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Graph Multicolorings

Author: Kenneth H. Rosen, AT&T Laboratories.

Prerequisites: The prerequisites for this chapter are basic graph terminology
and graph colorings. See Sections 9.1, 9.2, and 9.8 of Discrete Mathematics and
Its Applications.

Introduction
Graph coloring has been studied for many years and has been used in many dif-
ferent applications. In particular, graph colorings have been employed for over
a hundred years to study map colorings. With each map we associate a graph
— this graph has a vertex for each region of the map and an edge connecting
two vertices if and only if the regions they represent share a common bound-
ary. A coloring of the map so that no two regions with a common boundary
have the same color corresponds to a coloring of the vertices of the associated
graph so that no two adjacent vertices are assigned the same color. This tra-
ditional application of graph colorings has been one of the major factors in the
development of graph theory.

However, there are many modern applications of graph colorings not in-
volving maps. Some of these applications are task scheduling, meeting schedul-
ing, maintenance scheduling, channel assignment for television stations, and
frequency assignment for mobile telephones. To model variations of these ap-
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plications we need various generalizations of graph colorings. In this chapter we
will study these applications of graph colorings. We will make several different
generalizations of graph colorings that are required to model variations of these
problems.

Many of the generalizations of graph colorings that we will study in this
chapter have been introduced and studied by Fred Roberts. More information
about the topics covered, as well as the description of other applications, in-
cluding traffic phasing and garbage collection, can be found in Roberts’ survey
article [5].

Applications of Graph Colorings

In this section we will describe a variety of applications of graph colorings.
(Additional descriptions of these and other applications of graph colorings can
be found in Section 9.8 of Discrete Mathematics and Its Applications, and in
[4].)

Examination Scheduling Consider the problem of scheduling 25 final exam-
inations in the Computer Science Department of a college. The examinations
need to be scheduled so that no student has two final exams at the same time
and no professor has final exams for two different courses at the same time.
To model this problem, we build a graph where a vertex is associated to each
course and an edge connects two vertices if the courses they represent can-
not have final examinations at the same time. In a coloring of the associated
graph, colors represent time slots. In order to minimize the number of time
slots needed to schedule all exams, we find the chromatic number of this graph
(i.e., the minimum number of colors needed to color the vertices so no adjacent
vertices have the same color).

Task Scheduling Consider the problem of scheduling different tasks, some of
which cannot be done at the same time. For example, a automobile repair shop
may have 15 cars to repair, but only one machine used in a particular type of
repair. To model this problem, we build a graph where a vertex is associated
with each task and an edge connects two vertices if the tasks they represent
are incompatible, that is, they cannot be done at the same time. For example,
vertices representing car repairs that require the use of the same machine are
joined by an edge. We use colors to represent time periods. Assuming that all
tasks take the same time, to minimize the total time to complete the tasks we
find the smallest number of colors needed to color the vertices of this graph.
We find the chromatic number of this graph to minimize the time required to
complete the tasks.
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Meeting Scheduling Consider the problem of scheduling the meetings of dif-
ferent committees where some individuals serve on more than one committee.
Clearly, no two committees can meet at the same time if they have a common
member. Analogous to exam scheduling, to model this problem we build a
graph where a vertex is associated to each committee and an edge connects two
vertices if the committees they represent have a common member. In a coloring
of this graph, colors represent time slots. We find the chromatic number of this
graph to schedule all meetings in the least time.

Maintenance Scheduling A facility with repair bays is used to maintain a
fleet of vehicles. Each vehicle is scheduled for regular maintenance during a time
period and is assigned a repair bay. Two vehicles cannot be assigned the same
space if they are scheduled for maintenance at overlapping times. To model this
problem, we build a graph with vertices representing the vehicles where an edge
connects two vertices if the vehicles they represent are assigned the same space
for repair. We find the chromatic number of the associated graph to schedule
maintenance for all vehicles using the smallest number of periods.

Channel or Frequency Assignment Two stations (radio, television, mobile
telephone, etc.) that interfere, because of proximity, geography, power or some
other factor, cannot be assigned the same channel. To model this problem we
build a graph with vertices that represent the stations with an edge connecting
two vertices if the stations they represent interfere. We find the chromatic
number of the associated graph to assign frequencies to all stations using the
smallest number of channels. (This model was first described by E. Gilbert in
1972 in unpublished work at Bell Laboratories.)

