 PM Page 38 CONFIRMING PAGES

At node 1,

(4.1)

At node 2,

(4.2)

Equations (4.1) and (4.2) can be cast in matrix form as

or . We use MATLAB to invert A and multiply the inverse by
to get

>> A = [-j 1; -2 (2 + j)]

A =

0 - 1.0000i 1.000

-2.0000 2.0000 + 1.000 i

>> B = [(3.468 - 2j) 16j].’ %note the dot-transpose

B =

3.4680 - 2.0000i

0 + 16.0000i

>> V = inv(A)*B

V =

4.6055 - 2.4403i

5.9083 + 2.6055i

>> abs(V(1))

ans =

5.2121

>> angle(V(1))*180/pi %converts angle from
radians to degrees

ans =

-27.9175

>> abs(V(2))

ans =

6.4573

>> angle(V(2))*180/pi

ans =

23.7973

Thus,

 V2 � 5.908 � j2.605 � 6.457l23.8	

 V1 � 4.6055 � j2.4403 � 5.212l�27.92	

V.B
AV � B

c �j 1

�2 (2 � j)
d cV1

V2
d � c3.468 � j2

j16
d

0.8 �
V2

20
�

V2 � V1

j10
 ¡ j16 � �2V1 � (2 � j)V2

 � �jV1 � V2

4l�30	 � V1

�j10
�

V1

10
�

V1 � V2

j10
 ¡ 4l�30	 � 3.468 � j2

MATLAB 39

MATLAB.qxd 1/24/12 7:00 PM Page 39 CONFIRMING PAGES

In the time domain,

v1 � 4.605 cos(5t � 27.92) V, v2 � 6.457 cos(5t � 23.8) V

40 MATLAB

Practice Problem 4 Calculate and in the circuit in Fig. 10 given A
and v � 12 cos 10t V.

i � 4 cos(10t � 40)v2v1

10 Ω

−
+ V

1 H

10 mF 50 Ωi

v2v1

Figure 10
For Practice Prob. 4.

Answer: 63.58 cos(10t � 10.68) V, 40 cos(10t � 50) V.

In the unbalanced three-phase system shown in Fig. 11, find currents
, and . Let

ZA � 12 � j10 �, ZB � 10 � j8 �, ZC � 15 � j6 �

IBbI1, I2, I3

Example 5

− +

− +

120 120° V

120 0° V

I1

2 Ω

1 Ω

2 Ω

I2

I3

Z

c C

ZA

Zc

a A

− +

120 –120° V

B
b

Figure 11
For Example 5.

Solution:
For mesh 1,

or

(5.1)I1(15 � j10) � I2 � I3(12 � j10) � 120l0	 � 120l�120	

� I2 � I3(12 � j10) � 0120l�120	 � 120l0	 � I1(2 � 1 � 12 � j10)

MATLAB.qxd 1/24/12 7:00 PM Page 40 CONFIRMING PAGES

For mesh 2,

or

(5.2)

For mesh 3,

or

(5.3)

In matrix form, we can express Eqs. (5.1) to (5.3) as

or

We input matrices and into MATLAB to get .

>> z = [(15 + 10j) -1 (-12 - 10j);

-1 (13 - 8j) (-10 + 8j);

(-12 - 10j) (-10 + 8j) (37 + 8j)];

>> c1=120*exp(j*pi*(-120)/180);

>> c2=120*exp(j*pi*(-120)/180);

>> a1=120 - c1; a2=c1 - c2;

>> V = [a1; a2; 0]

>> I = inv(z)*V

I=

16.9910 - 6.5953i

12.4023 - 16.9993i

5.6621 - 6.0471i

>> IbB = I(2) - I(1)

IbB =

-4.5887 - 10.4039i

>> abs(I(1))

ans =

18.2261

>> angle(I(1))*180/pi

ans =

-21.2146

IVZ

ZI � V

� £
120l0	 � 120l�120	

120l�120	 � 120l120	

0

§

£
15 � j10 �1 �12 � j10

�1 13 � j8 �10 � j8

�12 � j10 �10 � j8 37 � j8

§ £
I1

I2

I3

§

�I1(12 � j10) � I2(10 � j8) � I3(37 � j8) � 0

� I1(12 � j10) � I2(10 � j8) � 0I3(12 � j10 � 10 � j8 � 15 � j6)

