
O O
(1.2)(1.2)

O O

O O
(1.4)(1.4)

O O

O O
(1.1)(1.1)

(1.5)(1.5)

(1.3)(1.3)

1 The Foundations: Logic and Proofs

Introduction
This chapter describes how Maple can be used to further your understanding of logic and proofs.
In particular, we describe how to construct truth tables, check the validity of logical arguments, and
verify logical equivalence. In the final two sections, we provide examples of how Maple can be
used as part of proofs, specifically to find counterexamples, carry out proofs by exhaustion, and to
search for witnesses for existence proofs.

1.1 Propositional Logic
In this section we will discuss how to use Maple to explore propositional logic. Specifically, we
will see how to use logical connectives in Maple, describe the connection between logical
implication and conditional statements in a program, show how Maple can be used to create truth
tables for compound propositions, and demonstrate how Maple can be used to carry out bit
operations.

In Maple, the truth values true and false are represented by the names true and false. These are
constants in Maple, just like a numeric constant such as p. Propositions can be represented by
names (variables) such as p, q or Prop1. Note that if you have not yet made an assignment to a
name, entering it will return the name.

Prop1;
Prop1

Once you've assigned a value, Maple will evaluate the name to the assigned value whenever it
appears.

Prop1 := true;
Prop1 := true

Prop1;
true

You can cause Maple to "forget" the assigned value with the following syntax:
Prop1 := 'Prop1';

Prop1 := Prop1
Prop1;

Prop1
Right single quotes are used in Maple to delay evaluation of an expression. In the above, they are
used to assign Prop1 to the unevaluated Prop1, in other words, we set the value of the variable to
the name of the variable which effectively unassigns the name. (Note that the right single quote is
on the same key as the quotation mark on a standard keyboard. In Maple, the right single quote is
different from the left single quote, which is on the same key as the tilde, ~.)

Logical Connectives
Maple supports all of the basic logical operators discussed in the textbook except for the
biconditional. We illustrate the logical operators of negation (not), conjunction (and), disjunction
(or), exclusive or (xor), and implication (implies). Note that expressions formed using the
logical connectives are called boolean expressions, and variables that stand for true or false are
called boolean variables.

O O

O O

O O

(1.11)(1.11)

(1.7)(1.7)
O O

(1.14)(1.14)

O O

(1.12)(1.12)

O O

O O

(1.8)(1.8)

(1.10)(1.10)

(1.6)(1.6)

(1.9)(1.9)

O O

O O

(1.13)(1.13)

not true;
false

true and false;
false

true or false;
true

true xor false;
true

true implies false;
false

(true and false) implies true;
true

Note that the precedence of the Maple logical operators agrees with Table 8 of Section 1.1, so the
parentheses in the previous command is unnecessary, though they make for more readable
propositions.

Maple does not support the biconditional directly, but it can be easily programmed to do so.
IFF := proc(a,b)
 (a implies b) and (b implies a);
end proc;

IFF := proc a, b a implies b and b implies a end proc
Because this is our first Maple procedure, let's spend a moment breaking it down. First we have the
name, IFF, followed by the assignment operator :=. Then we use the keyword proc, short for
procedure. After the keyword proc, we list, inside parentheses, names for the inputs to the
procedure.

After closing the parentheses to terminate the list of arguments, we begin the body of the procedure,
called the statement sequence. The statement sequence can be as long as is required. In this case,
only one statement was required. Note that the result of the procedure is the value of the last
statement that is executed.

Finally, we end the procedure with the statement end proc;. As is usual for assignment
statements, Maple's output is a repetition of the assignment. For this reason, we will generally use a
colon rather than a semicolon to terminate the end proc: statement. This suppresses the output
of the assignment command but doesn't alter the procedure.

To execute a procedure that we've written, give the name of the procedure followed by arguments,
in parentheses.

IFF(true,true);
true

IFF(true,false);
false

Conditional Statements
We saw above that Maple includes the operator implies for evaluating logical implication or
conditional statements. In mathematical logic, "if p, then q" has a very specific meaning, as
described in detail in the text. In computer programming, and Maple in particular, conditional
statements also appear very frequently, but have a slightly different meaning.

O O

O O

(1.6)(1.6)

(1.15)(1.15)

O O

O O
(1.16)(1.16)

From the perspective of logic, a conditional statement is, like any other proposition, a sentence that
is either true or false. In most computer programming languages, when we talk about a conditional
statement, we are not referring to a kind of proposition. Rather, conditional statements are used to
selectively execute portions of code. Consider the following example of a procedure, which adds 1
to the input value if the input is less than or equal to 5 and not otherwise.