Many complications arise in these and other applications that make it nec-
essary to apply generalizations of graph colorings. Using variations of some of
these applications as motivation, we will now introduce several ways to gener-
alize the notion of a graph coloring.

Graph Multicolorings
Suppose that there are two parts of each final examination at a college. Each
part of an exam takes a morning or an afternoon. Therefore, we need to assign
two time periods to each final. To model this problem, we need to assign two
colors to each vertex of the associated graph, where each color represents a time
period (such as Tuesday afternoon), so that no adjacent vertices are assigned
a common color. This means that no student or faculty member is required to
be at two final exams at the same time.



Chapter 22 Graph Multicolorings 397

Consider the following variation of the channel assignment problem. Sup-
pose we need to assign three channels to each station. For instance, backup
channels may be needed when a channel is unusable; a station may need three
channels to simultaneously broadcast three different programs; or a mobile radio
station may need three different channels for teleconferencing. To model this
problem, we need to assign three colors to each vertex of the associated graph,
where each color represents a channel, so that no adjacent vertices are assigned
a common color. This means that no stations that interfere will broadcast over
the same channel.

These applications lead to the following definition.

Definition 1 An assignment of n colors to each vertex in a graph G = (V, E)
is called an n-tuple coloring or multicoloring if no two adjacent vertices are
assigned a common color.

We often want to minimize the total number of colors used in an n-tuple
coloring. For instance, we want to schedule two-part final examinations using
the fewest periods. Similarly, we want to assign three channels to each station
using the fewest channels.

Definition 2 The n-tuple chromatic number of a graph G, denoted by
χn(G), is the minimum number of colors required for an n-tuple coloring of G.

For every graph G we have χn(G) ≤ nχ(G), where χ(G) is the chromatic
number of G. To see this, note that we can construct an n-tuple coloring of G
from a coloring of G by associating to each color n distinct new colors, with no
new color associated to more than one of the original colors. As the next two
examples illustrate, the equality χn(G) = nχ(G) holds for some graphs, while
for other graphs χn(G) < nχ(G). Later we will see that equality holds for a
large class of graphs.

Example 1 Find χ2(K4) and χ3(K4), where K4 is the complete graph on
four vertices.

Solution: Since every vertex of K4 is adjacent to every other vertex, no
color can be used more than once. Hence, a total of 4n colors are required for
an n-tuple coloring of K4. It therefore follows that χ2(K4) = 2 · 4 = 8 and
χ3(K4) = 3 · 4 = 12.
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Example 2 Find χ2(C4) and χ2(C5), where Cn is the n-cycle graph.

Solution: As Figure 1 shows, we can construct a 2-tuple coloring of C4 using
four colors. Since we must use at least four colors so that two colors are assigned
to each of two adjacent vertices, no fewer than four colors can be used. Hence
χ2(C4) = 4.

Figure 1. A 2-tuple coloring of C4 using four colors.

In Figure 2 we display a 2-tuple coloring of C5 using just five colors (rather
than six colors that would be used if we started with a coloring of C5 and then
assigned two new colors to each of the original colors in this coloring). Since
it is impossible to construct a 2-tuple coloring of C5 using four colors (as the
reader can easily demonstrate), it follows that χ2(C5) = 5.

Figure 2. A 2-tuple coloring of C5 using five colors.

Although χn(G) may be less than nχ(G), there is an important class of
graphs for which these quantities are equal. Before describing these graphs, we
first give some definitions.

Definition 3 A clique in a graph G is a subgraph of G that is a complete
graph.

Example 3 Find all cliques with four or more vertices in the graph G in
Figure 3.

Solution: The subgraph containing the vertices a, b, d, and f , and the edges
in G connecting these vertices, is a clique with four vertices. So is the subgraph
containing the vertices b, d, e, and f , and the edges in G connecting these
vertices. Inspection of the graph shows that there are no larger cliques and no
other cliques with four vertices.
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Figure 3. The graph G.

Before describing a class of graphs for which the n-tuple chromatic number
is n times the chromatic number, we need the following definition.

Definition 4 The clique number of a graph G, denoted by ω(G), is the
largest integer k such that G contains a clique of k vertices.

Example 4 Find the clique number of the graph G in Figure 3.

Solution: By Example 3 we see that ω(G), the clique number of G, is 4
since G contains a clique of this size but no clique of a larger size.

