CHAPTER 2

P.P.2. $\quad i=V / R=110 / 15=\underline{7.333 ~ A}$
P.P.2.2 (a) $v=i R=3 \mathrm{~mA}[10 \mathrm{kohms}]=\underline{\mathbf{3 0} \mathbf{V}}$
(b) $\quad \mathrm{G}=1 / \mathrm{R}=1 / 10$ kohms $=\underline{\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{S}}$
(c) $\mathrm{p}=\mathrm{vi}=30$ volts $[3 \mathrm{~mA}]=\underline{\mathbf{9 0} \mathbf{m W}}$
P.P.2.3 $\mathrm{p}=\mathrm{vi}$ which leads to $\mathrm{i}=\mathrm{p} / \mathrm{v}=\left[30 \cos ^{2}(\mathrm{t}) \mathrm{mW}\right] /[15 \cos (\mathrm{t}) \mathrm{mA}]$ or $\mathrm{i}=\underline{\mathbf{2} \cos (\mathbf{t}) \mathbf{m A}}$
$\mathrm{R}=\mathrm{v} / \mathrm{i}=15 \cos (\mathrm{t}) \mathrm{V} / 2 \cos (\mathrm{t}) \mathrm{mA}=\underline{\mathbf{7 . 5} \mathrm{k} \boldsymbol{\Omega}}$
P.P.2.4 5 branches and 3 nodes. The 1 ohm and 2 ohm resistors are in parallel. The 4 ohm resistor and the 10 volt source are also in parallel.
P.P.2.5 Applying KVL to the loop we get:
$-32+4 \mathrm{i}-(-8)+2 \mathrm{i}=0$ which leads to $\mathrm{i}=24 / 6=4 \mathrm{~A}$
$\mathrm{v}_{1}=4 \mathrm{i}=\underline{\mathbf{1 6 V}}$ and $\mathrm{v}_{2}=-2 \mathrm{i}=\underline{\mathbf{- 8} \mathbf{V}}$
P.P.2.6 Applying KVL to the loop we get:
$-70+10 i+2 v_{x}+5 i=0$
But, $\mathrm{v}_{\mathrm{x}}=10 \mathrm{i}$ and $\mathrm{v}_{0}=-5 \mathrm{i}$. Hence,
$-70+10 i+20 i+5 i=0$ which leads to $i=2 \mathrm{~A}$.
Thus, $\mathrm{v}_{\mathrm{x}}=\underline{\mathbf{2 0 V}}$ and $\mathrm{v}_{0}=\underline{\mathbf{- 1 0} \mathrm{V}}$
P.P.2. 7 Applying KCL, $0=-9+\mathrm{i}_{0}+\left[\mathrm{i}_{0} / 4\right]+\left[\mathrm{v}_{0} / 8\right]$, but $\mathrm{i}_{0}=\mathrm{v}_{0} / 2$

Which leads to: $9=\left(\mathrm{v}_{0} / 2\right)+\left(\mathrm{v}_{0} / 8\right)+\left(\mathrm{v}_{0} / 8\right)$ thus, $\mathrm{v}_{0}=\underline{\mathbf{1 2} \mathbf{V}}$ and $\mathrm{i}_{0}=\underline{\mathbf{6} \mathbf{A}}$

P.P.2.8

At the top node, $\quad 0=-i_{1}+i_{2}+i_{3}$ or $i_{1}=i_{2}+i_{3}$

For loop 1

$$
\begin{equation*}
-10+V_{1}+V_{2}=0 \tag{2}
\end{equation*}
$$

or
$\mathrm{V}_{1}=10-\mathrm{V}_{2}$
For loop 2
or

$$
\begin{align*}
& -\mathrm{V}_{2}+\mathrm{V}_{3}-6=0 \\
& \mathrm{~V}_{3}=\mathrm{V}_{2}+6 \tag{3}
\end{align*}
$$