�I1 � I2(13 � j8) � I3(10 � j8) � 120l�120	 � 120l120	

� I2(2 � 1 � 10 � j8) � I1 � I3(10 � j8) � 0120l120	 � 120l�120	

MATLAB 41

MATLAB.qxd 1/24/12 7:00 PM Page 41 CONFIRMING PAGES

Frequency Response
Frequency response involves plotting the magnitude and phase of the
transfer function or obtaining the Bode magnitude
and phase plots of . One hard way to obtain the plots is to generateH(s)

H(s) � D(s)�N(s)

4

>> abs (I(2))

ans =

21.0426

>> angle(I(2))*180/pi

ans =

-53.8864

>> abs(I(3))

ans =

8.2841

>> angle(I(3))*180/pi

ans =

-46.8833

>> abs(IbB)

ans =

11.3709

>> angle(IbB)*180/pi

ans =

-113.8001

Thus,

and IbB � 11.37l�113.8	A.I3 � 8.284l�46.88	,

I1 � 18.23l�21.21	, I2 � 21.04l�58.89	,

42 MATLAB

In the unbalanced wye-wye three-phase system in Fig. 12, find the line
currents , and and the phase voltage .VCNI3I1, I2

Practice Problem 5

A
+–

220 0° V

+–

220 –120° V

+–

220 120° V

B
N

C

I1

I2

I3

7 + j10 Ω

8 + j 6 Ω

10 – j12 Ω

2 + j1 Ω

2 – j 0.5 Ω

2 + j1 Ω

Figure 12
For Practice Prob. 5.

Answer:
94.29l159.3	 V.

22.66l�26.54	 A, 6.036l�150.48	 A, 19.93l138.9	 A,

MATLAB.qxd 1/24/12 7:00 PM Page 42 CONFIRMING PAGES

Use MATLAB to obtain the Bode plots of

Solution:
With the explanation previously given, we develop the MATLAB code
as shown here.

% for example 6

num=[1 0 0 0];

den = [1 14.8 38.1 2554];

w = logspace(-1,3);

bode(num, den, w);

title(‘Bode plot for a highpass filter’)

Running the program produces the Bode plots in Fig. 13. It is
evident from the magnitude plot that represents a highpass filter.G(s)

G (s) �
s3

s3 � 14.8s2 � 38.1s � 2554

Example 6

data using the for loop for each value of for a given range of
and then plot the data as we did in Section 1. However, there is an

easy way that allows us to use one of two MATLAB commands: freqs
and bode. For each command, we must first specify H(s) as num
and den, where num and den are the vectors of coefficients of the
numerator N(s) and denominator D(s) in descending powers of s,
i.e., from the highest power to the constant term. The general form of
the bode function is

bode(num, den, range);

where range is a specified frequency interval for the plot. If range is
omitted, MATLAB automatically selects the frequency range. The range
could be linear or logarithmic. For example, for
with 50 plot points, we can specify a linear range as

range = linspace(1,1000,50);

For a logarithmic range with and 100 plot
points in between, we specify range as

range = logspace(-2,4,100);

For the freqs function, the general form is

hs = freqs(num, den, range);

where hs is the frequency response (generally complex). We still need
to calculate the magnitude in decibels as

mag = 20*log 10(abs(hs))

and phase in degrees as

phase = angle(hs)*180/pi

and plot them, whereas the bode function does it all at once. We illus-
trate with an example.

10�2 6 � 6 104 rad/s

1 6 � 6 1000 rad/s

�
s � j�

MATLAB 43

MATLAB.qxd 1/24/12 7:00 PM Page 43 CONFIRMING PAGES

0

–50

–100

20

0

–20

–40

–60

–80

Ph
as

e
(d

eg
);

 m
ag

ni
tu

de
 (

dB
)

10–1 100 101 102 103

Frequency (rad/s)

Bode plot for a highpass filter

Figure 13
For Example 6.

Practice Problem 6 Use MATLAB to determine the frequency response of

Answer: See Fig. 14.

H(s) �
10(s � 1)

s2 � 6s � 100

0

–10

–30

–40

–20

50

0

–50

Ph
as

e
(d

eg
);

 m
ag

ni
tu

de
 (

dB
)

10–1 100 101 102 103

Frequency (rad/s)

Bode diagrams

Figure 14
For Practice Prob. 6.

44 MATLAB

MATLAB.qxd 1/24/12 7:00 PM Page 44 CONFIRMING PAGES

