
Solutions to Exercises

Chapter 1 The Apportionment Problem

1. The apportionment for methods LF, GD, MF, and EP is (1, 1, 2, 4); for SD
the apportionment is (1, 2, 2, 3). 2. This problem illustrates that ties can
occur, thus violating the house size (this is not likely to occur if state populations
are not essentially small integers). GD produces the apportionment (1, 1, 3, 4);
EP and SD provide the apportionment (1, 2, 2, 4); but the allocation process
under LF or MF encounters a tie rendering the apportionment (1, 2, 3, 4) if an
extra seat is assigned because of the tie.
3.

State LF GD MF EP SD

NH 4 4 4 4 4
MA 11 12 11 11 11
RI 2 2 2 2 2
CT 7 7 7 7 7
NY 10 10 10 10 10
NJ 5 5 5 5 6
PA 13 13 13 13 13
DE 2 1 2 2 2
MD 8 8 8 8 8
VA 19 19 19 19 18
NC 10 11 10 10 10
SC 6 6 6 6 6
GA 3 3 3 3 3
VT 3 2 3 3 3
KY 2 2 2 2 2
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4. Only EP and SD, because the denominators for the Huntington sequential
method are zero, hence the ratios are infinite, until a seat has been assigned.
5. (a) Since GD does not inherently assign even one seat per state, the nat-
ural method is to start the Huntington sequential method with ai = 3 for
each state. This is equivalent to employing

∑
max(3, �qi/λ�) = H with the λ

method. (b) The proof of equivalence is the same inductive proof given for
the regular case in the text. 6. The apportionment is (3, 3, 4, 5), which can
be contrasted to (1, 3, 5, 6) if the three seat constraint does not exist. 7.
The proof is the same as the proof of Theorem 1 with the “+1” following the a’s
omitted. 8. By Exercise 7, it suffices to consider the sequential algorithm;
use induction on the number of seats assigned. Because this method assigns
one seat per district before assigning subsequent seats (which is necessary in
order that no pi/ai be infinite), assume that each state has one seat. The next
seat is assigned to the state for which pi/1 (the district size) is greatest; hence
that state’s district size must be reduced to minimize the maximum district
size. After k of the seats have been assigned, the next state to receive a seat
will be the one with the largest district size. This assignment is also necessary
to reduce the maximum district size. If the maximum district size was as small
as possible before the (k + 1)st seat was assigned, any reallocation of seats will
increase the maximum district size to at least the value with k seats assigned.
9. (a) Let states p1 = 1000, p2 = 10, p3 = 10, and H = 3. (b) No, because
the choice λ = 1 in the λ method provides each state with its upper quota, but
too large a House. Increasing λ to decrease the total House size cannot increase
the size of any state’s delegation. 10. (a) For example, p = (24, 73, 83)
with H changing from 18 to 19. (b) No, because with only two states, a frac-
tional part greater than 0.5 is necessary and sufficient for a state to receive its
upper quota. Increasing the House size will increase its quota, which will still
have a fractional part greater than 0.5 unless it has increased its integer part.
11. 104!/(90!14!) ≈ 8 × 1016. 12. 434!/(385!49!). 13. Based on the
1990 census figures, 21 states receive the same number of representatives under
all of the apportionment methods discussed in this chapter. These states (with
their numbers of representatives) are: AL(7), AK(1), AR(4), CO(6), CT(6),
GA(11), HI(2), IN(10), IA(5), MD(8), MN(8), MO(9), NV(2), NH(2), OR(5),
SC(6), UT(3), VT(1), VA(11), WV(3), WY(1). The numbers of seats for states
whose assignment depends on the apportionment method are given for great-
est divisors, equal proportions (which is the method currently employed), and
smallest divisors: AZ(6,6,7), CA(54,52,50), DE(1,1,2), FL(23,23,22), ID(1,2,2),
IL(21,20,19), KS(4,4,5), KY(6,6,7), LA(7,7,8), ME(2,2,3), MA(11,10,10),
MI(17,16,16), MS(4,5,5), MT(1,1,2), NE(2,3,3), NJ(14,13,13), NM(2,3,3),
NY(33,31,30), NC(12,12,11), ND(1,1,2), OH(19,19,18), OK(5,6,6),
PA(21,21,20), RI(1,2,2), SD(1,1,2), TN(8,9,9), TX(31,30,29), WA(8,9,9),
WI(8,9,9). The major fractions method provides the same apportionment as
equal proportions, except that MA would get 11 seats and OK would only get
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five. Largest fractions provides the same apportionment as equal proportions
except for MA(11), NJ(14), MS(4), and OK(5). The classification of states
with ten or more representatives as large states and those with fewer than ten
as small states bears out the characterization of the various apportionment
methods as favoring large or small states. 14.(a) We show
log(limt→0(0.5(at

i + (ai + 1)t))1/t) = log
√

ai(ai + 1), which is equivalent.

lim
t→0

1
t

log(0.5(at
i + (ai + 1)t)) =

lim
t→0

1
t

log(0.5((1 + t log ai) + (1 + t log(ai + 1)))) =

lim
t→0

1
t
(0.5(t log ai + t log(ai + 1))) =

lim
t→0

0.5(log ai + log(ai + 1)) = log
√

ai(ai + 1).

(For each of the first two equalities, l’ Hôpital’s rule can be used to show that
the ratio of the left side to the right side is 1.) (b) The limit is manifestly
less than or equal to ai + 1 because ai < ai + 1, and replacing the former with
the latter would provide equality. Because (ai + 1)t < at

i + (ai + 1)t, the limit
is greater than limt→∞(0.5(ai + 1)t)1/t = limt→∞ 0.51/t((ai + 1)t)1/t = ai + 1,
since 0.51/t has 1 as limit. (c) Letting bi = 1/ai and b′i = 1/(ai + 1), this
limit is the reciprocal of the limit in part (b) for the bs. Since bi > b′i, the limit
is the reciprocal of bi (i.e., ai).

Chapter 2 Finite Markov Chains
1. a) Looking at T2 (in Example 13), we find p

(2)
13 = 0.16. b) By Theorem 1,

this is q2p23p31p11 = 0.4× 0.2× 0.5× 0.3 = 0.012. c) The possible outcomes
comprising this event are: s1s1s2, s1s3s2, s3s3s2, s3s1s2. We compute the
probability of each of these, as in b), and add them, to get 0.112. 2. T =⎡
⎢⎢⎢⎣

1 0 0 0 0
1 − p 0 p 0 0

0 1 − p 0 p 0
0 0 1 − p 0 p
0 0 0 0 1

⎤
⎥⎥⎥⎦ . 3. a) The state space here is S = {s1 =

0, s2 = 1, s3 = 2}. The random process is a Markov chain since each day the
marbles to be exchanged are chosen at random, meaning that previous choices
are not taken into account. Thus, the probability of observing a particular
number Xk+1 of red marbles on day k + 1 depends only on how many red

marbles were in the jar on day k. b) T =

⎡
⎣ 0.8 0.2 0

0.09 0.82 0.09
0 0.2 0.8

⎤
⎦ . For example,
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p22 = 0.82 is the probability that if each jar has one red marble in it, there
will be one red marble in each after the exchange has been made. This event
can occur if one white marble is chosen from each of the jars (each of which
contains 9 white marbles); by the multiplication rule, there are a total of 100
possible pairs of choices and 81 ways to choose a white marble from each jar.
This event would also occur if the one red marble in each jar is chosen; there
is clearly only one way to do that. Thus, there are a total of 82 ways out of
100 possibilities of starting with a red in each jar, and ending with a red in
each jar after the exchange is made (and 82/100=0.82). A similar use of the
multiplication rule will yield the other probabilities found in the matrix. c)

We begin by computing T3 =

⎡
⎣ 0.56 0.40 0.04

0.18 0.64 0.18
0.04 0.40 0.56

⎤
⎦ . We then see that p

(3)
32 , the

probability that after 3 days there is one red marble in the jar, given that we
start out with 2 red marbles, is 0.4. 4. pij is the probability that, starting
in state si, the Markov chain moves to state sj . Now the random process must
move to one of the states sj , 1 ≤ j ≤ N , by definition of the state space. That
is, it moves to exactly one of these states with probability 1, which (for the
ith row) is pi1 + pi2 + · · · + piN = 1, which is what is to be shown. 5.
The result is obtained by mathematical induction. The result is correct for
k = 1 by the definition of pij . Assume it is true for k = m, i.e., for any i, l,
p(Xm = sl|X0 = si) = p

(m)
il . We must then deduce the result for k = m + 1.

We have

p
(m+1)
ij = P (Xm+1 = sj |X0 = si) by definition of p

(m+1)
ij

=
p(Xm+1 = sj , X0 = si

p(x0 = si)
by definition of conditional probability

=
N∑

l=1

p(Xm+1 = sj , Xm = sl, X0 = si)
p(X0 = si)

addition rule of probabilities

=
N∑

l=1

p(Xm = sl, X0 = si)
p(X0 = si)

p(Xm+1 = sj |Xm = sl, X0 = si) cond. prob.

=
N∑

l=1

p(Xm = sl, X0 = si)
p(X0 = si)

p(Xm+1 = sj |Xm = sl) by (i)

=
N∑

l=1

P (Xm = sl|X0 = si)plj by (ii)

=
N∑

l=1

p
(m)
il plj by the induction assumption

The last expression is the (i, j)th entry of Tm+1. 6. a) A is not, since the
first row is always (1 0 0) (see Exercise 8). B is, since B3 has all positive entries.
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b) By the definition of a regular Markov chain, for some k, Tk has all positive
entries. We will show that if m > 0 then Tm+k has all positive entries, which
amounts to what was to be shown. Now Tm+k = TmTk which has as its (i, j)th
entry

∑N
n=1 p

(m)
in p

(k)
nj ≥ p

(m)
in p

(k)
nj , for any choice of n, since all of the terms of the

sum are nonnegative. By assumption, p
(k)
nj > 0; furthermore, at least one of the

p
(m)
in must be greater than 0 since (see Exercise 4) the rows have entries adding

up to 1. Thus for some n, p
(m)
in p

(k)
nj > 0, which yields the desired conclusion.

7. a) The state space S = {s1, s2}, where s1 is the state that a women is a
voter and s2 that she is a nonvoter. Let Xk be the voting status of a woman
in the kth generation of her family. This will be a Markov chain with ma-

trix of transition probabilities T =
[

0.5 0.5
0.1 0.9

]
. b) (p q)

[
0.5 0.5
0.1 0.9

]
= (p q)

is the system of equations 0.5p + 0.1q = p, 0.5p + 0.9q = q. We also have
p + q = 1. Solving the system of three equations for the unknowns p and q
yields p = 0.167 and q = 0.833. This may be interpreted to mean that in
the long run (if these voting patterns remain unchanged) about 17% of women
will be voters and the remaining 83% will be nonvoters. 8. a) 0 and
4 are absorbing states in Example 1. b) Example 3 has none, since with
positive probability, the process can leave any of the given states. This is of
course true for any regular Markov chain. c) No, it is not. If the Markov
chain has an absorbing state, say si, then the ith row of the matrix of tran-
sition probabilities will have a 1 as the (i, i)th entry and all other entries in
that row will be 0. When we perform the matrix multiplication, this row never
changes. The underlying phenomenon is this: in a regular Markov chain, it
must eventually be possible to reach any state from a particular state, since
all the entries of some power of the matrix of transition probabilities are all
positive. This clearly cannot happen if there is an absorbing state, since by
the definition of such a state, no state can be reached from it no matter how
long we wait. 9. a) Using the definition of conditional probability, the
right hand side becomes P (A)P (E∩A)

P (A) + P (B)P (E∩A)
P (B) = P (E ∩A) + P (E ∩B).

Now, E = (E ∩ A) ∪ (E ∩ B) (since A ∪ B contains all possible outcomes) and
(E ∩A)∩ (E ∩B) = E ∩ (A∩B) = E ∩∅ = ∅, so P (E) = P (E ∩A)+P (E ∩B)
(“addition rule” for probabilities), and we are done. b) Using the hint, we
compute P (E) = P (A)P (E|A) + P (B)P (E|B). Now, P (A) = P (B) = 1/2.
Also, P (E|A) = rk+1, since the only way to win (starting with k dollars),
given that we win the first round, is to win, given that we start with k + 1
dollars. (This is a consequence of property (i) in Definition 1; in this con-
text, we might say that the Markov chain “forgets” that we have just won and
thinks that we are starting with k+1 dollars.) Similarly, P (E|B) = rk−1, thus,
rk = P (E) = 1

2rk−1 + 1
2rk+1, 0 < k < 4, with r0 = 0, r4 = 1. c) The identical

argument yields rk = 1
2rk−1 + 1

2rk+1, 0 < k < N , r0 = 0, rN = 1. d) This
is a straightforward verification by substitution. 10. a) Label the vertices
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of a pentagon 1, 2, 3, 4, 5; thus, the state space is S = {1, 2, 3, 4, 5}. We then

have T =

⎡
⎢⎢⎢⎣

0 1/2 0 0 1/2
1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2

1/2 0 0 1/2 0

⎤
⎥⎥⎥⎦ . b) Let Q = [0.2 0.2 0.2 0.2 0.2].

Then QT = [0.2 0.2 0.2 0.2 0.2] = Q. In the long run, the probability
of finding the drunkard at any particular corner of the building is 0.2=1/5;
that is, there is an equal chance of finding him at any particular corner. c)
Let the state space here be S = {1, 2, 3, 4}. The matrix of transition prob-

abilities is T =

⎡
⎢⎣

0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0

⎤
⎥⎦ and the equilibrium distribution is

(0.25 0.25 0.25 0.25). 11. a) S = {win, lose, 3, 4, 5, 6, 7, 8, 9, 10, 11}where
3, 4, . . . , 11 are the possible sums from which we can win (rolling a 2 or 12 imme-
diately puts us in the “lose” state, since we must have rolled doubles). Note that
once we are in one of the states 3, 4, . . . , 11, we stay there until we either win or
lose. b) The initial distribution (where the order is that given in the above
description of S) is [0 6/36 2/36 2/36 4/36 4/36 6/36 4/36 4/36 2/36 2/36].
For example, there are 6 ways to roll doubles initially out of 36 possible out-
comes so (since we lose when we roll doubles) the probability of losing right
away is 6/36. Of the 3 possible ways to roll a 4, ((1, 3); (2, 2); (3, 1)), only
two, (1, 3) and (3, 1), correspond to the state “4”; (2, 2) corresponds to the

state “lose”. c) T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
2
36

6
36

28
36 0 0 0 0 0 0 0 0

2
36

6
36 0 28

36 0 0 0 0 0 0 0
2
36

6
36 0 0 26

36 0 0 0 0 0 0
4
36

6
36 0 0 0 26

36 0 0 0 0 0
6
36

6
36 0 0 0 0 24

36 0 0 0 0
4
36

6
36 0 0 0 0 0 26

36 0 0 0
4
36

6
36 0 0 0 0 0 0 26

36 0 0
2
36

6
36 0 0 0 0 0 0 0 28

36 0
2
36

6
36 0 0 0 0 0 0 0 0 28

36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The idea is that once we roll a certain sum initially, we stay in that state
until we either win or lose. 12. a) Reflexivity and symmetry are easy
consequences of the definition of the relation. To show that the relation is
transitive, we must prove that si ↔ sk and sk ↔ sj implies si ↔ sj . Since
sk is accessible from si, there is a number n such that p

(n)
ik > 0 and since sj

is accessible from sk, p
(m)
kj > 0 for some number m. Now Tn+m = TnTm, so
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the (i, j)th entry of Tn+m (which is, by Theorem 2, p
(n+m)
ij ) can be computed

as p
(n+m)
ij =

∑N
l=1 p

(n)
il p

(m)
lj ≥ p

(n)
ik p

(m)
kj > 0. For l = k, we have p

(n)
ik p

(m)
kj > 0,

so that the sum above (none of whose terms are negative) must in fact be
larger than 0, which means that sj is accessible from si. The identical ar-
gument demonstrates that si is accessible from sj , so that these two states
communicate. This establishes transitivity and hence that the relation ↔ is an
equivalence relation. b) If sk is absorbing, pkk = 1 and pkj = 0 for j �= k, i.e.,
it is impossible for the process to leave state sk and enter another state sj . This
means that for j �= k, sj is not accessible from sk, so they cannot be commu-
nicating states. c) No. A transient state like si is one that the process even-
tually leaves forever, whereas it returns over and over again to recurrent states
(like sj). d) In Example 1, the equivalence classes are {0}, {4}, {1, 2, 3}. In
Example 2, there is only one equivalence class {s1, s2, s3}. e) There is only
one equivalence class. The fact that all entries of Tk are positive for some k

means that for this k and for any i and j, we have p
(k)
ij > 0, which means that

every pair of states communicate. 13. Let p, q ≥ 0 with p + q = 1. Then
Q = (p 0 0 0 q) is an initial probability distribution and it is easy to check that
for such Q Q = QT. The idea is that there is a rather uninteresting equilibrium
attained if we start out with probability p of having no money to start with
and probability q of already at the beginning having the amount of money we
want to end up with. 14. a) Choose a number e to be the error tolerance.
We must show that for any choice of an initial probability distribution Q, we
have |∑N

i=1 qip
(k)
ij − rj | < e, 1 ≤ j ≤ N , since

∑N
i=1 qip

(k)
ij is the jth entry of

Qk, which is supposed to be close to Qe. Now the entries of the jth column of
T(k) are by assumption all within e units of rj . Also,