The chromatic number of a graph must be at least as large as the clique
number; that is, ω(G) ≤ χ(G). This is true since any coloring of G will re-
quire ω(G) colors for the vertices in the largest clique. The other vertices in G
may require additional colors. The special class of graphs we will be interested
in have their clique numbers equal to their chromatic numbers, as described in
the following definition.

Definition 5 A graph G is called weakly γ-perfect if its chromatic number
equals its clique number, that is, if ω(G) = χ(G).

Example 5 Is the graph G is Figure 3 weakly γ-perfect?

Solution: Coloring the vertices a and e red, b and c blue, d green, and f
and g yellow produces a 4-coloring of G. Since any coloring of G uses at least
four colors (since a, b, d, and f form a complete subgraph), we conclude that
χ(G) = 4. By Example 4 we know that ω(G) = 4. Since χ(G) = ω(G), it
follows that G is weakly γ-perfect.
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We can now state the following theorem, first proved by Roberts in [6].

Theorem 1 If a graph G is weakly γ-perfect, then χn(G) = nχ(G).

Example 6 Find χ5(G) where G is the graph in Figure 3.

Solution: By Example 5 the graph in Figure 3 is weakly γ-perfect. As the
solution to Example 5 shows, the chromatic number of G is four. Hence, by
Theorem 1 it follows that χ5(G) = 5 · 4 = 20.

Graph Set Colorings
In the last section we considered the problem of assigning the same number
of colors to each vertex of a graph. This was useful in modeling several types
of applications. However, there are situations for which this generalization
of graph coloring is not adequate. For example, in the channel assignment
problem, each station may be assigned one or more channels, where not all
stations are assigned the same number of channels. In scheduling examinations,
each examination may be taken by students at several different time periods,
with possibly different numbers of periods assigned to different examinations.
In scheduling tasks, each task may require one or more time periods, where it
is not necessarily the case that all tasks are assigned the same number of time
periods. In maintenance scheduling some vehicles may require two or more
repair bays, where not all vehicles require the same number of bays. (A large
plane may use five bays, while a two-seater may use only one bay). To model
such applications we need to make the following definition.

Definition 6 Let G = (V, E) be a graph. A function S that assigns a set of
colors to each vertex in V is called a set coloring if the sets S(u) and S(v) are
disjoint whenever u and v are adjacent in G.

Of course, an n-tuple coloring of a graph G is a special case of a set coloring
in which every vertex is assigned the same number of colors. However, as the
applications we have described show, it is often necessary to vary the number
of colors assigned to different vertices.

Example 7 Construct a set coloring of C5 where v1, v2, v3, v4, and v5 are
assigned 3 colors, 2 colors, 1 color, 3 colors, and 2 colors, respectively. (Here,
the vertices of C5 are as in Figure 2.)
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Solution: We can construct such a coloring by assigning {red, green, blue}
to v1, {yellow, orange} to v2, {red} to v3, {green, blue, yellow} to v4, and
{orange, purple} to v5.

For different applications we need to minimize different parameters associ-
ated to a set coloring. For example, when scheduling final examinations, with
each examination using one or more possible time periods, we might want to
minimize the number of time periods used. This corresponds to minimizing
the total number of different colors used in the set coloring of the associated
graph. This quantity, the number of different colors used in the set coloring,
is called the order of the set coloring. On the other hand, if we want to limit
the number of hours required for proctoring, we would need to limit the sum of
the number of time periods available for each examination. This corresponds
to minimizing the sum of the sizes of the sets of colors used in the set coloring
of the associated graph. This quantity, the sum of the sizes of the sets of colors,
is called the score of the associated set coloring

Example 8 What is the order and score of the set coloring in Example 7?

Solution: Six different colors are used in this set coloring in Example 7. Hence
the order of this set coloring is 6. Its score is the sum of the number of colors
it assigns to each vertices, namely 3 + 2 + 1 + 3 + 2 = 11.

Graph T-Colorings

Consider the following channel assignment problem. Suppose that not only
must interfering stations be assigned different channels, but also the separation
between channels of interfering stations must not belong to a set of prohibited
separations. For example, for the assignment of frequencies in ultra-high fre-
quency (UHF) television, interfering stations cannot have the same frequency,
nor can they have separations of 7, 14, or 15 channels. Suppose that in the
maintenance of a fleet of planes, planes of a particular type cannot occupy re-
pair bays that are adjacent because of interfering electrical signals. This leads
us to the following definition.