Using (1) and Ohm’s law, we get

$$
\left(\mathrm{V}_{1} / 2\right)=\left(\mathrm{V}_{2} / 8\right)+\left(\mathrm{V}_{3} / 4\right)
$$

and now using (2) and (3) in the above yields

$$
\left[\left(10-\mathrm{V}_{2}\right) / 2\right]=\left(\mathrm{V}_{2} / 8\right)+\left(\mathrm{V}_{2}+6\right) / 4
$$

or
$[7 / 8] V_{2}=14 / 4$ or $V_{2}=\underline{4 V}$
$\mathrm{V}_{1}=10-\mathrm{V}_{2}=\underline{\mathbf{6} \mathbf{V}}, \mathrm{V}_{3}=4+6=\underline{\mathbf{1 0} \mathbf{V}}, \mathrm{i}_{1}=(10-4) / 2=\underline{\mathbf{3} \mathbf{A}}$, $\mathrm{i}_{2}=4 / 8=\underline{\mathbf{5 0 0} \mathbf{~ m A}}, \mathrm{i}_{3}=\underline{\mathbf{2 . 5} \mathbf{A}}$
P.P.2. 9

Combining the 4 ohm, 5 ohm , and 3ohm resistors in series gives $4+3+5=12$.
But, 4 in parallel with 12 produces $[4 \times 12] /[4+12]=48 / 16=3 \mathrm{ohm}$.
So that the equivalent circuit is shown below.

Thus, $\mathbf{R}_{\mathbf{e q}}=4+3+[6 \mathrm{x} 6] /[6+6]=\underline{\mathbf{1 0} \Omega}$
P.P.2.10

Combining the 9 ohm resistor and the 18 ohm resistor yields [9x18]/[9+18] = 6 ohms.

Combining the 5 ohm and the 20 ohm resistors in parallel produces [5x20/(5+20)] = 4 ohms We now have the following circuit:

The 4 ohm and 1 ohm resistors can be combined into a 5 ohm resistor in parallel with a 20 ohm resistor. This will result in $[5 \times 20 /(5+20)]=4$ ohms and the circuit shown below:

The 4 ohm and 2 ohm resistors are in series and can be replaced by a 6 ohm resistor. This gives a 6 ohm resistor in parallel with a 6 ohm resistor, $[6 \times 6 /(6+6)]=3$ ohms. We now have a 3 ohm resistor in series with a 16 ohm resistor or $3+16=19$ ohms. Therefore:

$$
R_{\mathrm{eq}}=19 \mathrm{ohms}
$$

P.P. 2.11

12 S in series with $6 \mathrm{~S}=\{12 \mathrm{x} 6 /(12+6)]=4$ or: $\quad \mathbf{G}_{\mathbf{e q}}=\underline{\mathbf{4 S}}$
P.P.2. 12

$6|\mid 12=[6 \times 12 /(6+12)]=4 \mathrm{ohm}$ and 10$| \mid 40=[10 \times 40 /(10+40)]=8$ ohm.
Using voltage division we get:

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=[4 /(4+8)](30)=\underline{\mathbf{1 0} \text { volts, }} \mathbf{v}_{\mathbf{2}}=[8 / 12](30)=\underline{\mathbf{2 0} \mathbf{v o l t s}} \\
& \mathbf{i}_{\mathbf{1}}=\mathrm{v}_{1} / 12=10 / 12=\underline{\mathbf{8 3 3} .3 \mathbf{~ m A}}, \mathbf{i}_{\mathbf{2}}=\mathrm{v}_{2} / 40=20 / 40=\underline{\mathbf{5 0 0} \mathbf{~ m A}} \\
& \mathbf{P}_{\mathbf{1}}=\mathrm{v}_{1} \mathrm{i}_{1}=10 \times 10 / 12=\underline{\mathbf{8 . 3 3 3}} \mathbf{\text { watts}}, \mathbf{P}_{\mathbf{2}}=\mathrm{v}_{2} \mathrm{i}_{2}=20 \times 0.5=\underline{\mathbf{1 0} \text { watts }}
\end{aligned}
$$

P.P.2.13

Using current division, $\mathrm{i}_{1}=\mathrm{i}_{2}=(30 \mathrm{~mA})(4 \mathrm{kohm} /(4 \mathrm{kohm}+4 \mathrm{kohm}))=15 \mathrm{~mA}$
(a) $\quad \mathbf{v}_{\mathbf{1}}=(3 \mathrm{kohm})(15 \mathrm{~mA})=\mathbf{4 5}$ volts

$$
\mathbf{v}_{\mathbf{2}}=(4 \mathrm{kohm})(15 \mathrm{~mA})=\underline{\mathbf{6 0} \text { volts }}
$$