∑N
i=1 qi = 1. We thus

have
∣∣∑N

i=1 qip
(k)
ij − rj

∣∣ =
∣∣∑N

i=1 qip
(k)
ij − ∑N

i=1 qirj

∣∣ =
∣∣∑N

i=1[qip
(k)
ij − qirj ]

∣∣ ≤∑N
i=1

∣∣qi(p
(k)
ij − rj)

∣∣ =
∑N

i=1 qi

∣∣(p(k)
ij − rj)

∣∣ ≤ ∑N
i=1 qie = e. b) The N × N

matrix T2 has N2 entries. Each of these requires N additions and N multi-
plications, namely p2

ij =
∑N

k=1 pikpkj . Thus, there are a total of N3 additions
and N3 multiplications required to multiply two N × N matrices together. If
this operation were to be repeated k − 1 times, which is the number of matrix
multiplications required to compute Tk, there would be a total of (k − 1)N3

additions and (k − 1)N3 multiplications required. Finally, to compute Qk, we
must perform N additions and N multiplications for each of the N entries of the
1 × N matrix Qk = QTk for a grand total of (k − 1)N3 + N2 ≈ kN3 multipli-
cations and additions to compute Qk. c) Qk = QTk = QTk−1T = Qk−1T,
which is what is to be shown. To compute Qk using this idea, we must perform
k operations of multiplying a 1 × N matrix by an N × N matrix. Each one
of these matrix multiplications requires N2 multiplications and additions, for a
total of kN2 multiplications and additions for the computation of Qk, a very
significant improvement over the method of part b).
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Chapter 3 Rational Election Procedures
1. One example is the ranking of students by letter grades. If two students
have the same grade, they are related to each other (XRY and Y RX), hence
it is not a total order. 2. The standard example of the power set of
{a, b, c} with a partial order defined by “is a subset of”. It is not a weak
order because {a} and {b, c} are not comparable. 3. Specializing XRY
or Y R X to the case X = Y provides XR X . 4. Indifference is defined as
XI Y ⇔ XR Y ∧ Y R X . It is therefore symmetric. Since R is a weak order
(which is transitive and reflexive), it is the intersection of two relations which
are transitive and reflexive, hence is also transitive and reflexive. 5. It
is connected since if there is a tie, the candidates are related to each other;
else the winner is related to the loser. It is transitive since it is reflexive and
any reflexive relation on two elements is transitive. 6. Majority rule with
just two candidates satisfies PR since a stronger preference for candidate A
entails giving him a vote previously assigned to B, which raises A’s relative
position, so he fares at least as well as before. IA is vacuously true since there
are no candidates to withdraw from the contest if one wishes to compare the
relative rankings of two. 7. If a relation is a total order, it is connected.
If it is an equivalence relation it is symmetric. Combining XR Y ∨ Y R X with
XR Y ⇒ Y R X implies that XR Y for all X and Y , i.e., everything is related
to everything. This violates antisymmetry if the relation is on a set with more
than one element. 8. Assume XP̂1Y and Y R̂ X . Y P̂2X contradicts the
hypothesis, hence XR̂2Y . But XP̂1Y , XP̂2Y and Y R̂ X contradicts Lemma 1,
hence XÎ2Y . By IA and PR, XP̃1Y and Y P̃2X provide Y R̃ X , which violates
the hypothesis of Lemma 2. Therefore the assumption XP̂1Y and Y R̂ X cannot
be true and Lemma 2 is proven. 9. If XP1Y , Y P2X , and XP Y ; by
symmetry with respect to candidates Y P1X and XP2Y implies Y PX and by
symmetry with respect to voters XP2Y and Y P1X implies XP Y ; which two
implications provide a contradiction. Assuming initially Y PX leads to the
same contradiction, hence indifference must hold. 10. A has 4, B has 3, C
has 2; hence none of the candidates has a majority of first place votes. A has
a plurality. 11. If C is eliminated, B receives 5 first place votes while A
still receives only 4. Hence B wins. 12. If only the favorite candidates are
acceptable, approval voting is plurality voting for the favorite candidate, and A
wins. If every voter approved his first two choices, A would still only get 4 votes,
B would get six votes, and C would get 8 votes; hence C would win. 13.
B would defeat A. C would then defeat B. 14. Yes, C would defeat either
A or B in a two-way race. 15. The scoring is 2 – 1 – 0. A gets 8, B gets 9,
and C gets 10; hence C wins. 16. B receives 8, H receives 8, Y receives 2,
and D receives 3; hence there is a tie between B and H . 17. C must beat
D by transitivity; either outcome of the B-D competition will be consistent.
18. Three. No matter how many teams are in the tournament, if A defeats
B, B defeats C, and C defeats A, transitivity will be violated. 19. If
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the number of voters is divisible by three, assign one-third to each preference
schedule; for four voters, giving two voters to one preference schedule will result
in contradicting transitivity with indifference instead of preference; for more
than four voters assign the one or two voters in excess of a multiple of three to
different (if the excess is two) candidates and the argument presented remains
valid. 20. For the individual preferences BP1C, CP1A and CP2A, AP2B
Lemma 1 provides CPA. BP C because it is true for P1 (from above in the
lemma). Hence BPA by transitivity. Lemma 2 (with IA and PR) provides this
for all preferences compatible with BP1A. Hence BP1A ⇒ BPA. For CPA
consider the preferences C � B � A and A � C � B. 21. If Y R X when
more voters prefer X , then, by PR, Y R X when more voters prefer Y , but
XR Y by symmetry. This is a contradiction if there is no indifference, hence
XR Y (which is consistent with indifference). 22. With three alternatives,
there are a total of three two way contests; either each candidate wins one (no
Copeland winner), or one candidate wins both contests in which he is involved (a
Condorcet winner). If there are four candidates there are six two-way contests
with each candidate involved in three of them. If no candidate wins three
contests (hence there is no Condorcet winner), at least two candidates must
win two contests (pigeonhole principle). 23. 315. (There are 3 ways to
order teams B, C, and D; 3 ways to order teams F , G, and H ; and 35 ways to
interleaf the orderings of BCD with EFGH . 24. A vs. B and C vs. D
or A vs. C and B vs. D. A vs. D initially if A is to lose.

Chapter 4 Gödel’s Undecidability Theorem
1. 14 = 3 + 11, 16 = 3 + 13, 18 = 5 + 13, 20 = 3 + 17, 22 = 3 + 19, 24 = 5 + 19,
26 = 3 + 23, 28 = 5 + 23, 30 = 7 + 23, 32 = 3 + 29, 34 = 3 + 31, 36 = 5 + 31,
38 = 7 + 31, 40 = 3 + 37, 42 = 5 + 37, 44 = 3 + 41, 46 = 3 + 43, 48 = 5 + 43,
50 = 3 + 47. 2. Starting with n = 22, repeated application of f gives the
following sequence of integers: 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4,
2, 1. Hence i = 15. Starting with n = 23, repeated application of f gives: 23,
70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1. Hence i = 15.
3. 4.

5. Same as solution to Exercise 3.
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6. 7. Yes, as illustrated below.

8. Suppose points a, b, c lie on line l1, and d lies on l2. Since l2 contains three
points and there are only four points in the system, at least two of the points
a, b, c must also lie on l2. This contradicts axiom (ii). 9. Suppose points
a, b, c lie on line l1. Since a lies on two lines, there is a line l2 containing a. By
axiom (ii), neither b nor c can lie on l2, so l2 must contain points d and e. Points
b and d must also lie on another line, say l3. The third point on l3 cannot be a,
c, or e; let f be this third point on l3. Then a and f must lie on a line other than
l1 and l2, which forces a to be on three lines, contradicting axiom (iii). 10.
If the statement is true, then it is false. If the statement is false, then it is true.
11. a) If a liar makes the statement, then “I am lying” is false, and hence the
speaker is telling the truth (which contradicts the fact that the speaker never
tells the truth). If a truth-teller makes the statement, then “I am lying” is true,
and the speaker is lying (which contradicts the fact that the speaker always tells
the truth). b) This is a paradox. If the person is a liar, then the statement
is false. So I will know that he is telling the truth and so therefore he is a
truth teller. But this truth teller says that I cannot know that he is truthful,
which is an untrue statement since I do know. So, he is not a truth teller either.
12. a) 2213195373111 b) 253115117211119131171319723112923311937141134313

c) 293215177231111135171119323212919312337134113

d) 2932151171111211319173191231329731537114121431947353159136113

13. a) 2k13k25k3 , where k1 = 2213195371, k2 = 22331953721, and

k3 = 2233195373111. b) 2k13k25k3 , where k1 = 217323511721111913317231913,
k2 = 293235117511111311719193232329133113, and k3 = 253115217191111313.

14. a) ¬(x = y). b) ∀x∃y(x = fy). c) (x = 0) ∨ ¬(y = 0).

15. a)

⎧⎨
⎩

x = ff0
¬(y = x)

¬(y = ff0)

⎫⎬
⎭. b)

⎧⎨
⎩

∀y∃x¬(x = y)
y = f0

∃x¬(x = f0)

⎫⎬
⎭. 16. Gödel’s Undecidability

Theorem predicts that there is some new statement G′ in the larger system
which is true but which cannot be proven within that system.
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Chapter 5 Coding Theory

1. a) no b) yes c) yes d) yes. 2. a) 5 b) 3 c) 4 d) 6. 3.
a) 0.9509900499 b) 0.0096059601 c) 0.0000970299 d) 0.0000009801 e)
0.9990198504 4. a) detect 6, correct 3 b) detect 1, correct 0 c) detect
4, correct 2. 5. 0.999999944209664279880021 6. Let C be a binary
code with d(C) = 4. We can correct one error and detect two errors as fol-
lows. Let y be a bit string we receive. If y is a codeword x or has distance
1 from a codeword x we decode it as x since, as can be shown using the tri-
angle inequality, every other codeword would have distance at least three from
y. If y has distance at least two from every codeword, we detect at least two
errors, and we ask for retransmission. 7. 11 8. The minimum dis-
tance of this code in n. We find that 2n/(

∑(n−1)/2
j=0 C(n, j)) = 2n/2n−1 = 2,

since
∑(n−1)/2

j=0 C(n, j) = (
∑n

j=0 C(n, j))/2 = 2n/2 = 2n−1. Since there are two
codewords in this code and this is the maximum number of codewords possible
by the sphere packing bound, this code is perfect. 9. There is a 1 in a
specified position in x + y if there is a 1 in this position in exactly one of x
and y. Note that w(x) + w(y) is the sum of the number of positions where x
is 1 and the number of positions where y is 1. It follows that the number of
positions where exactly one of x and y equals 1 is this sum minus the num-
ber of positions where both x and y are 1. The result now follows. 10.

H = (1 1 1 1 1). 11. H =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ . 12.

H =

⎛
⎝ 1 1 0 1 1 0 0

1 0 1 1 0 1 0
1 1 1 0 0 0 1

⎞
⎠ . 13. G =

(
1 0 1 1 0
0 1 0 1 1

)
. 14.

0000000, 0001111, 0010110, 0011001, 0110011, 0100101, 0101010, 0111100,
1000011, 1001100, 1010101, 1011010, 1100110, 1101001, 1110000, 1111111.
15. a) Suppose that when the codeword x is sent, y is received, where y
contains l erasures, where l ≤ d − 1. Since the minimum distance between
codewords is d there can be at most one codeword that agrees with y is the
n− l positions that were not erased. This codeword is x. Consequently, we cor-
rect y to be x. b) Suppose that when the codeword x is sent, y is received and
y contains at m errors and l erasures, such that m ≤ t and l ≤ r. Suppose that
S is the set of bit strings that agree with y in the n− l positions that were not
erased. Then there is a bit string s1 ∈ S with d(x, s1) ≤ t. We will show that
x is the only such codeword. Suppose that there was another codeword z ∈ S.
Then d(z, s2) ≤ t for some string s2 ∈ S. By the triangle inequality, we then
would have d(x, z) ≤ d(x, s1)+ d(s1, s2)+ d(s2, z). But since the first and third
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terms in the sum of the right hand side of this inequality equal m and the mid-
dle term is no larger than l, it follows that d(x, z) ≤ m+l+m = 2m+l ≤ 2t+r,
which is a contradiction since both x and z are codewords and the minimum
distance between codewords is d = 2t + r + 1.

Chapter 6 Stirling Numbers
1. Using S(7, k) = S(6, k − 1) + k S(6, k) and the values of S(6, k) in Table 1,
we get 1, 63, 301, 350, 140, 21, 1 as the values of S(7, k). For the s(7, k), use
s(7, k) = s(6, k − 1) − 6 s(6, k) and Table 2 to get the values 720, −1764, 1624,
−735, 115, −21, 1. 2. (x)4 = x(x−1)(x−2)(x−3) = x4−6x3+11x2−6x.
3. Write x4 = (x)4 + a3(x)3 + a2(x)2 + a1(x)1 = (x4 − 6x3 + 11x2 − 6x) +
(x3 − 3x2 + 2x)a3 + (x2 − x)a2 + xa1 for unknown coefficients ai. Equating the
coefficients of xj above, we get the equations −6 + a3 = 0, 11 − 3a3 + a2 = 0,
−6+2a3−a2 +a1 = 0, and find the solution a3 = 6 = S(4, 3), a2 = 7 = S(4, 2),
a3 = 1 = S(4, 1). 4. The number of onto functions from an 8-element set
to a 5-element set is, by (3), 1

5!

