Preface

You may be wondering why we chose a photo of NASA's Mars Rover for the cover. We actually chose it for several reasons. Obviously, it is very exciting; in fact, space represents the most exciting frontier for the entire world! In addition, much of the Rover itself consists of all kinds of circuits. Circuits that must work without needing maintenance! Once you are on Mars, it is hard to find a technician!

The Rover must have a power system that can supply all the power necessary to move it, help it collect samples and analyze them, broadcast the results back to Earth, and receive instructions from Earth. One of the important issues that make the problem of working with the rover is that it takes about 20 minutes for communications to go from the Earth to Mars. So the Rover does not make changes required by NASA quickly.

What we find most amazing is that such a sophisticated and complicated electro-mechanical device can operate so accurately and reliably after flying millions of miles and being bounced onto the ground! Here is a link to an absolutely incredible video of what the Rover is all about and how it got to Mars: <u>http://www.youtube.com/</u> <u>watch?v=5UmRx4dEdRI</u>. Enjoy!

Features

New to This Edition

A model for magnetic coupling is presented in Chapter 13 that will make analysis easier as well as enhance your ability to find errors. We have successfully used this model for years and felt it was now time to add it to the book. In addition, there are over 600 new end-of-chapter problems, changed end-of-chapter problems, and changed practice problems.

We have also added National Instruments $Multisim^{TM}$ solutions for all the problems solved using $PSpice^{\text{(B)}}$. There is a *Multisim* tutorial available on our website. We have added National Instruments *Multisim* since it is very user-friendly with many more options for analysis than *PSpice*. In addition, it allows the ability to modify circuits easily in order to see how changing circuit parameters impacts voltages, currents, and power. We have also moved the tutorials for *PSpice*, *MATLAB*⁽⁸⁾, and *KCIDE* to our website to allow us to keep up with changes in the software.

We have also added 43 new problems to Chapter 16. We did this to enhance using the powerful s-domain analysis techniques to finding voltages and currents in circuits.

Retained from Previous Editions

A course in circuit analysis is perhaps the first exposure students have to electrical engineering. This is also a place where we can enhance some of the skills that they will later need as they learn how to design. An important part of this book is our 121 *design a problem* problems. These problems were developed to enhance skills that are an important part of the design process. We know it is not possible to fully develop a student's design skills in a fundamental course like circuits. To fully develop design skills a student needs a design experience normally reserved for their senior year. This does not mean that some of those skills cannot be developed and exercised in a circuits course. The text already included open-ended questions that help students use creativity, which is an important part of learning how to design. We already have some questions that are open-ended but we desired to add much more into our text in this important area and have developed an approach to do just that. When we develop problems for the student to solve our goal is that in solving the problem the student learns more about the theory and the problem solving process. Why not have the students design problems like we do? That is exactly what we do in each chapter. Within the normal problem set, we have a set of problems where we ask the student to design a problem to help other students better understand an important concept. This has two very important results. The first will be a better understanding of the basic theory and the second will be the enhancement of some of the student's basic design skills. We are making effective use of the principle of learning by teaching. Essentially we all learn better when we teach a subject. Designing effective problems is a key part of the teaching process. Students should also be encouraged to develop problems, when appropriate, which have nice numbers and do not necessarily overemphasize complicated mathematical manipulations.

A very important advantage to our textbook, we have a total of 2,447 Examples, Practice Problems, Review Questions, and End-of-Chapter Problems! Answers are provided for all practice problems and the odd numbered end-of-chapter problems.

The main objective of the fifth edition of this book remains the same as the previous editions—to present circuit analysis in a manner that is clearer, more interesting, and easier to understand than other circuit textbooks, and to assist the student in beginning to see the "fun" in engineering. This objective is achieved in the following ways:

• Chapter Openers and Summaries

Each chapter opens with a discussion about how to enhance skills which contribute to successful problem solving as well as successful careers or a career-oriented talk on a sub-discipline of electrical engineering. This is followed by an introduction that links the chapter with the previous chapters and states the chapter objectives. The chapter ends with a summary of key points and formulas.

• Problem-Solving Methodology

Chapter 1 introduces a six-step method for solving circuit problems which is used consistently throughout the book and media supplements to promote best-practice problem-solving procedures.

Student-Friendly Writing Style

All principles are presented in a lucid, logical, step-by-step manner. As much as possible, we avoid wordiness and giving too much detail that could hide concepts and impede overall understanding of the material.

Boxed Formulas and Key Terms

Important formulas are boxed as a means of helping students sort out what is essential from what is not. Also, to ensure that students clearly understand the key elements of the subject matter, key terms are defined and highlighted.

• Margin Notes

Marginal notes are used as a pedagogical aid. They serve multiple uses such as hints, cross-references, more exposition, warnings, reminders not to make some particular common mistakes, and problem-solving insights.

• Worked Examples

Thoroughly worked examples are liberally given at the end of every section. The examples are regarded as a part of the text and are clearly explained without asking the reader to fill in missing steps. Thoroughly worked examples give students a good understanding of the solution process and the confidence to solve problems themselves. Some of the problems are solved in two or three different ways to facilitate a substantial comprehension of the subject material as well as a comparison of different approaches.

