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CHAPTER 13 

 
 
P.P. 13.1 For mesh 1, 
 

141.42+j141.42 = 4(1 + j2)I1 + jI2   (1) 
 
For mesh 2,  0 = jI1 + (10 + j5)I2     (2) 
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 = j100,  2 = 141.42–j141.42 

 
I2 = 2/ = (141.42–j141.42)/j100 

 
Vo = 10I2 = 10(–1.4142–j1.4142) = 20–135 V 

 
 
P.P. 13.2 Since I1 enters the coil with reactance 2 and I2 enters the coil with 
reactance 6, the mutual voltage is positive.  Hence, for mesh 1,  
 

10060o = (5 + j2 + j6 – j 3x2)I1 – j6I2 + j3I2 
 

or    10060o = (5 + j2)I1 – j3I2   (1) 
 
For mesh 2,   0 = (j6 – j4)I2 – j6I1 + j3I1 
 
or   I2 = 1.5I1       (2) 
 
Substituting this into (1), 10060o = (5 – j2.5)I1 
 
   I1 = (10060o)/(5.59–26.57o) = 17.88986.57o A 
 
   I2 = 1.5I1 = 26.8386.57o A 
 
 

P.P. 13.3 The coupling coefficient is, k = m/ 1x2/1LL 21   = 0.7071 

 
To obtain the energy stored, we first obtain the frequency-domain circuit shown below. 
 

100cos(t)  becomes  1000o,  = 2 



1H  becomes j1 = j2 
2H  becomes  j2 = j4 

(1/8) F  becomes  1/jC = -j4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For mesh 1,   100 = (4 – j4 + j4)I1 – j2I2 
 
or   50 = 2I1 – jI2       (1) 
 
For mesh 2,  –j2I1 + (2  + j2)I2 = 0 
 
or   I1 = (1 – j)I2       (2) 
 
Substituting (2) into (1), (2 – j3)I2 = 50 
 

I2 = 50/(2 – j3) = 13.8756.31o 
 

I1 = 19.65811.31o  
  

In the time domain,  i1 = 19.658cos(2t + 11.31o) 
    i2 = 13.87cos(2t + 56.31o) 
 
At  t = 1.5, 2t = 3 rad = 171.9o 
 
    i1 = 19.658cos(171.9o + 11.31o) = –19.62 A 
    i2 = 13.87cos(171.9o + 56.31o) = –9.25 A 
 
The total energy stored in the coupled inductors is given by, 
 
    W = 0.5L1(i1)2 + 0.5L2(i2)2 – 0.5M(i1i2) 
         = 0.5(2) (–19.62)2 + 0.5(1)(–9.25)2 – (1)(–19.62)(–9.25) 
         =  246.2 J 
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P.P. 13.4  Zin  =  4 + j8 + [32/(j10 – j6 + 6 + j4)] 
 

=  4 + j8 + 9/(6 + j8) 
 

=  8.5858.05o Ω 
 
 
The current from the voltage is, 
 

I  =  V/Z  =  400o/8.5858.05o  =  4.662–58.05o A 
 
 
 
P.P. 13.5  L1  =  10,  L2  =  4,  M  =  2 
 

L1L2 – M2  =  40 – 4  =  36 
 

LA  =  (L1L2 – M2)/(L2 – M)  =  36/(4 – 2)  =  18 H 
 

LB  =  (L1L2 – M2)/(L1 – M)  =  36/(10 – 2)  =  4.5 H 
 

LC  =  (L1L2 – M2)/M  =  36/2  =  18 H 
 
Hence, we get the  equivalent circuit as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

18 H 

18 H 

4.5 H 



P.P. 13.6  If we reverse the direction of I2 so that we replace I2 by –I2, we 
have the circuit shown in Figure (a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We now replace the coupled coil by the T-equivalent circuit and assume   =  1. 
 

La  =  5 – 3  =  2 H 
 

Lb  =  6 – 3  =  3 H 
 

Lc  =  3 H 
 
Hence the equivalent circuit is shown in Figure (b).  We apply mesh analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

j3 

I1 I2
+ 
–120o 12  

j3 

j2 -j4 

(b)

j6 j3 + 
–

120o 
12  

-j4 

I1 I2

j3 

(a)



12 =  i1(-j4 + j2 + j3) + j3i2 
 

or  12  = ji1 +  j3i2   (1) 
 
Loop 2 produces,  0  = j3i1 +  (j3 + j3 + 12)i2 
 
    or i1  =  (-2 + j4)i2   (2) 
 
Substituting (2) into (1), 12  =  (-4 + j)i2,  which leads to i2  =  12/(-4 + j) 
 

I2  =  -i2  =  12/(4 – j)  =  2.9114.04o A 
 

I1 = i1  =  (-2 + j4)i2  =  12(2 – j4)/(4 – j)  =  13–49.4o A 
 
 
P.P. 13.7 
 
(a)   n  =  V2/V1  =  110/2200  =  1/20  (a step-down transformer) 
 
(b)   S  =  V1I1  =  2200x5  =  11 kVA 
 
(c)   I2  =  I1/n  =  5/(1/20)  =  100 A 
 
 
 
P.P. 13.8  The 16 – j24-ohm impedance can be reflected to the primary 
resulting in 
 

Zin  =  2 + (16 – j24)/16  =  3 – j1.5 
 

I1  =  240/(3 – j1.5)  = 240/(3.354 –26.57°) =  71.5626.57o 

 
I2  =  –I1/n  =  –17.8926.57o 

 
Vo  =  –j24i2  =  (24–90o)(–17.8926.57o)  =  429.4116.57oV 

 
S1  =  V1I1  =  (240)( 71.5626.57o)  =  17.174–26.57o kVA. 