IfProc1 := proc(x)
 local y;
 y := x;
 if y <= 5 then
 y := y + 1;
 else
 y := y - 1;
 end if;
 return y;
end proc:

Let's see that this procedure works as promised:
IfProc1(3);

4
IfProc1(7);

6

There's quite a lot in this procedure. First, we use the keyword local followed by the name y.
This tells Maple that y is a name that is used only in the procedure, so that if the name y is being
used someplace else in the worksheet, they won't interfere with each other. In particular, if you're
using y as a name for some value and then you run this procedure, having declared y as local to the
procedure guarantees that the y you assigned outside of the procedure isn't changed. You should
always declare variables you use in a procedure as local and this declaration needs to be the first
statement after the parameter list. If you have more than one variable to declare as local, you list
them separated by commas and end the entire list with a semicolon. If you write a procedure and
use variables that are not declared local, Maple will warn you about them. Also note that the names
you give parameters to are implicitly local.

After we declare y to be local in our procedure, we assign y equal to the value of x. It may seem
strange to "copy" the value of x to y and then work with y rather than just using x. The reason is
that Maple will not let you assign to a parameter. If you try including x := x + 1 in the
procedure (go ahead and try), Maple will raise an error when you try to apply the procedure to an
input value. There is a very good reason for this: it prevents you from accidentally modifying an
input. For example, suppose you had a name important and stored some value in that variable,
perhaps a value obtained after considerable work. If you then wrote a procedure that accidentally
modifies its input parameter and you ran your procedure on important, then the value would be
lost and you'd have to redo all your work. So Maple prevents you from assigning to parameters in
the body of a procedure in order to help you avoid making that kind of mistake. (There is a way
around this, but we won't discuss it now.)

Next are the five lines comprising the conditional statement: if y <= 5 then y := y + 1;
else y := y -1; end if;. Again, this is not a proposition, it is a command. When Maple
comes to this part of the procedure, it sees the keyword if and knows that what follows the if,
and up to the then keyword, is a conditional expression (which is a proposition). Maple checks to
see if the conditional expression is true or not. If the conditional expression is true, then Maple
knows to execute the statement(s) after the then keyword. If the conditional expression is false,

O O

(1.19)(1.19)

O O

O O

(1.21)(1.21)

O O

(1.20)(1.20)

O O

(1.17)(1.17)

(1.6)(1.6)

(1.18)(1.18)

O O

then Maple executes the statement(s) after the else keyword.

Note also the way in which we change the value of y: y := y + 1;. This is another instance of
Maple trying to make sure we "really mean it" when we want to change a value. The command y
+ 1; would not change the value of y. To change the value of y we have to add 1 to y, and then
assign that number to the name y.

Finally, the last line of the procedure is return y. We mentioned in the discussion of the IFF
procedure, that a Maple procedure's output is the result of the last statement that is executed.
Imagine the IfProc1 procedure without the return y; line. In that case, we wouldn't be able
to tell in advance what the last command to be executed is. For small values, the last command
would be the assignment y := y + 1;, but for inputs greater than 5, y := x; would be the last
statement executed. It is better programming style to make it clear what the output of the procedure
will be, since (especially in more complicated programs) it can get quite difficult to tell what the
output will be. In this example, we made the output explicit with the return y; command. Since
this follows the end of the conditional statement, we know it will always be the last statement
executed.

The return keyword is used in this case to be very explicit that the output from the procedure is
the value of y. The return command, however, is very useful as it can allow short-circuiting of
procedures. That means that execution of the procedure immediately stops and the value following
the return keyword is output by the procedure.

Truth Tables and Loops
In the textbook, you saw how to construct truth tables by hand. Here we'll see how to have Maple
create them for us. We'll begin by considering the simplest case of a compound proposition: the
negation of a single propositional variable.

Prop2 := not p;
Prop2 := not p

Note that we've defined the proposition Prop2 as an expression in terms of the name p, which has
not been assigned a variable. We can determine the truth value of Prop2 in one of two ways. The
obvious way is to assign a truth value to p and then ask Maple for the value of Prop2 as follows.

p := false;
p := false

Prop2;
true

The drawback of this approach, however, is that our variable p is now identified with false and if
we want to use it as a name again, we need to manually unassign it.

p := 'p';
p := p

The other approach is to use the eval command. eval, short for evaluate, has several different
uses, but the most common is for evaluating an expression (including a boolean expression) at
given values for the variables in the expression. For example.

eval(Prop2,p=true);
false

In this usage, the command takes two arguments. The first argument is the expression to be
evaluated. The second argument specifies the values that are to be substituted for the variables in

O O

O O

O O

(1.23)(1.23)

O O

(1.6)(1.6)

(1.24)(1.24)

(1.22)(1.22)