Definition 7 Let G = (V, E) be a graph and let T be a set of nonnegative
integers containing 0. A function f from V to the set of positive integers is
called a T -coloring if |f(u) − f(v)| /∈ T whenever u and v are adjacent vertices
in G.
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Example 9 Construct a T -coloring of K3 when T = {0, 1, 4}.
Solution: Let the vertices of K3 be v1, v2, and v3. We assign color 1 to v1.
Since the difference of the colors of adjacent vertices cannot be in T , we cannot
assign any of colors 1, 2, or 5 to v2. Suppose we assign color 3 to v2. Then we
cannot assign any of colors 1, 2, 3, 4, 5, or 7 to v3. We assign color 6 to v3.
This gives a T -coloring of K3.

Similarly, we could have assigned color 4 to v1, color 6 to v2, and color 1
to v3.

Example 10 Since ultra-high frequency (UHF) television stations that in-
terfere cannot be assigned the same channel or channels differing by 7, 14,
or 15 channels, to model the assignment of channels to UHF stations, we use a
T -coloring where T = {0, 7, 14, 15}.

There are several different useful measures of the “efficiency” of a T -
coloring of a graph. Sometimes we may be concerned with the total number of
colors used, while at other times we may be concerned with the range of colors
used. For example, in the channel assignment problem we may be interested in
how many channels are used, or, instead, we may be interested in the range of
channels used (that is, the required bandwidth). By the order of a T -coloring
we mean the number of colors used. By the T -span of a T -coloring we mean
the maximum difference between colors, that is,

max{|f(u) − f(v)||u, v are vertices of G}.

When we want to minimize the number of colors used, such as when we want
to use the fewest possible channels, we need to find the T -chromatic number
of G. When we want to find the smallest possible T -span of a T -coloring, such
as when we want to find the smallest range of channels required, we need to
find the T -span of G.

Minimizing the order and minimizing the T -span of a graph often requires
different colorings, as the following example, adapted from Roberts [5], shows.

Example 11 Let T = {0, 1, 4, 5}. Find the minimum order and minimum
span of a T -coloring of C5.

Solution: The minimum order of a T -coloring of C5 with T = {0, 1, 4, 5}
is the same as the chromatic number of C5, namely 3, since we can assign
color 1 to v1 and v3, color 4 to v2 and v4, and color 7 to v5 (where we are
using the assignment of vertices in Figure 2). The reader should verify that
this T -coloring of C5 with three colors has minimum span.
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On the other hand, using five colors we can construct a T -coloring of C5

with span equal to 4 by assigning color 1 to v1, color 4 to v2, color 2 to v3,
color 5 to v4, and color 3 to v5. It is impossible to find a T -coloring with span
smaller than 4, as the reader should verify. Therefore, the T -span of C5 is 4.

The solution of Example 11 shows that we cannot necessarily minimize
both the order and span of a T -coloring of a graph simultaneously.

The following theorem is useful in the computation of T -spans. It shows
that to compute the T -span of a graph G we need only find its chromatic
number k and then find the T -span of the complete graph with k vertices.
(Since the proof is complicated, we will not give it here. A proof can be found
in Cozzens and Roberts [1].)

Theorem 2 If G is a weakly γ-perfect graph and χ(G) = m, then the T -span
of G equals the T -span of Km.

Example 12 Let T = {0, 1, 3, 4}. What is the T -span of the graph G in
Figure 3?

Solution: By Example 5 the graph G is weakly γ-perfect and its chromatic
number is 4. Hence, the T -span of G is the T -span of K4. When T = {0, 1, 3, 4}
the T -span of K4 is 9, since the minimum span of a coloring of K4 is achieved
by the assignment of colors 1, 3, 8, and 10 to the four vertices of K4. (The
details of this demonstration are left as Exercise 9.)

Summary
We have seen how the study of applications of graph coloring to scheduling
and assignment problems leads to the development of a variety of interesting
generalizations of graph coloring. There are other generalization of graph color-
ing useful in constructing models which also have many interesting theoretical
properties.