∑5
i=0(−1)iC(5, i)(5 − i)8 = 1050. 5. Writ-

ing each function f as an ordered triple f(1)f(2)f(3), the functions f with
|f(N)| = 1 are the S(3, 1)(3)1 = 1 · 3 = 3 functions aaa, bbb, ccc. Those
with |f(N)| = 2 are the S(3, 2)(3)2 = 3 · 6 = 18 functions aab, aba, baa,
aac, aca, caa, bba, bab, abb, bbc, bcb, cbb, cca, cac, acc, ccb, cbc, and bcc.
The S(3, 3)(3)3 = 1 · 6 = 6 functions f with |f(N)| = 3 are abc, acb, bac,
bca, cab, and cba. 6. Since the balls are distinguishable and the boxes are
identical, we can interpret the balls in a nonempty box as a class of a parti-
tion of the set of balls. Then the numbers are given by: a) S(7, 4) = 350;
b) S(7, 1) + S(7, 2) + S(7, 3) + S(7, 4) = 1 + 63 + 301 + 350 = 715. 7.
a) 26/36 = 64/729 = 0.088. b) S(6, 3) 3!/36 = 90 · 6/729 = 0.741. c)
S(6, 2)(3)2 = 31 · 6/729 = 0.255. 8. Using Theorem 1 with k = 3, recur-
sively compute S(n, 3) for n = 3, 4, . . . , 12. Then the number of partitions of the
set of 12 people into three subsets is S(12, 3) = 86, 526. 9. After n−1 rolls,
all but one of the k numbers have appeared, and it, say x, appears on roll n.
The first n−1 rolls then define a function from the set {1, 2, . . . , n−1} onto the
set of k−1 numbers other than x. Since x can be chosen in k ways, by Theorem
2 and the product rule the number of possible sequences is S(n − 1, k − 1)k!.
10. The sequence corresponds to a function from the set of n positions to the
set of 10 digits. The function is arbitrary in a) and onto in b), so the numbers
are: a) 10n; b) S(n, 10) · 10!. 11. Here the pockets are the cells of the
distribution. a) The distribution corresponds to a function from the set of 15
numbered balls to the set of six pockets, so the number is 615. b) The distri-
butions in the four identical corner pockets correspond to partitions of the set of
15 distinguishable balls into at most four classes, while the distributions in the
two identical center pockets correspond to partitions into at most two classes.
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By the sum rule, the number of distributions is
∑4

k=1 S(15, k)+
∑2

k=1 S(15, k).
12. The S(n + 1, k) partitions into k classes of an (n + 1)-set S = {0, 1, . . . , n}
can be classified according to the number of elements other than 0 in the class
containing 0. The number of these partitions in which the class containing 0 has
size j +1 is obtained by choosing a j-element subset J of the n-set {1, 2, . . . , n}
to put in a class with 0 and then choosing a (k − 1)-class partitions of the set
of n − j remaining elements. Apply the product rule and sum over j. 13.
a) A partition of an n-set N into n− 1 classes must have one class of size two,
and the remaining classes of size one. Since it is determined uniquely by the
class of size two, the number of these partitions equals C(n, 2), the number of
2-subsets of N . b) Since s(n, n − 1) is the coefficient of xn−1 in the expan-
sion of (x)n = x(x − 1) . . . (x − n + 1), it is equal to −1 times the sum of the
positive integers 1, 2, . . . , n − 1, which is −n(n − 1)/2 = −C(n, 2). 14. a)
The number of ordered partitions (A, B) of an n-element set into two nonempty
subsets is 2! times the number S(n, 2) of such unordered partitions, since the
two classes can be ordered in 2! ways. But there are 2n − 2 nonempty proper
subsets A of the n-set, and then B is uniquely determined as the complement
of A. Thus S(n, 2) = (2n − 2)/2! = 2n−1 − 1. b) The coefficient s(n, 1) of x
in the expansion of (x)n = x(x − 1) · · · (x − n + 1) is the product of the terms
−1,−2, . . . ,−(n− 1) in the last n− 1 factors, which is (−1)n−1(n− 1)! 15.
This follows immediately from the fact that the S(n, k), s(n, k) are the entries
for exchanging between the two bases {x}, {(x)n} of the vector space. From
the definitions xm =

∑m
k=0 S(m, k)(x)k =

∑m
k=0 S(m, k)

∑k
n=0 s(k, n)xn =∑m

n=0(
∑m

k=n S(m, k)s(k, n))xn, where we have used the fact that 0 ≤ n ≤
k ≤ m and S(m, k) = 0 for k > m, s(k, n) = 0 for k > n. Equating the
coefficients of xn on both sides gives the result. 16. Replace x by −x
in (8), and note that (−x)n = (−1)nx(x + 1) · · · (x + n − 1) = (−1)n(x)n,
where (x)n = x(x + 1) · · · (x + n − 1) is the rising factorial. This gives
(x)n =

∑n
k=0(−1)n−ks(n, k)xk =

∑n
k=0 t(n, k)xk and the coefficients of xk in

the expansion of (x)n are clearly positive. 17. From Exercise 16 we have
t(n, k) = (−1)n−ks(n, k), which is equivalent to s(n, k) = (−1)n−kt(n, k). Sub-
stituting for s(n, k) in (12) gives t(n, k) = t(n − 1, k − 1) + (n − 1)t(n − 1, k).
18. Let p(n, k) be the number of permutations of an n-element set with k cycles
in their cycle decomposition. For a fixed k, assume that p(n−1, k) = t(n−1, k).
Then a k-cycle permutation σ of the n-set {1, 2, . . . , n} can be obtained from
either: (i) a (k − 1)-cycle permutation of the (n − 1)-set {1, 2, . . . , n − 1} by
adding (n) as a cycle of length one (fixed point), or (ii) a k-cycle permutation
of {1, 2, . . . , n − 1} by choosing one of the n − 1 elements a and inserting n as
the new image of a, with the image of n being the previous image of a. The two
cases are exclusive. There are p(n−1, k−1) of type (i) and (n−1)p(n−1, k) of
type (ii). Thus p(n, k) satisfies the recurrence relation satisfied by t(n, k) (Exer-
cise 17). Since p(n, k) = t(n, k) for the initial values with n = k, k + 1, the two
sequences are equal. 19. Since the permutations are given as random, we
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assume each of the n! permutations has equal probability 1/n!. Let X be the
number of cycles. a) By Exercise 18 the number of permutations with k cycles
is t(n, k), so the probability is p(X = k) = t(n, k)/n!. b) The total number
of permutations is 8! = 40,320. Using results from Exercises 1, 16, and 17,
t(8, 2) = t(7, 1) + 7t(7, 2) = 720 + 7 · 1764 = 13,068, t(8, 3) = t(7, 2) + 7t(7, 3) =
1764 + 7 · 1624 = 13,132, so the probabilities are p(X = 2) = 13,068/40,320 =
0.3241, p(X = 3) = 13,132/40,320 = 0.3257. It is slightly more likely that the
number of cycles is 3 than it is 2. 20. Let C(n, k) be the set over which the
sum is taken, so a(n, k) =

∑
(c1,c2,...,ck)∈C(n,k)

1c12c2 · · · kck . Partition C(n, k) into

two classes A(n, k) = {(c1, c2, . . . , ck)|ck = 0}, B(n, k) = {(c1, c2, . . . , ck)|ck ≥
1}. Then a(n, k) =

∑
A(n,k)

1c12c2 · · · kck +
∑

B(n,k)

1c12c2 · · · kck . But the first

sum is unchanged if we omit the kck factor in each term, since kck = 1 when
ck = 0. But then it is equal to

∑
C(n,k−1)

1c12c2 · · · (k − 1)ck−1 = a(n − 1, k − 1)

since c1 + c2 + · · · + ck−1 = (n − 1) − (k − 1). In the second sum where
ck ≥ 1, factor out k to reduce kck to kck−1 inside the summation. Then
c1 + c2 + · · ·+ (ck − 1) = n− k − 1 = (n− 1)− k, and all the new ci’s are non-
negative, so

∑
B(n,k)

1c12c2 · · · kck = k
∑

C(n−1,k)

1c12c2 · · · kck = k a(n − 1, k). Thus

a(n, k) = a(n−1, k−1)+k a(n−1, k) which is equivalent to (1). For the initial
conditions, the sum is vacuous if k > n, so a(n, k) = 0 when k > n. When
k = 1, the only term in the sum is 1n−1 = 1, so a(n, 1) = 1. Since a(n, k) and
S(n, k) satisfy the same recurrence relation and have the same initial values, it
follows that S(n, k) = a(n, k) =

∑
C(n,k)

1c12c2 · · · kck . 21. a) Dividing both

sides by S(n, k) of the recurrence relation in (1) gives S(n+1,k)
S(n,k) = S(n,k−1)

S(n,k) + k,

so lim
n→∞

S(n+1,k)
S(n,k) = lim

n→∞
S(n,k−1)

S(n,k) + k = k. b) Here we divide the recurrence

relation in (12) by s(n, k) to get s(n+1,k)
s(n,k) = s(n,k−1)

s(n,k) −n, and on taking limits we

get lim
n→∞

s(n+1,k)
s(n,k) = lim

n→∞
s(n,k−1)

s(n,k) −n = −n. 22. By the Binomial Theorem,

1
k! (e

x − 1)k = 1
k!

k∑
j=0

(−1)jC(k, j)e(k−j)x. Now use the fact that eax =
∞∑

n=0
an xn

n!

to get 1
k! (e

x − 1)k = 1
k!

k∑
j=0

(−1)jC(k, j)
∞∑

n=0
(k − j)n xn

n! =

∞∑
n=0

(
k∑

j=0

(−1)j

k! C(k, j)(k − j)n)xn

n! =
∞∑

n=0
S(n, k)xn

n! by (4). 23. The polyno-

mial pk(x) =
k∏

i=1

(1 − ix) can be written as pk(x) =
k∏

i=0

(1 − ix) since the added

term for i = 0 doesn’t change the product. Then divide each of the k + 1

factors by x and multiply pk(x) by xk+1, to get pk(x) = xk+1
k∏

i=0

(
1
x − i

)
=
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xk+1(x−1)k+1 = xk+1
k+1∑
j=0

s(k + 1, j)x−j =
k+1∑
j=0

s(k + 1, j)xk+1−j =

k+1∑
j=0

s(k + 1, k + 1 − j)xj .

Chapter 7 Catalan Numbers

1. a) Substituting left parentheses for 1 and right parentheses for −1 gives the
well-formed sequence (( )( )( ))(( )).

b)

c) Starting with 123456[ ], and interpreting each + as a push and each − as a
pop, the sequence successively produces: 12345[6],1234[56], 1234[6]5, 123[46]5,
123[6]45, 12[36]45,12[6]345, 12[ ]6345, 1[2]6345, [12]6345, [2]16345, [ ]216345.
The stack permutation is therefore 216345. 2. a) The string q of left paren-
theses and the first five variables is ((1(23((45. Adding the last variable on the
right and closing parentheses from the left gives the well-parenthesized product
p = ((1(23))((45)6)).

b) c)

3. a) ((1((2(34))(56)))7). b) (+ + − + + − + −− + −−).

c)

d) 12345[6], 1234[56], 1234[6]5, 123[46]5, 12[346]5, 12[46]35, 1[246]35, 1[46]235,
1[6]4235, [16]4235, [6]14235, [ ]614235. 4. a) (+++−−−++−−+−). b)
12345[6], 1234[56], 123[456], 123[56]4, 123[6]54, 123[ ]654, 12[3]654, 1[23]654,
1[3]2654, 1[ ]32654, [1]132654, [ ]132654.
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c)

5.
[ ]42135
[4]2135 4 Popped −
[24]135 2 Popped −
[124]35 1 Popped −
1[24]35 1 Pushed +
12[4]35 2 Pushed +
12[34]5 3 Popped −
123[4]5 3 Pushed +
1234[ ]5 4 Pushed +
1234[5] 5 Popped −
12345[ ] 5 Pushed +

The admissible sequence is therefore (+ − + + − + + − −−). The path is the
following.

6. cn = 1
n+1

(2n)!
(n!)2 = 2n(2n−1)

(n+1)n2
(2n−2)!

((n−1)!)2 = (4n−2)·(2n−2)!
(n+1)n·((n−1)!)2 = 4n−2

n+1 cn−1.

7. Substituting Stirling’s approximation for the factorials in cn gives cn =
1

n+1
(2n)!
n!n! ≈ 1

n+1

√
4πn (2n)2n

2πn n2n = 22n

(n+1)
√

πn
≈ 4n√

π n3/2 = O(n−3/2 4n). 8. If
vivj ∈ D, then the polygon P ′ with vertices vi, vi+1, . . . , vj is triangulated by
the set D′ of diagonals of D that are also diagonals of P ′. With vivj serving as
the excluded side of P ′, the product of sides si+1si+2 · · · sj is well-parenthesized
into p′ by recursively parenthesizing the two polygon sides that are sides of
outer triangles, and then reducing the polygon. The order of reducing the
polygons does not affect the well-parenthesized product finally obtained, so p′

will be a subsequence of consecutive terms of p. Conversely, if si+1si+2 · · · sj

is well-parenthesized in p as p′, then p′ will appear on the diagonal joining
the end vertices of the path formed by the sides in p′. But that diagonal
is vivj . 9. Suppose that D contains the diagonal vkvn+1. Then after
putting i = k, j = n + 1 in Exercise 8, the product sk+1sk+2 · · · sn+1 is well-
parenthesized as a sequence p′. Corresponding to p′ is a nonnegative path
from the origin to (2(n − k), 0). Translating this path to the right 2k units
identifies it with the segment of the path corresponding to T from (2k, 0) to
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(2n, 0). Conversely, suppose the nonnegative path corresponding to T meets the
x-axis at the point (2k, 0). On removing sn+1 and the n right parentheses from
the corresponding well-parenthesized sequence p of the product s1s2 · · · sn+1,
we obtain a sequence q with n left parentheses interlaced with the product
s1s2 · · · sn. Since the path passes through the point (2k, 0), the first 2k terms
of q has k left parentheses interlaced with s1s2 · · · sk. Hence the subsequence q′

consisting of the last 2(n− k) terms of q interlaces n − k left parentheses with
sk+1sk+2 · · · sn. Since the path is nonnegative, the segment corresponding to q′

is nonnegative, and so corresponds to a triangulation of the (n−k+2)-gon with
sides sk+1sk+2 · · · sn+1 and the diagonal (of P ) joining the end vertices of the
path. But that diagonal is vkvn+1. 10. If D contains the diagonal v0vn,
then vnvn+1v0 is an outer triangle, so no diagonals on vn+1 can be in D. By
Exercise 9 the corresponding path cannot meet the x-axis at any point (2k, 0)
for 1 ≤ k ≤ n− 1. Since the path starts on the x-axis, it can only return to the
x-axis after an even number 2k of steps. Thus the path is positive. Conversely,
if the path is positive, then D contains no diagonals vkvn+1 for 1 ≤ k ≤ n − 1.
Since every side of P is in exactly one triangle of T , sn, s0 must be in the same
triangle. But the outer triangle vnvn+1v0 is the only triangle that can contain
both. Thus T contains the diagonal v0vn.

Chapter 8 Ramsey Numbers
1. There are 4 colorings of K3 to consider: all 3 edges red, 2 red and 1 green,
1 red and 2 green, all 3 edges green. The first 3 colorings yield a red K2, while
the last yields a green K3. The coloring of K2 where both edges are green fails
to have a red K2 or a green K3. 2. Draw K6 as a hexagon with all its
diagonals. Color the edges of the outer hexagon red and all diagonals green.
Clearly, there is no red K3. To see that there is no green K4, number the
vertices clockwise with 1, . . . , 6. If vertex 1 were a vertex of a green K4, then
vertices 3,4,5 must also be in K4 (since K4 has 4 vertices). But vertices 3 and
4, for example, are not joined by a green edge, and hence no K4 subgraph using
vertex 1 is possible. Similar reasoning shows that none of the vertices 2, . . . , 6
can be in a green K4. 3. The coloring of Figure 1(a) shows that 5 does not
have the (3, 3)-Ramsey property. Suppose m < 5, and choose any m vertices
from this figure and consider the subgraph Km of K5 constructed on these m
vertices. This gives a coloring of the edges of Km that has no red K3 or green
K3, since the original coloring of the edges of K5 has no red K3 or green K3.
4. Every coloring of the edges of Kk either has a red K2 (i.e., a red edge) or else
every edge is colored green (which gives a green Kk). Therefore R(2, k) ≤ k. If
we color every edge of Kk−1 green, then Kk−1 does not have either a red K2

or a green Kk. Therefore R(2, k) > k − 1, and hence R(2, k) = k. 5. Let
R(i, j) = n. We show that R(j, i) ≤ R(i, j) and R(i, j) ≤ R(j, i). To show
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that R(j, i) ≤ R(i, j), we show that every coloring of the edges of Kn also
contains either a red Kj or a green Ki. Choose any coloring, C, of Kn and then
reverse the colors to get a second coloring, D. Since R(i, j) = n, the coloring
D contains either a red Ki or a green Kj . Therefore, coloring C contains either
a red Kj or a green Ki. This shows that R(j, i) ≤ n = R(i, j). A similar
argument shows that R(i, j) ≤ R(j, i). 6. Suppose m has the (i, j)-Ramsey
property and n > m. Consider any coloring of the edges of Kn with red and
green. Choose any m vertices of Kn and consider the subgraph Km determined
by these m vertices. Then Km, with the coloring that is inherited from the
coloring of Kn, must have a subgraph that is a red Ki or a green Kj . Hence Kn

also has a red Ki or a green Kj. Therefore n has the (i, j)-Ramsey property.
7. Suppose n did have the (i, j)-Ramsey property. By Exercise 6, every larger
integer also has the (i, j)-Ramsey property. In particular, m must have the
(i, j)-Ramsey property, which is a contradiction of the assumption. 8. We
will show that if m has the (i1, j)-Ramsey property, then m also has the (i2, j)-
Ramsey property. If m has the (i1, j)-Ramsey property, then every coloring
of the edges of Km with red and green contains a red Ki1 or a green Kj. If
Km has a red Ki1 , then it also has a red Ki2 (since i1 ≥ i2). Therefore Km