• Practice Problems

To give students practice opportunity, each illustrative example is immediately followed by a practice problem with the answer. The student can follow the example step-by-step to aid in the solution of the practice problem without flipping pages or looking at the end of the book for answers. The practice problem is also intended to test a student's understanding of the preceding example. It will reinforce their grasp of the material before the student can move on to the next section. Complete solutions to the practice problems are available to students on the website.

• Application Sections

The last section in each chapter is devoted to practical application aspects of the concepts covered in the chapter. The material covered in the chapter is applied to at least one or two practical problems or devices. This helps students see how the concepts are applied to real-life situations.

Review Questions

Ten review questions in the form of multiple-choice objective items are provided at the end of each chapter with answers. The review questions are intended to cover the little "tricks" that the examples and end-of-chapter problems may not cover. They serve as a self test device and help students determine how well they have mastered the chapter.

Computer Tools

In recognition of the requirements by ABET[®] on integrating computer tools, the use of *PSpice, Multisim, MATLAB, KCIDE for Circuits*, and developing design skills are encouraged in a student-friendly manner. *PSpice* is covered early on in the text so that students can become familiar and use it throughout the text. Tutorials on all of these are available on our website. *MATLAB* is also introduced early in the book.

• Design a Problem Problems

Finally, *design a problem* problems are meant to help the student develop skills that will be needed in the design process.

• Historical Tidbits

Historical sketches throughout the text provide profiles of important pioneers and events relevant to the study of electrical engineering.

• Early Op Amp Discussion

The operational amplifier (op amp) as a basic element is introduced early in the text.

• Fourier and Laplace Transforms Coverage

To ease the transition between the circuit course and signals and systems courses, Fourier and Laplace transforms are covered lucidly and thoroughly. The chapters are developed in a manner that the interested instructor can go from solutions of first-order circuits to Chapter 15. This then allows a very natural progression from Laplace to Fourier to AC.

• Four Color Art Program

An interior design and four color art program bring circuit drawings to life and enhance key pedagogical elements throughout the text.

Extended Examples

Examples worked in detail according to the six-step problem solving method provide a roadmap for students to solve problems in a consistent fashion. At least one example in each chapter is developed in this manner.

• EC 2000 Chapter Openers

Based on ABET's skill-based CRITERION 3, these chapter openers are devoted to discussions as to how students can acquire the skills that will lead to a significantly enhanced career as an engineer. Because these skills are so very important to the student while still in college as well after graduation, we use the heading, *"Enhancing your Skills and your Career."*

• Homework Problems

There are 468 new or changed end-of-chapter problems which will provide students with plenty of practice as well as reinforce key concepts.

• Homework Problem Icons

Icons are used to highlight problems that relate to engineering design as well as problems that can be solved using *PSpice*, *Multisim*, *KCIDE*, or *MATLAB*.

Organization

This book was written for a two-semester or three-quarter course in linear circuit analysis. The book may also be used for a one-semester course by a proper selection of chapters and sections by the instructor. It is broadly divided into three parts.

• Part 1, consisting of Chapters 1 to 8, is devoted to dc circuits. It covers the fundamental laws and theorems, circuits techniques, and passive and active elements.

- Part 2, which contains Chapter 9 to 14, deals with ac circuits. It introduces phasors, sinusoidal steady-state analysis, ac power, rms values, three-phase systems, and frequency response.
- Part 3, consisting of Chapters 15 to 19, are devoted to advanced techniques for network analysis. It provides students with a solid introduction to the Laplace transform, Fourier series, Fourier transform, and two-port network analysis.

The material in the three parts is more than sufficient for a two-semester course, so the instructor must select which chapters or sections to cover. Sections marked with the dagger sign (†) may be skipped, explained briefly, or assigned as homework. They can be omitted without loss of continuity. Each chapter has plenty of problems grouped according to the sections of the related material and diverse enough that the instructor can choose some as examples and assign some as homework. As stated earlier, we are using three icons with this edition. We are using *If* to denote problems that either require *PSpice* in the solution process, where the circuit complexity is such that *PSpice* or *Multisim* would make the solution process easier, and where *PSpice* or *Multisim* makes a good check to see if the problem has been solved correctly. We are using $\frac{1}{ML}$ to denote problems where *MATLAB* is required in the solution process, where MATLAB makes sense because of the problem makeup and its complexity, and where MATLAB makes a good check to see if the problem has been solved correctly. Finally, we use eval to identify problems that help the student develop skills that are needed for engineering design. More difficult problems are marked with an asterisk (*).

Comprehensive problems follow the end-of-chapter problems. They are mostly applications problems that require skills learned from that particular chapter.

Prerequisites

As with most introductory circuit courses, the main prerequisites, for a course using this textbook, are physics and calculus. Although familiarity with complex numbers is helpful in the later part of the book, it is not required. A very important asset of this text is that ALL the mathematical equations and fundamentals of physics needed by the student, are included in the text.