For example, in list colorings for vertices the colors that can be assigned
to the vertices are restricted, in I-colorings an interval of real numbers is
assigned to each vertex of a graph, and in J-colorings a union of intervals is
assigned to each vertex of a graph. Also, to model some applications we need
to combine two generalizations of graph colorings. For instance, we may need
to assign two channels to broadcast stations so that interfering stations are not
assigned the same channel or adjacent channels. This application requires the
use of a combination of an n-tuple coloring and a T -coloring, which might be
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called an n-tuple T -coloring.
For more information and further references on these and other generaliza-

tions consult [5].
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Exercises

1. Find χ2(G) for: a) K4 b) C6 c) C7 d) W6 e) W7 f) Q3.

2. Assign three channels to each of five mobile telephone stations, using the
smallest number of different channels possible, if Station 1 interferes with
Stations 2, 4, and 5; Station 2 interferes with Stations 1, 3, and 5; Station 3
interferes with Stations 2 and 4; Station 4 interferes with Stations 1, 3,
and 5; and Station 5 interferes with Stations 1, 2, and 4.

3. At the end of the year, final examinations, each with two parts, are to be
scheduled. Examinations are given either in the morning or afternoon each
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day of a week. Schedule examinations using the smallest number of differ-
ent time periods for the following courses: Graph Algorithms, Operating
Systems, Number Theory, Combinatorics, Computer Security, Automata
Theory, and Compiler Theory, if no courses with the same instructor or
containing a common student can have a part scheduled at the same time.
Assume that Professor Rosen teaches Number Theory and Computer Secu-
rity, Professor Ralston teaches Graph Algorithms, Professor Carson teaches
Operating Systems and Automata Theory, and Professor Bastian teaches
Compiler Theory. Also assume that there are common students in Num-
ber Theory and Graph Algorithms, in Graph Algorithms and Operating
Systems, in Automata Theory and Compiler Theory, in Computer Security
and Automata Theory, Computer Theory and Graph Algorithms, and in
Computer Security and Compiler Theory.

4. Show that if G is a bipartite graph with at least one edge and n is positive
integer, then χn(G) = 2n.

5. Find the clique number of each of the following graphs.
a) b)

c) d)

6. Which of the graphs in Exercise 5 are weakly γ-perfect?

7. Show that every bipartite graph is weakly γ-perfect.

8. Find χ2(G) for each graph G in Exercise 5.

9. Finish the argument in Example 12 to show that the T -span of K4 is 9
when T = {0, 1, 3, 4}.

�10. Find the T -chromatic number and T -span of C5 if T is

a) {0, 1}. b) {0, 1, 3}. c) {0, 1, 3, 4}.
�11. Find the T -chromatic number and T -span of K4 for each of the sets T in

Exercise 10.
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�12. Find the T -span of each graph in Exercise 5, if T = {0, 1, 4}.

�13. We can use a greedy algorithm to construct an n-tuple coloring for a given
graph G where n is a positive integer. First, we order the vertices of G
as v1, v2,...,vm and represent colors by positive integers. We assign colors
1,2,...,n to v1. Then, once having assigned n colors to each of v1, v2,...,vk,
we assign the smallest numbered colors to vk+1 not already assigned to a
vertex adjacent to vk+1.

a) Use the greedy algorithm to construct a 2-tuple coloring of the follow-
ing graph.

b) Show that this algorithm does not always construct an n-tuple coloring
of minimal order.

14. Describe a greedy algorithm that constructs a set coloring of a given graph
G where each vertex v is to be assigned a set S(v) of colors where the size
of S(v) is specified for each vertex.

�15. We can use a greedy algorithm to construct a T -coloring for a given graph G
and set T . First, we order the vertices of G as v1, v2,...,vn and represent
colors by positive integers. We assign color 1 to v1. Once we have assigned
colors to v1,v2,...,vk, we assign the smallest numbered color to vk+1 so that
the separation between the color of vk+1 and the colors of vertices adjacent
to vk+1 that are already colored is not in T .

a) Use this algorithm to construct a T -coloring of the graph G in Exercise
13 where T = {0, 1, 4, 5}.

b) Show that this algorithm does not always construct a T -coloring of
minimal span.

16. Describe two different problems that can be modeled using list colorings.

17. Describe two different problems that can be modeled using I-colorings.

18. Describe two different problems that can be modeled using J-colorings.
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Computer Projects

1. Given the adjacency matrix of a graph G and a positive integer n, construct
an n-tuple coloring of G.

2. Given the adjacency matrix of a graph G and a set of nonnegative integers T
containing 0, construct a T -coloring of G.