has either a red Ki2 or a green Kj. Hence Km has the (i2, j)-Ramsey property
and therefore m ≥ R(i2, j). This shows that every integer m with the (i1, j)-
Ramsey property also satisfies m ≥ R(i2, j). Therefore, the smallest integer
m with this property, namely R(i1, j), must also satisfy R(i1, j) ≥ R(i2, j).
9. We assume that |B| ≥ R(i, j − 1) and must show that m has the (i, j)-
Ramsey property. Since |B| ≥ R(i, j − 1), the graph K|B| contains either a
red Ki or a green Kj−1. If we have a green Kj−1, we add the green edges
joining v to the vertices of Kj−1 to obtain a green Kj . Thus, K|B|, and hence
Km, has either a red Ki or a green Kj. Therefore m has the (i, j)-Ramsey
property. 10. The proof follows the proof of Lemma 1. We know that
either |A| ≥ R(i, j − 1) or |B| ≥ R(i − 1, j). But m is even, so deg(v) is odd.
Therefore, either |A| or |B| is odd. Let m = R(i, j−1)+R(i−1, j)−1, which is
an odd number. Suppose the edges of Km are colored red or green. Choose any
vertex v and define the sets A and B as in the proof of the Lemma. It follows
that either |A| ≥ R(i, j − 1) or |B| ≥ R(i− 1, j)− 1. But deg(v) is even since v
is joined to the m− 1 other vertices of Km. Since |A ∪B| = |A| + |B| = m− 1
(which is even), either |A| or |B| are both even or both odd. If |A| and |B| are
both even, then |B| > R(i − 1, j) − 1, since R(i − 1, j) − 1 is odd. If |A| and
|B| are both odd, then |A| > R(i, j − 1), since R(i, j − 1) is even. Therefore
m − 1 = |A| + |B| > R(i − 1, j) + R(i, j − 1) − 1. 11. Suppose that the
vertices of the graph in Figure 2(b) are numbered 1, . . . , 8 clockwise. By the
symmetry of the figure, it is enough to show that vertex 1 cannot be a vertex
of a K4 subgraph. Suppose 1 were a vertex of a K4 subgraph. Since vertex 1 is
adjacent to only 3,4,6,7, we would need to have three of these four vertices all
adjacent to each other (as well as to 1). But this is impossible, since no three
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of the vertices 3,4,6,7 are all adjacent to each other. 12. Suppose that
the graph had a red K3 and vertex 1 were a vertex of a red triangle. Vertex
1 is adjacent to vertices 2,6,9,13, but none of these four vertices are adjacent.
Therefore, 1 is not a vertex of a red triangle. Similar reasoning applies to each
of the other twelve vertices. Thus, K13 has no red K3. We next show that K13

has no green K5. Suppose it did, and vertex 1 were a vertex of the K5. Then
the other four vertices must come from the list 3,4,5,7,8,10,11,12. If vertex 3
were also in K5, then the other two vertices must come from 5,7,10,12 (since
there are the only vertices adjacent to 1 and 3). But we cannot choose both
5 and 10 or 7 and 12 since they are not adjacent. Thus, we can only pick 4
vertices: 1,3, and two from 5,7,10,12. Hence there is no K5 if we use both 1
and 3. Similar reasoning shows that we cannot build a K5 by using 1 and 4,
1 and 5, 1 and 7, etc. Thus vertex 1 cannot be a vertex in a K5 subgraph.
By the symmetry of the graph, the same reasoning shows that none of the
vertices 2, 3, . . . , 13 can be part of K5. Therefore, the graph contains no green
K5. 13. R(4, 4) ≤ R(4, 3) + R(3, 4) = 9 + 9 = 18. 14. Consider G as
a subgraph of K9. Color the edges of G red and color the edges of G (also a
subgraph of K9) green. Since R(3, 4) = 9, K9 has either a red K4 or a green
K3. But a red K4 must be a subgraph of G and a green K3 must be a subgraph
of G. 15. Basis step: R(2, 2) = 2 ≤ C(2, 1). Induction step: We must
prove that if i + j = n + 1, then R(i, j) ≤ C(i + j − 2, i − 1). Using (1),
R(i, j) ≤ R(i, j − 1) + R(i − 1, j) ≤ C(i + j − 3, i − 1) + C(i + j − 3, i − 2) =
C(i + j − 2, i − 1). 16. We first show that 2 has the (2, . . . , 2; 2)-Ramsey
property. K2 has only 1 edge, so 1 of the colors 1, . . . , n must have been used
to color this edge. If this edge has color j, then K2 has a subgraph K2 of
color j. Thus R(2, . . . , 2; 2) ≤ 2. But R(2, . . . , 2; 2) > 1 since K1 has 0 edges
and thus cannot have a subgraph K2 of any color. 17. We first show that
7 has the (7, 3, 3, 3, 3; 3)-Ramsey property. Let |S| = 7 and suppose that its
3-element subsets are partitioned into 5 collections C1, C2, . . . , C5. If all the
3-element subsets are in C1, we can take S itself as the subset that satisfies the
definition of the (7, 3, 3, 3, 3; 3)-Ramsey property. If some Cj (for some j > 1)
has at least one 3-element subset in it, then this 3-element subset of S satisfies
the definition. Therefore 7 has the (7, 3, 3, 3, 3; 3)-Ramsey property. We now
show that 6 fails to have the (7, 3, 3, 3, 3; 3)-Ramsey property. Suppose |S| = 6
and all 3-element subsets are placed in C1. The value j = 1 does not work in
the definition since S has no subset of size i1 = 7. The values j = 2, 3, 4, 5
do not work since these Cj contain no sets. Therefore R(7, 3, 3, 3, 3; 3) = 7.
18. Suppose we have a partition with no monochromatic solution. We must
have either 1 ∈ R or 1 ∈ G. Assume 1 ∈ R. Then 2 ∈ G (otherwise we have a
red solution 1 + 1 = 2). Since 2 ∈ G, we must have 4 ∈ R (otherwise we have a
green solution 2 + 2 = 4). Then we must have 3 ∈ G to avoid the red solution
1 + 3 = 4. If 5 ∈ R, we have the red solution 1 + 4 = 5, and if 5 ∈ G, we have
the green solution 2 + 3 = 5. This contradicts the assumption that we have
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no monochromatic solution. A similar argument holds if 1 ∈ G. 19. Use
one color for each of the following sets: {1, 4, 10, 13}, {2, 3, 7, 11, 12}, {5, 6, 8, 9}.
20. Suppose the 5 points are a, b, c, d, e. Form the smallest convex polygon P
that contains these 5 points either inside P or on P itself. If at least 4 of the
5 points lie on P , then we obtain a convex polygon by joining these 4 points.
If P contains only 3 of the 5 points, say a, b, and c, the points d and e lie
inside P . Draw the straight line through d and e. Two of the points a, b,
c lie on one side of the line. Then these two points, together with d and e
determine a convex 4-gon 21. (a) If the game ended in a draw, we would
have K6 colored with red and green with no monochromatic K3, contradicting
the fact that R(3, 3) = 6. (b) The coloring of the graph of Figure 1 shows
how the game could end in a draw. (c) There must be a monochromatic K3

since R(3, 3) = 6. Therefore someone must lose. 22. (a) Example 4 shows
that R(3, 3, 3; 2) = 17. Therefore there is a coloring of K4 with 3 colors that
contains no monochromatic K3. Thus, the game can end in a draw. (b) Since
R(3, 3, 3; 2) = 17, there must be a monochromatic triangle, and therefore a
winner. 23. We could conclude that R(5, 5) > 54. (If this does happen,
please inform your instructor.) 24. To show that R(K1,1, K1,3) ≤ 4, take
K4 and color its edges red and green. If any edge is red, K4 has a red K1,1. If
no edges are red, then K4 has a green K1,3. But R(K1,1, K1,3) > 3 since we can
take K3 and color its edges green, showing that K3 has no red K1,1 or green
K1,3.

Chapter 9 Arrangements with Forbidden Positions

1. For B1, there are 3 ways to place 1 rook and 1 way to place 2 rooks ((1, S)
and (4, F )), so R(x, B1) = 1 + 3x + x2. For B2, one rook can be placed in 6
ways, so r1 = 6. Two rooks can be placed on (2, K) and any of the squares
(3, W ), (5, D), (5, W ), on (D, 2) and any of the squares (3, K), (3, W ), (5, W ),
on (3, K) and either (5, D) or (5, W ), or (3, W ) and (5, D); thus r2 = 9. Three
rooks can be placed on (2, K), (3, W ), (5, D) or on (2, D), (3, K), (5, W ); thus
r3 = 2. Therefore, R(x, B2) = 1 + 6x + 9x2 + 2x3. 2. Since there is only
1 way to place one rook on B1, R(x, B1) = 1 + x. For board B2, there are 4
ways to place 1 rook on a forbidden square, so r1 = 4. There are 4 ways to
place 2 rooks—on (blue, tan) and (brown, blue), or on (blue, tan) and (plaid,
yellow), or on (brown, blue) and (plaid, yellow), or on (brown, blue) and (plaid,
tan)—so r2 = 4. There is only 1 way to place 3 rooks—on (blue, tan), (brown,
blue), (plaid, yellow)—so r3 = 1. Therefore, R(x, B2) = 1 + 4x + 4x2 + x3.
3. Suppose B′ is a subboard of B and (5,6) is in B′. This forces row 5, and
hence columns 8 and 9 to be in B′. This forces row 3 to be in B′. This in turn
forces column 7 to be in B′, which forces column 10 to be in B′. Thus, all five
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columns must be in B′, and hence B′ = B. 4. We can take B′ to be the
board with rows 1 and 3, and columns 1 and 2. Then R(x, B′) = 1 + 3x + x2.
For B′′(rows 2 and 4, and columns 3 and 4), we have R(x, B′′) = 1+2x. Hence
R(x, B) = R(x, B′) · R(x, B′′) = (1 + 3x + x2)(1 + 2x) = 1 + 5x + 7x2 + 2x3.
The number of arrangements is 4!− (5 ·3!−7 ·2!+2 ·1!) = 6. 5. This board
cannot be split into disjoint subboards. Assume that the rows (and columns)
are numbered 1, 2, 3, 4. Choose the square (4,1). The rook polynomial for
the board with row 4 and column 1 removed is R(x, B′) = 1 + 4x + 3x2. Also,
R(x, B′′) = 1+6x+11x2+7x3+x4. Therefore, R(x, B) = x(1+4x+3x2)+(1+
6x+11x2+7x3+x4) = 1+7x+15x2+10x3+x4, and the number of arrangements
is 4! − (7 · 3! − 15 · 2! + 10 · 1! − 1 · 0!) = 3. 6. The board cannot be split.
Using square (1,1), the rook polynomial for the board with row 1 and column 1
removed is R(x, B′) = 1+5x+7x2+2x3. Also, R(x, B′′) = 1+7x+16x2+13x3+
3x4. Therefore R(x, B) = xR(x, B′) + R(x, B′′) = 1 + 8x + 21x2 + 20x3 + 5x4.
Thus, the number of arrangements is 5·4·3·2−[8·4·3·2−21·3·2+20·2−5·1] = 19.
7. Split the board, using rows 1 and 2 and columns 1 and 2 for board B′.
Therefore, R(x, B) = R(x, B′) · R(x, B′′) = (1 + 3x + x2)(1 + 3x + 3x2 + x3) =
1+6x+13x2+13x3+6x4+x5. Therefore, the number of allowable arrangements
is 5!−6 ·4!+13 ·3!−13 ·2!+6 ·1!−1 ·0! = 33. 8. Deleting row 5 and column
9 from B′′ yields a board with rook polynomial 1+4x+3x2. When only square
(5,9) is deleted, we obtain a board B′′′. This board can be broken up, using
row 5 and columns 6 and 8 for the first board. Its rook polynomial is 1 + 2x.
The rook polynomial for the other part is 1 + 5x + 6x2 + x3. Therefore, the
rook polynomial for B′′′ is (1 + 2x)(1 + 5x + 6x2 + x3). Theorem 3 then gives
the rook polynomial for B′′. 9. The rook polynomial is 1 + 4x + 4x2 + x3.
Therefore, the number of permutations is 4!− 4 · 3! + 4 · 2!− 1 · 1! = 7. 10.
Using Theorem 3 with the square (3,DeMorgan), we obtain x(1 + 5x + 7x2 +
3x3) + (1 + 2x)(1 + 6x + 9x2 + 2x3). (The second product is obtained by
deleting the square (3,DeMorgan) and breaking the remaining board into 2
disjoint subboards, using row 2 and the De Morgan and Hamilton columns.)
Therefore, the rook polynomial is 1+9x+26x2 +27x3 +7x4 and the number of
arrangements is 6 ·5·4·3−[9·5·4·3−26·4·3+27·3−7·1] = 58. 11. The rook
polynomial is 1+ 4x. Therefore, the number of arrangements is 4!− [4 · 3!] = 0.
12. The rook polynomial is 1. Therefore, the number of arrangements is
4!− [0 ·3!−0 ·2!+0 ·1!− 0 ·0!] = 4!. 13. This is Exercise 9 in another form.
The answer is 7. 14. Break the board into 2 disjoint subboards, using rows
Nakano and Sommer, and columns numerical analysis and discrete math for the
first subboard. This yields (1+3x+x2)(1+4x+4x2) = 1+7x+17x2+16x3+4x4.
Therefore, the number of arrangements is 5!−7 ·4!+17 ·3!−16 ·2!+4 ·1! = 26.
15. Choose any seating arrangement for the 4 women (1, 2, 3, 4) at the 4 points
of the compass (N, E, S, W). Suppose that the 4 women are seated in the order
1, 2, 3, 4, clockwise from north. Also suppose that the men are named 1, 2, 3, 4
and the empty chairs for the men are labeled A, B, C, D (clockwise), where chair
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A is between woman 1 and woman 2., etc. Using Theorem 3 with the square
(1,A), the rook polynomial is x(1+5x+6x2 +x3)+(1+7x+15x2+10x3+x4) =
1 + 8x + 20x2 + 16x3 + 2x4. Therefore, Theorem 2 shows that the number of
arrangements is 4!− 8 · 3! + 20 · 2!− 16 · 1! + 2 · 0! = 2. Since there are 4! ways
in which the 4 women could have been seated, the answer is 4! · 2 = 48.

Chapter 10 Block Designs and Latin Squares
1. Interchange rows 2 and 3, then interchange columns 2 and 3, and finally

reverse the names 2 and 3 to obtain

⎛
⎜⎝

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎞
⎟⎠ . 2. Move columns 4

and 5 to columns 2 and 3, then rearrange rows to obtain

⎛
⎜⎜⎜⎝

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

⎞
⎟⎟⎟⎠ .

3. a) Reflexivity is clear. b) Symmetry is shown by reversing the steps that
show L1 equivalent to L2. c) Execute the steps that show L1 equivalent to
L2, followed by the steps that show L2 equivalent to L3; this shows L1 equivalent

to L3. 4.

⎛
⎜⎝

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

⎞
⎟⎠ . 5. a)

⎛
⎜⎝

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

⎞
⎟⎠,

⎛
⎜⎝

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

⎞
⎟⎠,

⎛
⎜⎝

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

⎞
⎟⎠. b) 42 + 4 + 1 = 17 points. c) 4 + 1 = 5 points on a

line. d) points {aij |1 ≤ i, j ≤ 4}, R, C, P1, P2, P3; lines: a11, a12, a13, a14, R;
a21, a22, a23, a24, R; a31, a32, a33, a34, R; a41, a42, a43, a44, R; a11, a21, a31, a41, C;
a12, a22, a32, a42, C; a13, a23, a33, a43, C; a14, a24, a34, a44, C;
from L1: a11, a22, a33, a44, P1; a12, a21, a34, a43, P1; a13, a24, a31, a42, P1;
a14, a23, a32, a41, P1;
from L2: a11, a23, a34, a42, P2; a14, a22, a31, a43, P2; a12, a24, a33, a41, P2;
a13, a21, a32, a44, P2;
from L3: a11, a24, a31, a44, P3; a13, a22, a34, a41, P3; a14, a21, a33, a42, P3;
a12, a23, a31, a44, P3; extra R, C, P1, P2, P3. 6. Since b = 69, v = 24, and k =
8, bk = vr gives 69(8) = 24r, so r = 23. Then λ(23) = 23(7), so λ = 7. Thus,
this is a (69, 24, 23, 8, 7)-design. 7. Deleting column 4 yields the 3-design
{{1, 2, 3}, {2, 1, 4}, {3, 4, 1}, {4, 3, 2}}. Clearly b = 4, v = 4, k = 3. Hence r = 3
(bk = vr), so 3λ = 3(2). Thus λ = 2. This is a (4, 4, 3, 3, 2)-design. 8. Let
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a11 be 1, a12 be 2,. . ., a33 be 9, R be 10, C be 11, P1 be 12, P2 be 13. Then the
varieties are 1, 2, . . . , 13. The blocks are {1, 2, 3, 10}, {4, 5, 6, 10}, {7, 8, 9, 10},
{1, 4, 7, 11}, {2, 5, 8, 11}, {3, 6, 9, 11}, {1, 6, 8, 12}, {2, 4, 9, 12}, {3, 5, 7, 12},
{1, 5, 9, 13}, {2, 6, 7, 13}, {3, 4, 8, 13}, {10, 11, 12, 13}. This is a (13, 13, 4, 4, 1)-
design. 9. Since λ(v − 1) = r(k − 1), λ = 1, k = 3, and v = 6n + 3, we have
6n + 2 = 2r, so r = 3n + 1. Also bk = vr, so b = vr/k = (6n + 3)(3n + 1)/3 =
(2n + 1)(3n + 1). 10. a) Taking group 0: {14, 1, 2}, {3, 5, 9}, {11, 4, 0},
{7, 6, 12}, {13, 8, 10}, and adding 2i to each number not equal to 14, then
taking the result mod 14 to obtain group i gives:
group 1: {14, 3, 4}, {5, 7, 11}, {13, 6, 2}, {9, 8, 0}, {1, 10, 12};
group 2: {14, 5, 6}, {7, 9, 13}, {1, 8, 4}, {11, 10, 2}, {3, 12, 0};
group 3: {14, 7, 8}, {9, 11, 1}, {3, 10, 6}, {13, 12, 4}, {5, 0, 2};
group 4: {14, 9, 10}, {11, 13, 3}, {5, 12, 8}, {1, 0, 6}, {7, 2, 4};
group 5: {14, 11, 12}, {13, 1, 5}, {7, 0, 10}, {3, 2, 8}, {9, 4, 6};
group 6: {14, 13, 0}, {1, 3, 7}, {9, 2, 12}, {5, 4, 10}, {11, 6, 8}. b) Thursday
is group 4, when 5 walks with 12 and 8. c) 14 and 0 walk with 13 in group 6
(Saturday). 11. This amounts to finding a Kirkman triple system of order
9 with 12 blocks partitioned into four groups (weeks). Here is one solution
(devised from letting A, . . . , I correspond to 0, . . . , 8; finding an original group;
and adding 2i mod 8 to obtain other groups).