Supplements

McGraw-Hill ConnectTM Engineering

McGraw-Hill Connect Engineering is a web-based assignment and assessment platform that gives students the means to better connect with their coursework, with their instructors, and with the important concepts that they will need to know for success now and in the future. With Connect Engineering, instructors can deliver assignments, quizzes, and tests easily online. Students can practice important skills at their own pace and on their own schedule. Ask your McGraw-Hill representative for more details and check it out at www.mcgrawhillconnect.com/engineering.

Instructor and Student Website

Available at <u>www.mhhe.com/alexander</u> are a number of additional instructor and student resources to accompany the text. These include complete solutions for all practice and end-of-chapter problems, solutions in *PSpice* and *Multisim* problems, lecture PowerPoints[®], text image files, transition guides to instructors, Network Analysis Tutorials, FE Exam questions, flashcards, and primers for *PSpice, Multisim, MATLAB*, and *KCIDE*. The site also features C.O.S.M.O.S., a complete online solutions manual organization system that allows instructors to create custom homework, quizzes, and tests using end-of-chapter problems from the text.

Knowledge Capturing Integrated Design Environment for Circuits (*KCIDE for Circuits*)

This software, developed at Cleveland State University and funded by NASA, is designed to help the student work through a circuits problem in an organized manner using the six-step problem-solving methodology in the text. *KCIDE for Circuits* allows students to work a circuit problem in *PSpice* and *MATLAB*, track the evolution of their solution, and save a record of their process for future reference. In addition, the software automatically generates a Word document and/or a PowerPoint presentation. The software package can be downloaded for free.

It is hoped that the book and supplemental materials supply the instructor with all the pedagogical tools necessary to effectively present the material.

Blackboard, the web-based course management system, has partnered with McGraw-Hill to better allow students and faculty to use online materials and activities to complement face-to-face teaching. Blackboard features exciting social learning and teaching tools that foster more logical, visually impactful, and active learning opportunities for students. You'll transform your closed-door classrooms into communities where students remain connected to their educational experience 24 hours a day.

This partnership allows you and your students access to McGraw-Hill's ConnectTM and CreateTM right from within your Blackboard course—all with one single sign-on.

Not only do you get single sign-on with Connect and Create, but you also get deep integration of McGraw-Hill content and content engines right in Blackboard. Whether you're choosing a book for your course or building Connect assignments, all the tools you need are right where you want them—inside of Blackboard. Gradebooks are now seamless. When a student completes an integrated Connect assignment, the grade for that assignment automatically (and instantly) feeds your Blackboard grade center.

McGraw-Hill and Blackboard can now offer you easy access to industry-leading technology and content, whether your campus hosts it, or we do. Be sure to ask your local McGraw-Hill representative for details.

McGraw-Hill Create[™]

Craft your teaching resources to match the way you teach! With McGraw-Hill Create, www.mcgrawhillcreate.com, you can easily rearrange chapters, combine material from other content sources, and quickly upload content you have written like your course syllabus or teaching notes. Find the content you need in Create by searching through thousands of leading McGraw-Hill textbooks. Arrange your book to fit your teaching style. Create even allows you to personalize your book's appearance by selecting the cover and adding your name, school, and course information. Order a Create book and you'll receive a complimentary print review copy in three to five business days or a complimentary electronic review copy (eComp) via e-mail in minutes. Go to www.mcgrawhillcreate.com today and register to experience how McGraw-Hill Create empowers you to teach *your* students *your* way.

Acknowledgements

We would like to express our appreciation for the loving support we have received from our wives (Hannah and Kikelomo), daughters (Christina, Tamara, Jennifer, Motunrayo, Ann, and Joyce), son (Baixi), and our extended family members. We would like to additionally thank Baixi (now Dr. Baixi Su Alexander) for his assistance in checking problems for clarity and accuracy.

At McGraw-Hill, we would like to thank the following editorial and production staff: Raghu Srinivasan, publisher and senior sponsoring editor; Lora Kalb-Neyens, developmental editor; Joyce Watters, project manager; Carrie Burger, photo researcher; and Brenda Rolwes, designer.

The fifth edition has benefited greatly from the many outstanding reviewers and symposium attendees who contributed to the success of the first four editions! In addition, the following have made important contributions to this edition (in alphabetical order):

Maher Bakri-Kassem, University of Waterloo Alok Berry, George Mason University Vahe Caliskan, University of Illinois-Chicago Archie Holmes, University of Virginia Anton Kruger, University of Iowa Arnost Neugroschel, University of Florida Arun Ravindran, University of North Carolina-Charlotte

Finally, we appreciate the feedback received from instructors and students who used the previous editions. We want this to continue, so please keep sending us e-mails or direct them to the publisher. We can be reached at <u>c.alexander@ieee.org</u> for Charles Alexander and <u>sadiku@ieee.org</u> for Matthew Sadiku.

C. K. Alexander and M. N. O. Sadiku