 
 
 
 
 



 
 
 
 
P.P. 13.9 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the circuit shown above. 
 
At node 1,  (120 – V1)/4  =  I1 + (V1 – V3)/8   (1) 
 
At node 2,  [(V1 – V3)/8] + [(V2 – V3)/2]  =  (V3)/8  (2) 
 
At the transformer terminals,   V2  =  –2V1  and I2  =  –I1/2   (3) 
 
But  I2  =  (V2 – V3)/2  =  –I1/2  which leads to I1  =  (V3 – V2)/1  =  V3 + 2V1. 
 

Substituting all of this into (1) and (2) leads to, 

 

 (120 – V1)/4  =  V3 + 2V1 + (V1 – V3)/8  which leads 240  =  19V1 + 7V3 (4) 
 
 [(V1 – V3)/8] + [(–2V1 – V3)/2]  =  V3/8  which leads to  

V3  =  –7V1/6         (5) 
 
From (4) and (5), 
 

240 =  10.833V1  or  V1  =  22.155 volts 
 

V3  =  –7V1/6  =  –25.85 volts 
 

Vo  =  V1 – V3  =  48 volts 
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P.P. 13.10  We should note that the current and voltage of each winding of the 
autotransformer in Figure (b) are the same for the two-winding transformer in Figure (a). 
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For the two-winding transformer, 
 

S1  =  120x0.5  =  60 VA 
 

S2  =  6(10)  =  60 VA 
 

For the autotransformer, 
 

S1  =  120(6.5)  =  780 VA 
 

S2  =  130(6)  =  780 VA 
 
 
 
 
P.P. 13.11  (I2)*  =  S2/V2  =  16,000/1000  =  16 A 
 
Since S1  =  V1(I1)*  =  V2(I2)*  =  S2, V2/V1  =  I1/I2,   1000/2500  =  I1/32,   
 

or  I1  =  1000x16/2500  =  6.4 A. 
 
At the top, KCL produces  I1 + Io  =  I2,  or  Io  =  I2 – I1  =  16 – 6.4  =  9.6 A. 
 
 
 

(b)

+  
10V 
–

+  
 
130V 
 
– 

+  
120V 
–

+  
120V 
–

0.5A 

3A 

6.5A 



 
 
 
 
 
P.P. 13.12   
 
(a) ST  =  (3)VLIL,  but ST  =  PT/cos  =  40x106/0.85  =  47.0588 MVA 
 

ILS  =  ST/(3)VLS  =  47.0588x106/[(3)12.5x103]  =  2.174 kA 
 
(b) VLS  =  12.5 kV,  VLP  =  625 kV,  n  =  VLS/VLP  =  12.5/625  =  0.02 
 
(c) ILP  =  nILS  =  0.02x2173.6  =  43.47 A 
 
 or  ILP  =  ST/[(3)vLP]  =  47.0588x106/[(3)625x103]  =  43.47 A 
 
(d) The load carried by each transformer is  (1/3)ST  =  15.69 MVA 
 
 
 
 
P.P. 13.13  The process is essentially the same as in Example 13.13.  We are 
given the coupling coefficient, k  =  0.4,  and can determine the operating frequency from 
the value of   =  4 which implies that f  =  4/(2)  =  0.6366 Hz. 
 
 
 

 
 
Saving and then simulating produces, 

ACMAG=160V 



 
io  =  2.012cos(4t + 68.52o) A 

 
 
 
P.P. 13.14  Following the same basic steps in Example 13.14, we first assume 
  =  1.  This then leads to following determination of values for the inductor and the 
capacitor. 
 

j15  =  jL  leads to  L  =  15 H 
 

-j16  =  1/(C)  leads to  C  =  62.5 mF 
 
 
The schematic is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FREQ         VM($N_0005,0) VP($N_0005,0) 
 
1.592E-01    1.530E+02     2.185E+00 
 
FREQ         VM($N_0001,0) VP($N_0001,0) 
 
1.592E-01    2.302E+02     2.091E+00 
 
Thus, 
 

V1  =  1532.18 V 
 

V2  =  230.22.09 V 

ACMAG=220V 



 
Note, if we divide V2 by V1 we get 1.5046–.09˚ which is in good agreement that the 
transformer is ideal with a voltage ratio of 1:1.5 (or 2:3)! 
 
P.P. 13.15 V2/V1 = 120/13,200 = 1/110 = 1/n        
 
 
P.P. 13.16 
 
 
 
 
 
 
 
 
As in Example 13.16,  n2  =  ZL/Z1  =  400/(2.5x103)  =  4/25,  n  =  0.4 
 
By voltage division,  V1  =  Vs/2  (since Z1 = ZL/n2), therefore  V1  =  60/2  =  30 volts,  
and 
 

V2  =  nV1  =  (0.4)(30)  =  12 volts 
 
 
 
P.P. 13.17   
 
(a) S  =  12x60 + 350 + 4,500  =  5.57 kW 
 
(b) IP  =  S/VP  5570/2400  =  2.321 A 
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