Mon Wed Fri
Week 1 I, A, B C, E, H D, F, G
Week 2 I, C, D E, G, B F, H, A
Week 3 I, E, F G, A, D H, B, C
Week 4 I, G, H A, C, F B, D, E.

12. a) Since k = 3, λ = 1, v = 7, from λ(v−1) = r(k−1) we obtain 6 = 2r, so
r = 3. Hence b = 7 (bk = vr), so this is a (7, 7, 3, 3, 1)-design. b) The blocks
are {1, 6, 7}, {2, 5, 7}, {3, 5, 6}, {1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 4, 7}. c) The
blocks are the lines in this projective plane of order 2.
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Chapter 11 Scheduling Problems and Bin Pack-
ing

1.

2.

3. Order requirement digraph:

Critical path A → D → E → E → G → G → I → J ; length 31 weeks.
Schedule (giving task and starting time for task in weeks after start of project):
A, 0; B, 0; C, 8; D, 8; E, 14; F , 18; G, 18; H , 14; I, 22; J , 30. 4. a)
Critical path: A → B → C → G → J ; length 42. Schedule (giving task and
starting time for task after start of project): A, 0; B, 5; C, 15; D 22; E, 0; F ,
4; G, 22; H , 30; I, 0; J , 30.

b)

5. a)

b) This schedule is optimal for two processors. c) If there are unlimited pro-
cessors, then the optimal schedule is the following:
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6. The incomparability graph is:

A maximal set of disjoint edges is AB, CD, EF, GH, IJ . The optimal schedule
for this set is:

7. First delete FC as redundant. Next D and H receive permanent labels 1
and 2. Next C receives temporary label (1), G gets temporary label (2) and K
gets temporary label (2). Next C gets permanent label 3, G gets 4, and K gets
5. Now B gets temporary label (3), F gets (4), and J gets (4,5). By dictionary
order, B is labeled 6, F is labeled 7, and J is labeled 8. Now A gets temporary
label (6), E gets (6,7), and I gets (8). These vertices then get permanent labels
9, 10, and 11, respectively. The schedule is then:

8. a) Using FF , the bins contain: bin 1 – 85, 55; bin 2 – 95, 25; bin 3 – 135;
bin 4 – 65, 35, 40; bin 5 – 95, 35. b) Using FFD: bin 1 – 135; bin 2 – 95, 40;
bin 3 – 95, 35; bin 4 – 85, 55; bin 5 – 65, 35, 25. c) Both of these are optimal
packings since the total weight to be packed is 665 pounds and four cartons can
hold a maximum of 560 pounds. 9. a) 15 9-foot boards are needed for FF .
b) 15 9-foot boards are needed for FFD. c) 13 10-foot boards are needed for
FF and FFD. 10. Next fit (NF ) works like FF except that once a new
bin is opened, the previous bin(s) is closed. This method might be preferable
in the case of loading trucks from a single loading dock since only one bin at
a time is used. Other list orders could be FFI (first-fit increasing) or (largest,
smallest, next largest, next smallest,. . . ) with FF .
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Chapter 12 Burnside-Polya Counting Methods

1.

2. 90◦:
(

1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

)
;

180◦:
(

1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

)
;

270◦:
(

1 2 3 4 5 6 7 8 9
3 6 9 2 5 8 1 4 7

)
;

360◦:
(

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

)
.

3. Horizontal:
(

1 2 3 4 5 6 7 8 9
7 8 9 4 5 6 1 2 3

)
;

Vertical:
(

1 2 3 4 5 6 7 8 9
3 2 1 6 5 4 9 8 7

)
;

Main diagonal:
(

1 2 3 4 5 6 7 8 9
1 4 7 2 5 8 3 6 9

)
;

Minor diagonal:
(

1 2 3 4 5 6 7 8 9
9 6 3 8 5 2 7 4 1

)
.

4. (
1 2 3 4
3 1 4 2

)

180◦
(

3 1 4 2
2 4 1 3

)
=

(
1 2 3 4
4 3 2 1

)

270◦
(

1 2 3 4
2 4 1 3

)
5. 90◦ 270◦

inv
(

1 2 3 4
3 1 4 2

)
=

(
3 1 4 2
1 2 3 4

)
=

(
1 2 3 4
2 4 1 3

)
.

6. (1/6)(t31 + 3t1t2 + 2t3). 7. (1/10)(t51 + 5t1t
2
2 + 4t5). 8. (1/12)(t61 +

3t21t
2
2 +4t32 +2t23 +2t6). 9. The appropriate cycle index is (1/8)(t81 +4t21t

3
2 +

t42 + 2t24). Substitute 2 for every ti to obtain 51. 10. You can draw the
13 configurations, or you may calculate the coefficient of x4 in the polynomial
(1/8)((1 + x)8 + 4(1 + x)2(1 + x2)3 + (1 + x2)4 + 2(1 + x4)2).
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Chapter 13 Food Webs
1. a)

b)

2. a) b)

3. a) b)

4. a)
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b)

5. If G is an interval graph then it cannot have C4 as a generated subgraph
since otherwise the intervals corresponding to the vertices of that subgraph
would constitute an interval representation of C4, which is impossible. Using
the orientation suggested by the hint establishes a transitive orientation of G
since the ordering of the intervals on the line defined by the hint is transitive.
6. It is easy to find an interval representation of C3; any set of three intervals,
each intersecting the other two, will do. Thus C3 has boxicity 1. If n > 3, let
v1, . . . , vn be the vertices of G. The following diagram shows that the boxicity
of G is no more than 2. Cn cannot have boxicity 1 by the same sort of argument
used in the text to show that C4 is not an interval graph.

7.

8. Q3 is not an interval graph because the edges and corners of one face of
the cube form a generated subgraph isomorphic to C4. The following diagram
shows a representation of Q3 as the intersection graph of a family of boxes in
two-space.
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9. a) b)

c)

10. a)

b)

c)
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11.

12. hW via shortest path hW via longest path
a) b) a) b)

vertex hW vertex hW vertex hW vertex hW

a 14 a 12 a 16 a 15
b 9 b 1 b 9 b 1
c 3 c 0 c 3 c 0
d 0 d 6 d 0 d 6
e 4 e 0 e 4 e 0
f 1 f 2 f 1 f 2
g 1 g 0 g 1 g 0
h 0 h 0 h 0 h 0

13. The second version of hW given in the text satisfies this condition and is
defined for any acyclic food web. 14. Suppose there is a directed path from
u to v. Since every direct or indirect prey of v is also an indirect prey of u, every
term in the sum for tW (v) is also a term in the defining sum for tW (u). Since
all the values of h are non-negative, it follows that tW (u) ≥ tW (v). Axiom 1 is
satisfied trivially. Axiom 2 is not satisfied. Suppose u is a vertex and we add
a new species v which is a direct prey of u, but which itself has no prey. Then
hW (v) = 0, so the value of the sum for tW (u) is not increased. Axiom 3 is
satisfied since increasing the level of v relative to u increases hW (v) and hence
increases the sum defining tW (u). 15. This assumption is restrictive. An
example of two species which are mutual prey would be man and grizzly bear.

Chapter 14 Applications of Subgraph Enumera-
tion

1. (a) 1957 (b) 86 = 262,144 (c) 2520 (d) 105. 2. (a) (2, 2, 1, 5, 5)
(b) (1, 4, 1, 2, 1).
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3. a) b)

4. By Theorem 4, there are 15 perfect matches of K6. Example 15 shows
how to generate 5 perfect matches of K6 using the matching {{1, 2}, {3, 4}}
of K4. The five perfect matches of K6 generated from {{1, 3}, {2, 4}} are
{{5, 3}, {2, 4}, {1, 6}}, {{1, 5}, {2, 4}, {3, 6}}, {{1, 3}, {5, 4}, {2, 6}},
{{1, 3}, {2, 5}, {4, 6}}, and {{1, 3}, {2, 4}, {5, 6}}. The five perfect matches of
K6 generated from {{1, 4}, {2, 3}} are {{5, 4}, {2, 3}, {1, 6}},
{{1, 5}, {2, 3}, {4, 6}}, {{1, 4}, {5, 3}, {2, 6}}, {{1, 4}, {2, 5}, {3, 6}}, and {{1, 4},
{2, 3}, {5, 6}}. 5. Consider the longest path in the tree. Its two endpoints
have degree 1. 6. Suppose G is a graph with n vertices, n − 1 edges, and
no circuits. The proof is complete if we show that G is connected. Suppose
G is not connected. Then G is a forest with k components, where k > 1. Let
C1, C2, . . . , Ck be the k components and let n1, n2, . . . , nk be the number of
vertices in each component. Then

∑k
i=1 ni = n. Since each Ci is a tree, the

number of edges in each Ci is ni − 1. This implies that the number of edges in
G is

∑k
i=1(ni − 1) = (

∑k
i=1 ni) − k = n − k < n − 1, a contradiction. 7. 5

8. The path A, E, D, C has total length 39 and total cost $45.
9. a) b) c)

range 75 weight 1010 weight 360
10. Visit the villages in the order ACEBD. 11. 157/1957. 12. 1/nn−3.
13. 2/((n − 1)(n − 2)). 14. 1/((n − 1)(n − 2)). 15. The number of
perfect matchings in Kn,n is n!, which may be generated by observing that there
is a one-to-one correspondence between the perfect matches in Kn,n and the
permutations on {1, 2, . . . , n}. 16. Any perfect matching of Kn,n may be
described as a permutation of {1, 2, . . . , n}. Hence, the perfect matches of Kn,n

can be generated by generating the permutations of {1, 2, . . . , n}. A method for
doing this is given in Section 4.7 of Discrete Mathematics and Its Applications.
17. Let m = |M | = n/2. Then the number of spanning trees of Kn containing
M is 2m−1mm−2. To see this, consider the m edges of M as vertices of Km which
must be spanned by a tree. By Cayley’s Theorem there are mm−2 such trees.
Since every pair of edges of M may be connected by two different edges of Kn,
every spanning tree of Km gives rise to 2m−1 spanning trees of Kn containing
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M . 18. (a) Generate all of the subsets of {1, 2, . . . , n} by generating the set
of all r-combinations using the algorithm described in Section 5.6 of Discrete
Mathematics and Its Applications. For each subset {i1, i2, . . . , ir} compute
z = wi1 + wi2 + · · · + wir , then select a subset on which the minimum of z
is attained. (b) C(n, r) candidates must be checked to solve the problem.
19. (a) Use the linear search algorithm to find the smallest element of W ,
say x1. Remove x1 from W and repeat the algorithm to find the smallest
element of the remaining set, say x2. Continue repeating the linear search
algorithm n times, removing the smallest element after each repetition. This
gives {x1, x2, . . . , xn} = W such that x1 ≤ x2 ≤ · · · ≤ xn. A subset of W of
size r with the smallest possible sum is {x1, x2, . . . , xr}. (b) This algorithm
requires at most O(n2) comparisons. 20. n = 10. 21. n2n−1. 22. Let
e be the edge {n − 1, n}. Show there is a one-to-one correspondence between
the spanning trees of Kn − e and the (n− 2)-tuples (a1, a2, . . . , an−2) such that
each ai is an integer, 1 ≤ ai ≤ n, for i = 1, 2, . . . , n − 3, and 1 ≤ an−2 ≤ n − 2.
The result follows from the fact that there are (n− 2)nn−3 such (n− 2)-tuples.
23. Show that the spanning trees of Kn such that vertex vi has degree di are in
one-to-one correspondence with the (n − 2)-tuples (a1, a2, . . . , an−2) such that
the integer i appears di − 1 times. The result follows from counting all such
(n − 2)-tuples. 24. Use the method suggested by the solution to Exercise
23. 25. We use induction on k = m+n. The result can be checked directly
for m = 1, n = 3, or m = n = 2. So, assume the result holds for all complete
bipartite graphs with m + n < k, and let Km,n be one with m + n = k. Since
every tree must have at least two vertices of degree 1, at least two of the di or fj

must be 1, say d1 = 1. The number of spanning trees of Km,n such that vertex
ui has degree di, for all i, and vertex vj has degree fj , for all j, is equal to the
number of spanning trees of Km,n such that vertex ui has degree di and vertex
vj has degree fj which contain edge (1, 1), plus the number of such spanning
trees which contain edge (1, 2), plus the number of such spanning trees which
contain (1, 3), etc. The number of spanning trees such that vertex ui has degree
di, for all i, and vertex vj has degree fj , for all j, which contain edge (1, k)
is equal to 0 if fk = 1, otherwise is equal to the number of spanning trees of
Km−1,n such that vertex ui has degree di (for i = 2, 3, . . . , m), vertex vk has
degree fk−1, and vertex vj has degree fj (for j = 1, . . . , k − 1, k + 1, . . . , n). By
induction, the number of such trees is

(m − 2)!(n − 1)!
(d2 − 1)! · · · (dm − 1)!(f1 − 1)! · · · (fk−1 − 1)!(fk − 2)!(fk+1 − 1)! · · · (fn − 1)!.

The total number of spanning trees such that vertex ui has degree di and
vertex vj has degree fj is obtained by summing the above terms over all k =
1, 2, . . . , n such that fk ≥ 2. This sum is simplified by multiplying each term
by (fk − 1)/(fk − 1). Summing gives

(m − 2)!(n − 1)![(f1 − 1) + (f2 − 1) + · · · + (fn − 1)]
(d2 − 1)! · · · (dm − 1)!(f1 − 1)! · · · (fn − 1)!.
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Since (f1−1)+(f2−1)+· · ·+(fn−1) = f1+f2+· · ·+fn−n = m+n−1−n = m−1.
The solution is complete.

Chapter 15 Traveling Salesman Problem

1. a) f, e, a, b, c, d is forced, so the only Hamilton circuits are f, e, a, b, c, d, g, h, f
of length 22 and f, e, a, b, c, d, h, g, f of length 21. The latter is the shorter, so
the solution is f, e, a, b, c, d, h, g, f . b) a, b, c and d, e, f are forced, so the
only Hamilton circuits are a, b, c, g, f, e, d, a of length 19 and a, b, c, f, e, d, g, a
of length 21. The former is the shorter, so the solution is a, b, c, f, e, d, g, a.
c) h, d, c, b, a, e, f, g, h is the only Hamilton circuit. Its length is 30. d)
f, d, c, b, a, e, g, j, h, i, f is the only Hamilton circuit. Its length is 38. e) d, c, b,
a, e, h, i, g, f, d with length 36 and d, c, b, a, e, f, g, h, i, d with length 23 are the
only Hamilton circuits. The latter is shorter, so the solution is d, c, b, a, e, f, g,
h, i, d. f) a, b, c, d, i, f, e, g, h, a with length 27 and a, b, c, d, i, g, f, e, h, a with
length 37 are the only Hamilton circuits. The former is shorter, so the so-
lution is a, b, c, d, i, f, e, g, h, a. g) a, b, c, d, g, h, e, i, f, a with length 15 and
d, c, b, a, f, g, i, h, e, d with length 27 are the only Hamilton circuits. The former
is shorter, so the solution is a, b, c, d, g, h, e, i, f, a. h) a, b, c, d, i, g, f, e, h, a
with length 23 and d, c, b, a, e, h, f, i, g, d with length 34 are the only Hamilton
circuits. The former is shorter, so the solution is a, b, c, d, i, g, f, e, h, a. 2.

a) M =

⎛
⎜⎜⎜⎜⎝

c e a b d

C 0 0 0 1 1
E 0 0 0 1 1
A 0 0 1 1 0
D 1 1 0 0 0
B 1 1 0 0 0

⎞
⎟⎟⎟⎟⎠. Thus C and E are in an industry performing

tasks b and d, A shares task b with them and does task a alone, and B and D

are in an industry doing tasks c and e. b) M =

⎛
⎜⎜⎝

d e a b c

B 1 1 1 0 0
A 0 1 1 1 0
C 1 0 1 1 1
D 0 0 0 1 1

⎞
⎟⎟⎠.