(b) For the 3 k ohm resistor, $\mathbf{P}_{\mathbf{1}}=\mathrm{v}_{1} \times \mathrm{i}_{1}=45 \times 15 \times 10^{-3}=\underline{\mathbf{6 7 5} \mathbf{~ m w}}$ For the 20 k ohm resistor, $\mathbf{P}_{\mathbf{2}}=\left(\mathrm{v}_{2}\right)^{2} / 20 \mathrm{k}=\underline{\mathbf{1 8 0} \mathbf{~ m w}}$
(c) The total power supplied by the current source is equal to:

$$
\mathbf{P}=\mathrm{v}_{2} \times 10 \mathrm{~mA}=60 \times 30 \times 10^{-3}=\underline{\mathbf{1 . 8} \mathbf{W}}
$$

P.P.2. 14

$$
\mathbf{R}_{\mathbf{a}}=\left[\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{R}_{3}+\mathrm{R}_{3} \mathrm{R}_{1}\right] / \mathrm{R}_{1}=[10 \times 20+20 \times 40+40 \times 10] / 10=\underline{\mathbf{1 4 0}}
$$

ohms
$\mathbf{R}_{\mathbf{b}}=\left[\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{R}_{3}+\mathrm{R}_{3} \mathrm{R}_{1}\right] / \mathrm{R}_{2}=1400 / 20=\underline{\mathbf{7 0} \text { ohms }}$
$\mathbf{R}_{\mathbf{c}}=\left[\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{R}_{3}+\mathrm{R}_{3} \mathrm{R}_{1}\right] / \mathrm{R}_{3}=1400 / 40=\underline{\mathbf{3 5} \mathbf{~ o h m s}}$
P.P.2.15 We first find the equivalent resistance, R. We convert the delta sub-network to a wye connected form as shown below:

$\mathrm{R}_{\mathrm{a}^{\prime} \mathrm{n}}=20 \times 30 /[20+30+50]=6$ ohms, $\mathrm{R}_{\mathrm{b}^{\prime} \mathrm{n}}=20 \times 50 / 100=10$ ohms
$\mathrm{R}_{\mathrm{C}^{\prime} \mathrm{n}}=30 \times 50 / 100=15$ ohms.
Thus, $\mathrm{R}_{\mathrm{ab}}=13+[(24+6) \|(10+10)]+15=28+30 \times 20 /(30+20)=\underline{40}$ ohms.
$\mathbf{i}=240 / \mathrm{R}_{\mathrm{ab}}=240 / 40=\underline{\mathbf{6} \mathbf{a m p s}}$
P.P.2.16 For the parallel case, $v=v_{0}=110 v o l t s$.
$p=v i \Longrightarrow i=p / v=40 / 110=\underline{364} \mathbf{m A}$
For the series case, $\mathrm{v}=\mathrm{v}_{0} / \mathrm{N}=110 / 10=11$ volts
$\mathbf{i}=\mathrm{p} / \mathrm{v}=40 / 11=\underline{\mathbf{3 . 6 4} \mathbf{~ a m p s}}$
P.P.2.17 We use equation (2.61)
(a) $\quad \mathbf{R}_{\mathbf{1}}=50 \times 10^{-3} /\left(1-10^{-3}\right)=0.05 / 999=\mathbf{5 0} \mathbf{~ m} \boldsymbol{\Omega}$ (shunt)
(b) $\quad \mathbf{R}_{\mathbf{2}}=50 \times 10^{-3} /\left(100 \times 10^{-3}-10^{-3}\right)=50 / 99=\underline{\mathbf{5 0 5} \mathbf{~ m} \boldsymbol{\Omega} \text { (shunt) }}$
(c) $\quad \mathbf{R}_{3}=50 \times 10^{-3} /\left(10 \times 10^{-3}-10^{-3}\right)=50 / 9=\mathbf{5 . 5 5 6} \boldsymbol{\Omega}$ (shunt)