Thus A, B, and C are in a single industry performing tasks a, d, and e (although
A does not do d and C does not do e), C and D are in an industry performing
tasks b and c, and A shares task b with C and D. 3. a) The tree with
edges {a, b}, {a, d}, {b, c}, and {d, e} yields circuit c, b, a, d, e, c with length 7.
b) The tree with edges {a, b}, {a, f}, {c, d}, {d, e}, and {d, f} yields circuit
b, a, f, d, e, c, b with length 19. 4. l(a, c, b, d, e, a) = 15, l(a, c, d, b, e, a) = 14,
l(a, c, d, e, b, a) = 13, l(b, c, d, e, a, b) = 14. The shortest of these is a, c, d, e, b, a
with length 13. The strategy used here was just to find all Hamilton circuits
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in the graph. The weakness is that the number of Hamilton circuits rises ex-
tremely fast, so that there is not time enough to do it on larger graphs. 5.
There are two directions around a Hamilton circuit. Starting at vertex a, the
next vertex in one direction must be different from the next vertex in the other
direction because there are at least three vertices in the graph. Hence the two
permutations of the vertices are different. 6. To maximize S2, it suffices
to minimize −S2 =

∑n−1
j=1

∑m
i=1(−aijai,j+1). Given matrix A, for each column

j we introduce a vertex j. For any two columns k and �, we join them by an
undirected edge with weight ck� =

∑m
i=1(−aikai,�). In the resulting undirected

graph G′
4, each Hamilton path h describes a permutation of the columns of A.

Further, if A′ = [a′
ij ] is formed from A by carrying out this permutation of the

columns for a minimum weight Hamilton path, then
∑n−1

j=1

∑m
i=1(−a′

ija
′
i,j+1) is

precisely the sum of the weights along h. Since h is a minimum weight Hamilton
path in G′

4, this means that
∑n−1

j=1

∑m
i=1(a

′
ija

′
i,j+1) is largest among all possible

orderings of the columns of A. Thus the maximum value of this half of f(A)
is found by finding a minimum weight Hamilton path in G′

4. To convert this
method to the TSP, add one more vertex 0 to G′

4 and join 0 to each other
vertex by an edge of weight 0, thus forming graph G4. A solution of the TSP
in G4 corresponds to a permutation of the columns of A that maximizes S2.
7. Let us represent the Hamilton circuits by sequences of vertex labels. We
consider two circuits to be ‘different’ if the corresponding sequences are ‘differ-
ent.’ Let s1 and s2 be two of these sequences of vertex labels. In terms of these
sequences, the meaning of the word ’different’ that was used in the text was
that the sequences are ‘different’ unless they are identical or satisfy one or the
other of the following two conditions: (a) s1 begins with a label a, and if by
starting at the occurrence of a in s2, proceeding from left to right, jumping to
the beginning of s2 when its end is reached (without repeating the end label),
and stopping when a is reached again, we can produce s1, or (b) s1 begins
with a label a, and if by starting at the occurrence of a in s2, proceeding from
right to left, jumping to the end of s2 when its beginning is reached (without
repeating the end label), and stopping when a is reached again, we can produce
s1. An alternative meaning is that two are ‘different’ unless they are identical
or satisfy (a), but not (b). In this case, the number of ‘different’ sequences, and
thus ‘different’ Hamilton circuits, is 6!. A third meaning is that two sequences
are ‘different’ unless they are identical. In this case, the number of ‘different’
sequences, and thus ‘different’ Hamilton circuits, is 7!. The text’s choice of the
meaning of “different” is best because it accurately represents the geometric
structure of the graph. 8. Procedure Short Circuit fails because edges
that it assumes are present are not in fact present. The procedure generates
circuits in complete graphs, and the graph given is not complete. 9. In
the figure, any Hamilton circuit must pass through both edges {a, b} and {c, d},
and it must contain a Hamilton path from d to a in C and another Hamilton
path from b to c in D. the TSP here can be reduced to two smaller TSPs, one
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in which C has been reduced to a single vertex ad and one in which D has been
reduced to a single vertex bc, as shown in the figure below. Once Hamilton
circuits solving the TSP have been found in each of the reduced graphs, the
vertex ad can be removed from the one through D, and the resulting path can
replace bc in the one through C, thus producing a Hamilton circuit through the
graph given.

10. The banks are represented by vertices, and each safe route between two
banks, or between the home base of the car and a bank, is represented by an
edge joining the corresponding vertices, with the time it takes to travel the route
as the weight on the edge. 11. The cities are represented by vertices, and
each possible route for the railroad between two cities is represented by an edge.
The weight on an edge is the cost of the rail line on that route. To make this
a TSP problem, another vertex is added, with an edge of zero weight to each
of the vertices representing New York and San Francisco. 12. There are
several TSP problems, one for each truck. For a single truck, the destinations of
the packages are represented by the vertices, and two vertices are joined by an
edge if there is a route between the corresponding destinations. The weight on
the edge is the time it takes a truck to travel the corresponding route. 13.
Each front line unit is assigned a vertex. Edges join two vertices whenever there
is any route that connects the corresponding units. A scale for safety is assigned
with 0 representing a perfectly safe route and higher numbers indicating greater
risk on the route. These numbers are the weights assigned to the edges of the
graph.

Chapter 16 The Tantalizing Four Cubes

1. The underlying graph is
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Two disjoint acceptable subgraphs are

Hence a solution is

2. The underlying graph is

The acceptable subgraphs are

Thus one solution is

3. There are 2 disjoint versions of the second subgraph. Thus, another solution
is

4. Two acceptable subgraphs are
Thus a solution is
The last left-right pair is R-W, but since the graph was given, not the cubes,
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it is unknown which is left and which is right.
5. For example, there are no acceptable subgraphs in the following graph

6. For example, there are no acceptable subgraphs in the following graph

7. In the following graph,

the only acceptable subgraphs are

and they are not disjoint.
8. Again, the easiest way to find a puzzle with exactly two solutions is to
construct the underlying graph. Here are two pairs of subgraphs
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Of these four subgraphs, only the pairs AB and CD are disjoint. So they give
two distinct solutions. If the additional four edges contribute no new acceptable
subgraphs, these will be the only two solutions. So let all the other faces be
red. The two solutions are

Note: To obtain the second solution from the first, leave cubes 1 and 3 the
same, rotate the second cube 180◦ to the right and then 90◦ up, and rotate
the fourth cube 90◦ down. 9. a) If there are three cubes and three colors,
the statement of the theorem remains the same. However, there are only three
vertices and three labels. A typical acceptable subgraph is a triangle with three
different labels, although a 2-cycle and a loop or three loops are possible. b)
If there are three cubes and four colors, it is impossible for all colors to appear
on the same side of a stack. c) If there are three cubes and five colors, the
theorem remains the same. Now the graph has five vertices and five labels. A
typical acceptable subgraph is a pentagon with five different labels, although
numerous other configurations are possible.
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Chapter 17 The Assignment Problem

1. 2143 is an optimal solution with z = 20. 2. 2341 is an optimal solution
with z = 13. 3. 216354 is an optimal solution with z = 18. 4. 321465
is an optimal solution with z = −6. 5. 124356 is an optimal solution with
z = 65. 6. Assign Ken to the Butterfly, Rob to the Freestyle, Mark to the
Backstroke, and David to the Breaststroke, the minimum time is 124.8. 7.
The following couples should marry: Jane and Joe, Mary and Hal, Carol and
John, Jessica and Bill, Dawn and Al, and Lisa and Bud, giving a measure of
anticipated “happiness” of 8. 8. The route New York, Chicago, Denver,
Los Angeles is optimal with total time of 62 hours. 9. a) Edges {1, 1},
{2, 2}, {3, 3}, {4, 4}, and {5, 5} are a perfect matching. b) No perfect matching
exists. If W = {3, 4, 5}, then R(W ) = {4, 5} and |R(W )| < |W |. c) Edges
{1, 1}, {2, 2}, {3, 3}, {4, 5}, and {5, 4} are a perfect matching. 10. The
perfect matching {1, 4}, {2, 1}, {3, 2}, {4, 3} has the smallest possible weight,
which is 12. 11. a) Let C = [cij ] where cij = 0 for all i and j. b) Let
C = [cij ] where cii = 0 for i = 1, 2, 3, 4, 5, and cij = 1 for i �= j. 12. Let
u1 = 0, u2 = 4, u3 = 8, u4 = 12, and v1 = v2 = v3 = v4 = 0. Then apply

Theorem 1 to obtain Ĉ =

⎛
⎜⎝

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

⎞
⎟⎠ . Then C and Ĉ have the same set

of optimal solutions. But for any permutation σ of {1, 2, 3, 4}, ∑n
i=1 ĉiσ(i) =

1 + 2 + 3 + 4 = 10. So, any permutation is an optimal solution to the problem
specified by Ĉ, and hence is an optimal solution to the problem specified by C.
13. If cij ≥ 0 for all i and j, then subtracting the smallest entry from each row
can not result in a negative entry. If some row, say (c11c12 · · · c1n) has negative
entries and, say, c11 is the smallest entry, then ĉ1j = c1j − c11 = c1j + |c11| ≥ 0,
for j = 1, 2, . . . , n since either c1j ≥ 0 or if c1j < 0, then |c1j | ≥ |c11|. Thus,
after subtracting the smallest entry in each row, the resulting matrix has all
nonnegative entries. Now subtracting the smallest entry from each column
cannot result in a negative entry. 14. The problem may be solved by
multiplying all entries in c by -1 since finding a permutation σ which maximizes
z =

∑n
i=1 ciσ(i) is equivalent to finding a permutation σ which minimizes −z =

−∑n
i=1 ciσ(i). 15. 352461 is an optimal solution with z = 35. 16.

Suppose σ∗ is a permutation which solves the assignment problem specified
by the matrix in Example 11. Suppose also that P is a path which has total
delivery time less than

∑n
i=1 ciσ∗(i). Number the cities using 1, 2, 3, 4, 5, 6, 7

representing New York, Boston, Chicago, Dallas, Denver, San Francisco, and
Los Angeles respectively. Define the permutation σ as follows: if P visits city j
immediately after P visits city i, then σ(i) = j−1; if P does not visit city i, then
σ(i) = i−1. Then the total delivery time of P is

∑n
i=1 ciσ(i) since cii−1 = 0, for

i = 2, 3, 4, 5, 6. But this implies that
∑n

i=1 ciσ(i) <
∑n

i=1 ciσ∗(i), a contradiction.
17. The number of iterations is at most the sum of all of the entries of the
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reduced matrix. Let k be the largest entry in the reduced matrix, then the sum
of all entries in the reduced matrix is at most kn2. Thus the number of iterations
is O(n2). 18. Given a bipartite graph G = (V,E) define the matrix A =

[aij ] as follows. Let aij =
{

0 if edge {i, j} ∈ E
1 otherwise

. Then matches correspond to
independent sets of zeros in A and vertex covers correspond to line covers of A.
The result now follows from Theorem 3. 19. Let G = (V, E) be a bipartite
graph, with V = V1∪V2. If G has a perfect matching M , then |V1| = |M | = |V2|.
For any W contained in V1, let W = {w1, w2, . . . , wk}, and for any wi ∈ W , let
ri be the vertex in V2 such that {wi, ri} ∈ M . Then r1, r2, . . . , rk are all distinct,
and {r1, r2, . . . , rk} is contained in R(W ), so |R(W )| ≥ |W |. Conversely, assume
|V1| = |V2| and |R(W )| ≥ |W |, for all W contained in V1. Since every edge
in E joins a vertex in V1 to one in V2, V1 is a vertex cover. The proof is
complete if we show that V1 is a cover of minimal size. For then, Exercise
18 implies there is a matching of size |V1|, which must be a perfect matching.
Suppose Q is a vertex cover of the edges of minimum size, and Q �= V1. Let
U1 = Q ∩ V1 and let U2 = V2 − U1. By assumption, |R(U2)| ≥ |U2|. However,
R(U2) is contained in Q ∩ V2 because edges not covered by vertices in V1 must
be covered by vertices in V2. Thus, |U2| ≤ |R(U2)| ≤ |Q∩V2|. This implies that
|V1| = |U1|+ |U2| ≤ |U1|+ |Q∩V2| = |Q∩V1|+ |Q∩V2| = |Q|. Since |V1| ≤ |Q|
and Q is a cover of minimum size, V1 must be a cover of minimum size. 20.
A stable set of four marriages is: David and Susan, Kevin and Colleen, Richard
and Nancy, and Paul and Dawn. 21. We prove the existence of a stable
set of n marriages by giving an iterative procedure which finds a stable set of
marriages.
Initially, let each man propose to his favorite woman. Each woman who receives
more than one proposal replies “no” to all but the man she likes the most from
among those who have proposed to her. However, she does not give him a
definite “yes” yet, but rather a conditional “yes” to allow for the possibility
that a man whom she likes better may propose to her in the future.
Next, all those men who have not received a conditional “yes” now propose
to the women they like second best. Each woman receiving proposals must
now choose the man she likes best from among the men consisting of the new
proposals and the man who has her conditional “yes”, if any.
Continue to iterate this procedure. Each man who has not yet received a
conditional “yes” proposes to his next choice. The woman again says “no” to
all but the proposal she prefers thus far.
The procedure must terminate after a finite number of iterations since every
woman will eventually receive a proposal. To see this, notice that as long as
there is a woman who has not been proposed to, there will be rejections and
new proposals. Since no man can propose to the same woman more than once,
every woman will eventually receive a proposal. Once the last woman receives a
proposal, each woman now marries the man who currently has her conditional
“yes”, and the procedure terminates.
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The set of marriages produced is stable, for suppose David and Susan are not
married to each other, but David prefers Susan to his own wife. Then David
must have proposed to Susan at some iteration and Susan rejected his proposal
in favor of some man she preferred to David. Thus Susan must prefer her
husband to David. So there can be no instability.

Chapter 18 Shortest Path Problems

1. The length is 90. The path is v2, v1, v9, v8. 2. a) v7 comes from v6,
v6 from v4, v4 from v3, v3 from v1. Thus the path is v1, v3, v4, v6, v7. b) v5

comes from v4, v4 from v3, v3 from v1. Thus the path is v1, v3, v4, v5.

c)

There could be many other edges. For instance, any edge from v5 to v7 of
weight greater than 2 would not affect the vectors. 3. a) There are O(n4)
operations if An−1 must be computed. b) If, on the average, no shortest paths
were longer than n/2, the algorithm would be only half as long as before, but
still O(n4). If no shortest path had more than 4 edges, A5 would be the last
computation, so 4O(n3) = O(n3) operations would do.

4. A =

⎛
⎜⎜⎜⎜⎜⎝

0 2 3 ∗ ∗ ∗
2 0 ∗ 5 2 ∗
3 ∗ 0 ∗ 5 ∗
∗ 5 ∗ 0 1 2
∗ 2 5 1 0 4
∗ ∗ ∗ 2 4 0

⎞
⎟⎟⎟⎟⎟⎠ , A5 = A4 =

⎛
⎜⎜⎜⎜⎜⎝

0 2 3 5 4 7
2 0 5 3 2 5
3 5 0 6 5 8
5 3 6 0 1 2
4 2 5 1 0 3
7 5 8 2 3 0

⎞
⎟⎟⎟⎟⎟⎠.

5. A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 4 3 ∗ ∗ ∗ ∗ ∗
4 0 2 5 ∗ ∗ ∗ ∗
3 2 0 2 6 ∗ ∗ ∗
∗ 5 2 0 1 5 ∗ ∗
∗ ∗ 6 1 0 ∗ 7 ∗
∗ ∗ ∗ 5 ∗ 0 2 7
∗ ∗ ∗ ∗ 7 2 0 4
∗ ∗ ∗ ∗ ∗ 7 4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A6 = A5 =
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 4 3 5 6 10 12 16
4 0 2 4 5 9 11 15
3 2 0 2 3 7 9 13
5 4 2 0 1 5 7 11
6 5 3 1 0 6 7 11
10 9 7 5 6 0 2 6
12 11 9 7 7 2 0 4
16 15 13 11 11 6 4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. 6. A3 =

⎛
⎜⎜⎜⎜⎜⎝

0 2 3 5 4 8
2 0 5 3 2 5
3 5 0 6 5 8
5 3 6 0 1 2
4 2 5 1 0 3
8 5 8 2 3 0

⎞
⎟⎟⎟⎟⎟⎠

a3
3k = (3, 5, 0, 6, 5, 8); ak4 = (∗, 5, ∗, 0, 1, 2); 5+1 = 6, so there is an edge of

weight 1 at the end from v5 to v4. ak5 = (∗, 2, 5, 1, 0, 4). Only 5 + 0 and 0 + 5
arise, so there is an edge of weight 5 from v3 to v4. The path is v3, v5, v4.
7. a3

1k = (0, 2, 3, 5, 4, 8); ak6 = (∗, ∗, ∗, 2, 4, 6); 5 + 2 = 7, so there is an edge of
weight 2 from v4 to v6. ak4 = (∗, 5, ∗, 0, 1, 2); 4 + 1 = 5, so there is an edge of
weight 1 from v5 to v4. ak5 = (∗, 2, 5, 1, 0, 4); 2 + 2 = 4, so there is an edge of
weight 2 from v2 to v5. ak2 = (2, 0, ∗, 5, 2, ∗). Only 2 + 0 and 0 + 2 arise, so
there is an edge of weight 2 from v1 to v2. The path is v1, v2, v5, v4, v6.

8. A6 = A5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 4 3 5 6 10 12 16
4 0 2 4 5 9 11 15
3 2 0 2 3 7 9 13
5 4 2 0 1 5 7 11
6 5 3 1 0 6 7 11
10 9 7 5 6 0 2 6
12 11 9 7 7 2 0 4
16 15 13 11 11 6 4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

a4
1k = (0, 4, 3, 5, 6, 10, 12, 16); ak8 = (∗, ∗, ∗, ∗, ∗, 7, 4, 0) 16 = 12 + 4, a vertex of

weight 4 from v7 to v8; ak7 = (∗, ∗, ∗, ∗, 7, 2, 0, 4) 12 = 10+2, a vertex of weight
2 from v6 to v7; ak6 = (∗, ∗, ∗, 5, ∗, 0, 2, 7)10 = 5 + 5, a vertex of weight 5 from
v4 to v6; ak4 = (∗, 5, 2, 0, 1, 5, ∗, ∗)5 = 3 + 2, a vertex of weight 2 from v3 to v4;
ak3 = (3, 2, 0, 2, 6, ∗, ∗, ∗)3 = 0+3, a vertex of weight 3 from v1 to v3. The path
is v1, v3, v4, v6, v7, v8. 9. a) Only half the calculations would be necessary
at each stage. So, half the time could be saved.
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b)
for i := 1 to n

for j := 1 to i {j ≤ i always}
A(1, i, j) = w(vi, vj)

i := 1
repeat

flag:=true
t := t + 1
for i := 1 to n

for j := 1 to i
A(t, i, j) := A(t − 1, i, j)
for k := 1 to j − 1
A(t, i, j) :=min{A(t, i, j), A(t − 1, i, k) + A(1, j, k)}
for k := j to i − 1
A(t, i, j) :=min{A(t, i, j), A(t − 1, i, k) + A(1, k, j)}
for k := i to n
A(t, i, j) :=min{A(t, i, j), A(t − 1, k, i) + A(1, k, j)}

if A(t, i, j) �= A(t − 1, i, j) then flag:=false
until t = n − 1 or flag=true.
10. If the underlying graph is a directed graph, then edges are one-way, and
the distance from i to j may not be the same as the distance from j to i. So,
nonsymmetric are necessary.

Chapter 19 Network Survivability
1. a)

edge circuit or cut edge edge circuit or cut edge
{a, b} a, b, c, a {a, c} a, b, c, a
{b, c} a, b, c, a x c, d, c

x′ c, d, c {d, e} cut edge
{e, f} e, f, h, e {e, h} e, f, h, e
{f, g} f, g, h, f {f, h} f, g, h, f

y g, h, g y′ g, h, g
b)

edge circuit or cut edge edge circuit or cut edge
{a, b} cut edge x b, j, b

x′ b, j, b {b, c} b, c, d, b
{b, d} b, c, d, b {c, d} b, c, d, b
{b, e} cut edge {e, g} e, f, g, e

y e, f, e y′ e, f, e
{f, g} e, f, g, e {g, h} g, h, i, g
{g, i} g, h, i, g {h, i} g, h, i, g
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2. a) γ(G) = η(G) = 9/6 = 3/2. b) γ(G) = η(G) = 12/5. 3. a)
γ(G) = 7/4, η(G) = 3/2, and G0 is the triangle K3. (One contraction is
needed to find G0.) b) γ(G) = 5/3, η(G) = 5/4, and G0 is the circuit C5.
(Two contractions are needed to find G0.) 4. Let G′ be formed by erasing
a and all edges of G incident with a. Suppose there are vertices v and v′ of
G which are distinct from a, are in the same component of G, and such that
every path joining v with v′ includes a. Then there can be no paths joining
v and v′ in G′. Thus v and v′ are in different components of G′. But any
component of G that does not contain a is a component of G′. Since v and v′

are in the same component of G, they must be in the same component as a,
and that component must have split into at least two components. Thus G′

has more components than G, and a is a cut vertex of G. Now suppose a is a
cut vertex of G. Then G′ has a component H not in G. By the construction
of G′, the vertex a must be incident in G with an edge whose other end v is
in H . But a cannot be adjacent only to vertices in H , for otherwise G and
G′ would have the same number of components. Hence there is a component
H ′ of G′ different from H that has a vertex v′ adjacent to a in G. Now we
have a path (v, a, v′) in G joining v with v′, whereas there are no such paths
in G′, since the two vertices are in different components of G′. Thus v and
v′ are in the same component of G, and a must be on every path joining v
with v′. Lemma 1 follows. 5. For k = 2, suppose p1/q1 ≤ p2/q2. Then
p1q2 ≤ p2q1, so p1q1 + p1q2 ≤ p1q1 + p2q1. Dividing by q1(q1 + q2), we get
p1/q1 ≤ (p1 + p2)/(q1 + q2). But from p1q2 ≤ p2q1 we also get p1q2 + p2q2 ≤
p2q1 + p2q2. Dividing through this by q2(q1 + q2), we get (p1 + p2)/(q1 + q2) ≤
p2/q2. These two results show Lemma 2 for k = 2. Suppose the lemma is true
for k = n, so that min1≤i≤n pi/qi ≤ (p1 + p2 + · · · + pn)/(q1 + q2 + · · · + qn) ≤
max1≤i≤n pi/qi. We will use the fraction in the middle of this last inequality as
a single fraction to complete the proof. By the induction hypothesis and the
first part of this proof, min1≤i≤n+1 pi/qi = min

(
min1≤i≤n(pi/qi), pn+1/qn+1

) ≤
min

(
p1+p2+···+pn

q1+q2+···+qn
, pn+1

qn+1

) ≤ p1+p2+···+pn+1
q1+q2+...+qn+1

≤ max
(

p1+p2+···+pn

q1+q2+···+qn
, pn+1

qn+1

) ≤
max

(
max1≤i≤n

(
pi

qi

)
, pn+1

qn+1

)
= max1≤i≤n+1

(
pi/qi

)
. 6. The graph shown is

not induced, and adding the missing edge (edge {a, h}) gives a larger value
of g. Other examples can be obtained from any subgraph shown in Figure 7
that includes the two edges joining a and b by leaving one of them out of the
subgraph. 7. By definition, each component of a forest is a tree and so has
one fewer edges than vertices. Thus if forest F has k components, then |E(F )| =
|V (F )|−k = |V (F )|−ω(F ). But every subgraph of a forest is a forest. Thus, if
H is any subgraph of forest F , and if H has an edge (so that |V (H)|−ω(H) > 0),
then g(H) = |E(H)|/(|V (H)|−ω(H)) = (|V (H)|−ω(H))/(|V (H)|−ω(H)) = 1.
Thus γ(F ) = maxH⊆G g(H) = maxH⊆G 1 = 1. Now γ(F ) = 1 = g(F ), so F
is its η–reduced graph G0. Thus η(F ) = γ(G0) = γ(F ) = 1, and the claim is
proved. 8. Consider an arbitrary set F of edges of G. Let us erase the edges
of F one at a time from G. We start with ω(G) components. Each time we erase
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an edge of F , the number of components either is unchanged or is increased by
one because the edge has only two ends. Hence ω(G − F ) ≤ ω(G) − |F |. This
gives us |F | ≥ ω(G) − ω(G − F ). Thus we have F/(ω(G) − ω(G − F )) ≥ 1,
for any set F for which ω(G) − ω(G − F ) > 0. But η(G) is the minimum of
all such ratios, so η(G) ≥ 1 also. 9. Let G be a plane triangulation with
e edges, v vertices, and f faces. Since each edge is on exactly two faces (one
face counted twice if the both sides of the edge are on the same face), and
since each face has exactly three edges on its boundary, we have 2e = 3f , or
f = (2/3)e. By Euler’s formula, v − e + f = 2. Hence v − e + (2/3)e = 2.
simplifying and solving for e, we get e = 3v − 6, which is the claim. 10.
Since any subgraph of a plane triangulation is a planar graph, we have |E(H)| ≤
3|V (H)| − 6 for every connected subgraph of G. Let H be a subgraph of G,
and let the components of H be H1, H2, · · · , Hk. Then |V (H)| =

∑k
i=1 |V (Hi)|

and |E(H)| =
∑k

i=1 |E(Hi)|. Hence, since ω(H) = k and k ≥ 1, |E(H)| =∑k
i=1 |E(Hi)| ≤

∑k
i=1(3|V (Hi)|−6) = 3

∑k
i=1(|V (Hi)|−2) = 3(|V (H)|−2k) =

3(|V (H)| − k) − 3k ≤ 3(|V (H)| − ω(H)) − 3 = f(|V (H)| − ω(H)).

Chapter 20 The Chinese Postman Problem

1. 227 minutes. The minimum weight deadheading edges are {D, F} and
{F, G}, resulting in a ten-minute deadheading time. Any Euler circuit in the
graph of Figure 3 gives a minimal route. 2. 73 minutes. Path G, D, E, B is
the path of minimum weight joining G and B. 3. 68 minutes. The shortest
path between B and E is the path B, E, H, G, yielding a deadheading time of
15. 4. 2. Since we are counting the number of edges retraced, we can treat
the graph as a weighted graph where every edge has weight 1. There are two
perfect matchings: {{A, B}, {C, D}} and {{A, D}, {B, C}}. 5. a) 3 b) 0
if n is odd, n/2 if n is even c) 2 d) 0 if m and n are even, n if m is odd and n is
even, m if m is even and n is odd, the larger of m and n if m and n are both odd.
6. A, D, C, F, E, D, C, B, A. 7. 5. There are 15 matchings to consider. The
matchings {{2, 5}, {3, 8}, {10, 11}} and {{2, 3}, {5, 10}, {8, 11}} have minimum
total weight. 8. 0.74 seconds. This is Exercise 7 again. The actual printing
time is 0.58 seconds and the deadheading time is 0.16 seconds. There are
six odd vertices. If we label them a, b, c, d, e, f clockwise from the top of the
figure, the perfect matchings of minimum weight are: {{a, b}, {c, d}, {e, f}} and
{{b, c}, {d, e}, {f, a}}. Each of these matchings requires three vertical and two
horizontal deadheading edges. 9. 217 minutes. Each block is traversed twice
(once for each side of the street). Therefore the graph to consider is one where
each street in the original map is replaced by a pair of multiple edges. The
degree of each vertex is even, so the graph has an Euler circuit. Following any
Euler circuit will yield the minimal time. 10. 16. Of the 28 odd vertices,
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24 are adjacent in pairs. The remaining four can be at best joined by pairs of
length two.

Chapter 21 Graph Layouts
1. Let v be a vertex of degree k, and let N(v) be the set of its neighbors in
G. Then in any numbering f of G at least half the points of N(v) must be
mapped either to the left or to the right of v. This shows that dil(f) ≥ 2.
Since this is true for any numbering, it follows that B(G) ≥ �k/2�. 2.
This follows from Exercise 1 since K4 − e has a point of degree 3. 3. By
part (iv) of Theorem 1 we have B(G) ≥ 5/2, so B(G) ≥ 3 since B(G) is an
integer. The opposite inequality B(G) ≤ 3 follows by constructing a dilation
3 numbering of G. 4. a) If we remove any k consecutive vertices of P k

n

other than the first k or the last k, then the resulting graph is disconnected.
This shows that κ(P k

n ) ≤ k. You can see that κ(P k
n ) > k− 1 by noting that the

removal of any set S of k−1 consecutive vertices from P k
n still leaves a connected

graph. This is true because the “long” edges {x, y} of P k
n joining x and y at

distance k in Pn manage to tie together the two pieces of Pn that are left when
S is removed. When the set S consists of nonconsecutive vertices, then even
shorter edges of P k

n tie the various pieces together. b) An independent set
S of P k

n of size �n/k� consists of vertices 1, k + 1, 2k + 2, etc., showing that
β(P k

n ) ≥ �n/k�. On the other hand, if T is any set of vertices containing two
vertices x and y with distPn(x, y) ≤ k, then S is not independent in P k

n . Thus,
any independent set has size at most |S|, showing that β(P k

n ) ≤ �n/k�. c)
The degrees of the vertices of P k

n (n ≥ 2k + 1), going from left to right, are
k, k + 1, k + 2, . . . , 2k − 1, 2k, . . . , 2k, 2k − 1, . . . , k + 2, k + 1, k. Now, to find
the number of edges, add these degrees and divide by 2. 5. The smallest
is 5, and the largest is 7. You get the smallest by using a numbering in which
the highest number in a level is adjacent to the highest numbers (allowed by
the edges) in the next level. You get the largest by using a numbering in which
the lowest number in a level is adjacent to the highest numbers (allowed by the
edges) in the next level. 6. The reader may well have wondered whether
the poor performance of the level algorithm on the trees L(n) is really due to
the level algorithm itself, or rather to the bad choice of a root in L(n). Indeed,
if we took the rightmost vertex of the path P in L(n) as our root then the level
algorithm would produce a numbering of L(n) with correct dilation 2. But, in
fact, the bad performance is inherent in the level algorithm, as can be seen in
the following modified example. We form a tree H(n) by gluing two copies of
L(n) along the path P in reverse order. That is, we glue the leftmost vertex
of P in the first copy to the rightmost vertex of P in the second copy, and in
general the kth vertex from the left in the first copy to the 2n − k + 1st vertex
from the right in the second copy. The tree H(4) is illustrated in the following
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graph.

It can then be shown that B(H(n)) = 3 but that the level algorithm applied to
H(n) gives dilation Ω(log|H(n)|) regardless of which vertex of H(n) is chosen
as root. We leave the proof that B(H(n)) = 3 to the reader (just find a dilation
3 numbering). The proof that dil(f) ≥ Ω(log|H(n)|) for any level numbering
regardless of the root is based on the same idea as the corresponding proof for
L(n), except that the gluing of the two copies of L(n) now makes every vertex
on the path P behave in essentially the same way. That is, you can show that
now matter what vertex v along P is chosen as a root, there are integers i for
which the size of Si is at least logarithmic in i. 7. The required embedding
is illustrated in the following figure.

8. Just experiment and see how small you can make the area. You might notice
that by allowing bigger area you can get smaller dilation. 9. a) – d) To
see that S(Pn) = n − 1, map Pn to itself by the identity map. This gives the
upper bound for S(Pn). The upper bounds for S(Cn) and for S(K1,n) follow
from the same maps described in the text that we used to calculate B(Cn) and
B(K1,n). For S(Kn), observe that since every pair of vertices in Kn is joined
by an edge, all maps f : Kn → Pn have the same sum(f). To calculate sum(f),
we let x ∈ V (Kn) and calculate S(x) =

∑
y �=x dist(f(x), f(y)). The desired

sum(f) is
∑

x∈V (Kn) S(x). To calculate S(x), suppose that f(x) = i. Then

S(x) =
∑

f(y)<i dist(f(x), f(y))+
∑

f(y)>i dist(f(x), f(y)) =
∑i−1

t=1 t+
∑n−i

t=1 t =
1
2 ((i−1)i+(n−i)(n−i+1)). Now just sum this over all i to get the desired result.
We leave the proofs of the lower bounds to the reader. 10. As in Exercise
1, in any numbering f of G at least half the points of N(v) must be mapped
either to the left or to the right of v. This forces an overlap of size at least half
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of k at the interval (f(v), f(v) + 1) or at the interval (f(v) − 1, f(v)). Thus
value(f) ≥ �k/2�, and since f was arbitrary this shows that c(G) ≥ �k/2�.
11. For c(Pn) = 1, map Pn by the identity map. If we denote the vertices
of Cn by 1, 2, . . . , n as we traverse Cn cyclically, then to get c(Cn) ≤ 2 map
vertex i of Cn to vertex i of Pn. The map which shows that c(K1,n) ≤ �n/2�
puts the vertex in K1,n of degree n in the middle and the remaining vertices
(of degree 1) anywhere arbitrarily. As in the calculation of S(Kn), all maps
f of Kn have the same value(f). The fact that c(Kn) = �n2/4� follows since
cut(�n/2�) = �n2/4� because every vertex x with f(x) ≤ �n/2� is joined to
every vertex x with f(x) > �n/2� causing an overlap of size �n2/4� over the
interval (�n/2�, �n/2�+ 1). We leave the lower bounds to the reader; Exercise

10 can be used here. 12. a) The matrix

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1 1 0
0 0 1 1 1 0
1 1 0 0 0 1
1 1 0 0 0 1
1 1 0 0 0 1
0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎠ has a band

of 4 enclosing all the 1s, and is obtained by a permutation of the rows and
columns of A. b) The graph G(A) is K4,4, and it has bandwidth 4. 13.
Let x be the vertex of degree k in G, and let f : G → Pn be any one-to-one
map. Let S(x) =

∑
y∈N(x) dist(f(x), f(y)), where again N(x) is the set of

neighbors of x in G. Clearly S(x) is minimized when half the vertices of N(x)
are mapped immediately to the left of f(x) and the other half immediately to
the right. Thus we get sum(f) ≥ S(x) ≥ 2(

∑k/2
t=1 t) = k

2 (k + 2). 14. The
biggest dilation occurs when the vertex with smallest number in level k − 1 is
joined to the vertex with biggest number in level k. The smallest number is
1 + 2k−2 − 1 = 2k−2 (i.e. one more than the number of vertices in Tk−2), and
the biggest number is the number of vertices in Tk which is 2k −1. The dilation
that we get in that case is the difference between these two numbers, which
is 2k − 2k−2 − 1. The smallest dilation occurs when the vertex with biggest
number in level k−1 is joined to the vertex with biggest number in level k, and
smaller numbered vertices in level k−1 are joined to smaller numbered vertices
in level k. The biggest in level k − 1 is 2k−1 − 1, and the biggest in level k is
2k − 1. Hence the dilation in this case is 2k − 2k−1.

Chapter 22 Graph Multicolorings
1. a) 8 b) 4 c) 5 d) 6 e) 7 f) 4. 2. Station 1: channels 1,2,3;
station 2: channels 4,5,6; station 3: channels 7,8,9; Station 4: channels 4,5,6;
station 5: channels 7,8,9. 3. Graph Algorithms: Monday AM, Monday PM;
Operating Systems: Tuesday AM, Tuesday PM; Automata Theory: Monday
AM, Wednesday AM; Number Theory: Tuesday PM, Wednesday AM; Com-
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puter Security: Monday PM, Tuesday AM; Compiler Theory: Tuesday PM,
Wednesday PM; Combinatorics: Monday AM, Monday PM. 4. Let the
edges in G be partitioned into disjoint nonempty subsets V1 and V2 such that
every edge connects a vertex in V1 and an edge in V2. Assign colors 1, 2, ..., n
to each vertex in V1 and colors n + 1, n + 2, ..., 2n to each vertex in V2. This
produces an n-tuple coloring using 2n colors. Therefore χn(G) ≤ 2n. But any
edge in G will have 2n colors used for its endpoints, so χn(G) ≥ 2n. Hence
χn(G) = 2n. 5. a) 3 b) 4 c) 3 d) 5. 6. Graphs in parts a, b,
and d are weakly γ-perfect. 7. It is easy to see that the clique number
of a bipartite graph with at least one edge is 2. Since a bipartite graph has
chromatic number equal to 2, such a graph is weakly γ-perfect. If no edge is
present, both the clique number and chromatic number of the graph equal 1,
so that graph is weakly γ-perfect. 8. a) 6 b) 8 c) 8 d) 10. 9.
Suppose the vertices of K4 are a, b, c, and d. By assigning color 1 to a, color
3 to b, color 8 to c, and color 10 to d, we get a T -coloring with span 9. To
see that no T -coloring has smaller span, note that without loss of generality
we can assume that a is assigned color 1. If the span is smaller than 9, since
T = {0, 1, 3, 4}, the only available colors for b, c, and d are 3,6,7,8, and 9.
But no three of these numbers have the property that all pairs of differences
of the numbers are not in T . 10. a) T -chromatic number: 3, T -span: 4.
b) T -chromatic number: 3, T -span: 4. c) T -chromatic number: 3, T -span:
6. 11. a) T -chromatic number: 4, T -span: 6. b) T -chromatic number: 4,
T -span 6. c) T -chromatic number: 4, T -span: 9 (see Exercise 9). 12. a)
5 b) 7 c) 7 d) 10. 13. a) v1: colors 1 and 2; v2: colors 3 and 4; v3:
colors 1 and 2; v4: colors 3 and 4; v5: colors 3 and 4; v6: colors 5 and 6; v7:
colors 7 and 8; v8 colors 1 and 2; v9: colors 3 and 4; v10: colors 1 and 2. b)
It uses 6 colors for a 2-tuple coloring of C5. 14. First, order the vertices
as v1, v2,...,vn and represent colors by positive integers. Assign as many colors
as specified to v1. Once having assigned as many colors as specified to each
of v1,v2,...,vk, assign the smallest numbered colors of the quantity specified to
vk+1 such that no color assigned is the same as a color assigned to a vertex
adjacent to vk+1 that already was assigned a set of colors. 15. a) v1: color
1; v2: color 3; v3: color 1; v4: color 3; v5: color 3; v6: color 9; v7: color 11;
v8: color 1; v9: color 3; v10: color 1. b) It produces a span of 8 for C5, but
the T -span of C5 is 4. 16. A list coloring is needed to model examination
scheduling when particular examinations can only be given during restricted
periods, to model maintenance scheduling when certain vehicles can only be
maintained during particular times, or to model task scheduling when certain
tasks can only be performed during specified times. 17. An I-coloring is
needed to model assignments of frequency bands for mobile radios, to model
space assignment in a maintenance facility laid out along a linear repair dock,
or to model task scheduling when tasks take an interval of time to complete.
18. A J-coloring is needed to model assignments of several frequency bands
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for each station or to model task scheduling when tasks are completed during
more than one interval of time.

Chapter 23 Network Flows
1. The maximum flow is 13 with cut {(d, t), (d, e), (b, e), (c, e), (c, f)}. 2.
The maximum flow is 7 with cut {(a, d), (b, d), (f, e), (c, g)}. 3. The max-
imum flow is 13 with cut {(d, t), (d, e), (b, e), (c, e), (c, f)}. 4. The maxi-
mum flow is 7 with cut {(a, d), (b, d), (f, e), (c, g)}. 5. The maximum flow
is 4 with cut {{a, c}, {a, d}, {b, d}}. 6. The maximum flow is 4 with cut
{{a, d}, {c, d}, {d, e}, {e, t}}. 7. The maximum flow is 7 with a minimum
cut consisting of edges (d, g), (e, g), (e, h), (f, h), and (f, l). 8. a) The max-
imum flow is 5 with minimum cut containing the edges (s, S1), (s, S2), (s, S4),
(C2, t), and (C3, t). Interpreting a maximum flow, we find that an optimum
assignment has each of Students 1, 2, and 4 grading a section of Course 1,
and Student 3 grading one section of each of Courses 2 and 3. There are not
enough graders competent to grade all of the sections of Course 1, and there
are not enough sections in courses other than Course 1 to satisfy the desires
of all of the graders. (Notice that the edges of the minimum cut are directed
from A = {s, S3, C2, C3} to V (G) − A. Other edges between these two sets
of vertices are directed toward A.) b) The maximum flow is 7 with mini-
mum cut containing the edges (s, S1), (s, S2), (s, S3), and (s, S4). Examining a
maximum flow shows that an optimum assignment has Student 1 grading one
section of Course 1, Student 2 grading one section of each of Courses 1 and 2,
Student 3 grading the other section of Course 2, and Student 4 grading two
sections of Course 3 and the one section of Course 4. Both the students’ de-
sires and the needs of the courses are met with this assignment. 9. Let G
be an undirected bipartite graph, and suppose V (G) is the disjoint union of
nonempty sets V1 and V2 such that every edge joins a vertex in V1 with a vertex
in V2. Form a directed capacitated s, t-graph H as follows: Direct every edge
of G from its end in V1 to its end in V2 and place a capacity of ∞ on each
such edge. Add a source vertex s and connect it to every vertex in V1 with
an edge directed away from s of capacity 1. Add a sink vertex t and connect
each vertex in V2 to t with an edge directed toward t of capacity 1. Now find
a maximum flow f in H and the corresponding minimum cut (A, V (H) − A).
Since each unit of flow must travel from s to a vertex x in V1 through an edge
of capacity 1, from x to a vertex y in V2 through an edge originally in G, and,
because of the directions of the edges originally in G, must then go on directly
to t through another edge of capacity 1, the edges originally in G which are
used for flow must form a matching in G whose number of edges is the same
as the number of units of flow in H . Further, if M is a matching in G, then
using the corresponding edges of H as the middle edges of a flow, there must
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be a flow in H whose number of units is equal to the size of M . Since f is
a maximum flow, the edges originally in G used by the flow form a maximum
matching of G. But the cut ({s}, V (H) − {s}) has capacity equal to the num-
ber of vertices in V1, so the minimum cut (A, V (H) − A) is finite. Hence it
consists solely of edges of H incident with the vertices s and t, and so there is
a one-to-one correspondence between the edges in (A, V (H) − A) and vertices
of G. Further, for each path s, m, n, t carrying a unit of flow, one of (s, m)
or (n, t) must be in (A, V (H)−A). Let the set of vertices of G met by edges in
(A, V (H)−A) be C, so that the size of C is the same as the size of (A, V (H)−A).
Suppose there is an edge e of G which does not meet a vertex in C, and let
the edge of H corresponding to e be (m, n). Suppose f(s, m) = 1. Since m
and n are not in C, neither (s, m) nor (n, t) is in (A, V (H) − A), so the unit
of flow from s to m must continue on to a vertex n′ in V2 with n′ �= n, and
(n′, t) ∈ (A, V (H) − A). Hence n′ received a label in the final labeling of the
algorithm. Since f(m, n′) > 0, m has a label, and since c(m, n) = ∞, n has a
label. But t does not have a label, so (n, t) ∈ (A, V (H) − A), contrary to our
supposition. Thus f(s, m) = 0. Now in the final labeling of the algorithm, m
and n receive labels, so (n, t) ∈ (A, V (H) − A), again contrary to our assump-
tion that neither m nor n is in C. Since we have a contradiction in either case,
it follows that e cannot exist. Thus C is a cover of G. But by Theorem 4, the
number of elements in (A, V (H)−A) is the same as the number of units of flow
in f , and those numbers are the same as the numbers of elements in C and M ,
respectively. The theorem follows. 10. Suppose G is 2-connected. Let
v, w ∈ V (G) with v �= w. As suggested in the hint, replace each vertex x other
than v and w with two new vertices x1 and x2 and a directed edge (x1, x2) with
capacity 1. We will call this edge a “vertex-generated edge” generated by x. For
every edge (x, y) not meeting v or w, replace it with the directed edges (x2, y1)
and (y2, x1), both with capacity infinity. If edge {v, w} is in E(G), replace it
with edge (v, w) having capacity 1. For each edge {v, x} with x �= w, replace
it with an edge (v, x1) having capacity infinity. Similarly, for each edge {w, x}
with x �= v, replace it with an edge (x2, w) having capacity infinity. The result-
ing directed graph H is a capacitated v, w-graph. Let f be a maximum flow
in H from v to w. Since every unit of flow from v to w must pass through either
edge (v, w) of capacity 1 or some vertex-generated edge (x1, x2) of capacity 1, f
must have a finite value. Further, no two units of flow can have paths sharing a
vertex other than v or w since (v, w) if it exists and all vertex-generated edges
have capacities 1. By Theorem 4, the value of a maximum flow equals the
capacity of a minimum cut in H between v and w. Since minimum cuts must
be made of vertex-generated edges and (v, w), and since the removal of {v, w}
alone or of one vertex alone cannot disconnect G, there must be at least two
edges in a minimum cut of H . Hence there must be at least two units of flow
in f and thus at least two paths from v to w in H which share no vertices other
than v and w. But these paths are easily translated back into paths in G with



S-52 Applications of Discrete Mathematics

the same property, proving the theorem in one direction. Suppose that, for any
distinct vertices v and w of G, there are two simple paths joining v with w
which have only the vertices v and w in common. Suppose, for the sake of
contradiction, that G has a cut vertex x. Form G−x by erasing x and all edges
incident with x in G. By the definition of a cut vertex, there must be vertices v
and w in different components of G−x which are in the same component of G.
Let p1 and p2 be paths in G which join v and w and which share only those
two vertices. Then x can be on at most one of p1 or p2; suppose x is not on
the path p2. Then p2 is a path in G − x joining v with w, so v and w are not
in different components of G − x, contrary to the choice of v and w. It follows
that G has no cut vertices. But G has at least three vertices, so it must have
at least two edges. Thus G is 2-connected. 11. This is solved exactly as
the problem of assigning graders to sections of classes is solved. The workers
play the part of graders and the machines are the sections of the classes. Thus,
we have a vertex for each worker and one for each type of machine, and we
join a vertex for a worker to one for a type machine by an edge if the worker is
competent to run the machine. We add a source s and a sink t. We join s to the
vertex for each worker by an edge of capacity 1 (since each worker works on just
one machine). We join the vertex for each type of machine to t by an edge of
capacity equal to the number of machines of that type. Then a maximum flow
in the graph will give the necessary assignment. 12. Let the CIC office be
a vertex, introduce two vertices and a directed edge from one (the tail) to the
other (the head) for each switch in the telephone network, and add one more
sink vertex t. Give the capacity of a switch to the edge corresponding to that
switch. Let the source vertex s be the CIC office. As suggested, join the head
vertex for each switch to t by an edge directed toward t whose capacity is the
number of local users tied to that switch. If there is a direct telephone link from
one switch a to another b, introduce an edge from the head of the edge corre-
sponding to a to the tail of the edge corresponding to b; since any call passing
out of a switch reaches the next one, give a capacity of infinity to such edges.
Join s to the tails of edges corresponding to switches to which the CIC office is
directly connected by edges directed toward the switches, with capacity equal
to the number of calls from that switch the company can accept. Then, given
the reported trouble with calls coming to CIC, a minimum cut in the resulting
graph will include edges corresponding to switches that are bottlenecks for the
system. The max-flow min-cut algorithm will find such a minimum cut.
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Chapter 24 Petri Nets

1.

2.

3. a is not enabled. The upper left place needs at least two tokens. b and c are
enabled.
4. a) b)

c)
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5.

6. ¬x∧¬y is equivalent to ¬(x∨y), so the required net can be constructed from
those for negation and disjunction, similarly to the way the net for ¬(x ∧ y)
was constructed in the text. 7. x → y is equivalent to ¬x ∨ y. Thus,
the required net can be constructed using those for negation and disjunction.
8. The access control place should have only two tokens. There should be five
“reader” tokens and three “writer” tokens. Instead of three multiple edges at
the access control place, there should be two.
9.

10. Add another place in the buffer which starts out with three tokens. Each
time an object is put in the buffer, one token is removed from the new place.
Each time an object is consumed, one token is added to the new place. See the
following diagram, where B′ is the new place.

11. a) The net is not safe. Firing t3 produces two tokens at p1. b) The
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net is bounded. No place ever has more than two tokens. c) The net
is not conservative. Firing t1 puts one token in p2 and removes one from p1.
Then, firing t4 puts one token in p1 and removes one from each of p2 and p3,
reducing the number of tokens in the net. 12. Firing t2 first and then t5
puts one token in p3 and p2. From here repeat firings of t5 increase the number
of tokens in p2 each time by one. Thus, the net is not safe, not bounded, and
not conservative.
13.

a) The net is safe, by inspection. b) The net is not conservative since t4
decreases the number of tokens. c) (0, 0, 1, 0, 1) is not reachable from
(1, 1, 0, 0, 0), by inspection.
14.

The net is not bounded. The number of tokens in place p2 can be increased
without bound.
15.