O O

(1.25)(1.25)

the expression. If there is only one variable to be replaced, as in the Prop2 example, the second
argument can be given as the single equation variable=value. If there are multiple variables,
you must provide a list of such equations as the second argument, as in the next example.

eval(p and (not q),[p=true,q=false]);
true

To make a truth table for a proposition, we need to evaluate the proposition at all possible truth
values of all of the different variables. To do this, we make use of loops (refer to the Introduction
for a general discussion of loops in Maple). Specifically, we want to loop over the two possible
truth values, true and false, so we will construct a for loop over the list [true,false].

for loopP in [true,false] do
 print(loopP,eval(Prop2,p=loopP));
end do;

true, false
false, true

The for keyword identifies this as a for loop for Maple. The name following the for keyword,
loopP, is used as the index variable in the loop. The in [true,false] clause tells Maple that
we want the index variable to be sequentially assigned to the elements in the list [true,false].
And the do keyword indicates the beginning of the body of the loop.

The body of the loop consists of a single statement involving two commands. The print
command can take any number of arguments and causes Maple to display the arguments to the
command. The first argument is the index variable loopP, meaning that the first thing displayed in
each interation of the loop is the value of the boolean variable.

The second argument to print is a call to the eval command: eval(Prop2,p=loopP). In
evaluating this command, Maple first evaluates the names Prop2 and loopP, replacing them with
their values. So Prop2 is replaced with not p and loopP is replaced with whichever truth value
it is assigned to in the iteration of the loop. Then, the eval command causes Maple to replace the
variable p in Prop2 with the current value of loopP. Finally, Maple evaluates the boolean
expression so that the print command causes the truth value to be displayed.

When there are multiple propositional variables, we use multiple for loops. This is called "nesting"
the loops. For example,

Prop3 := (p and q) implies p;
Prop3 := p and q 0 p

for loopP in [true,false] do
 for loopQ in [true,false] do
 print(loopP,loopQ,eval(Prop3,[p=loopP,q=loopQ]));
 end do;
end do;

true, true, true
true, false, true
false, true, true
false, false, true

Note that the output indicates that the proposition, po q / p, is a tautology. In fact, this is a
rule of inference called simplification, discussed in Section 1.6 of the textbook.

O O

(1.29)(1.29)

(1.27)(1.27)

(1.30)(1.30)

O O

(1.28)(1.28)

O O

O O

O O

(1.6)(1.6)

O O

O O

(1.26)(1.26)

Logic and Bit Operations
We can also use Maple to explore the bit operations of OR, AND, and XOR. Recall that bit
operations correspond to logical operators by equating 1 with true and 0 with false. Maple has a
package, called Bits, that provides a lot of support for working with bits and bit strings. For the
purposes of this manual, however, we'll create some of this functionality from scratch. This gives
us the opportunity to introduce some more general Maple commands that will be useful in a variety
of contexts.

First of all, let's write the bitwise AND procedure. This procedure will take two arguments, which
we'll call a and b, and should return 1 if both of the inputs are 1 and 0 if not. The body of the
procedure will be an if statement that tests the proposition "a = 1 and b = 1". If this proposition is
true, then the procedure will return the value 1. If not, in the else clause, it returns 0.

AND := proc(a,b)
 if a=1 and b=1 then
 return 1;
 else
 return 0;
 end if;
end proc:
AND(1,0);

0
AND(1,1);

1

The zip command
Now that we have a bitwise AND procedure, we can apply it to bit strings using Maple's zip
command. The zip command requires three arguments. The first argument must be a binary
procedure or function, i.e., a procedure that takes two arguments. The second and third arguments
must be two lists (or a similar data structure that holds multiple values, e.g., a matrix). The result of
the command is the list whose entries are the result of applying the procedure to the corresponding
values of the list.

zip(AND,[1,1,0,0],[1,0,1,0]);
1, 0, 0, 0

In the example above, the first element in the result is obtained by applying AND to the pair of first
elements, namely (1,1). The second result value is obtained from the pair of values consisting of the
second elements in the given list, namely (1,0), the third result from (0,1), and the last result from
(0,0).

If the lists that are given to zip are of different lengths, the command will stop at the end of the the
shorter list.

zip(AND,[1,1],[1,0,1,0]);
1, 0

If you want, however, you can provide an optional fourth argument to the command. This fourth
argument will act as the default value for whichever list is shorter.

zip(AND,[1,1],[1,0,1,0],0);
1, 0, 0, 0

In this example, giving 0 as the optional argument means that when it gets to the third and fourth
computations, it uses 0 as the value for the first (shorter) list. It is just as if we used [1,1,0,0] for
the first list.

(1.31)(1.31)

O O

(1.35)(1.35)

O O

(1.33)(1.33)

(1.36)(1.36)

(1.32)(1.32)

O O

O O

O O

(1.6)(1.6)

(1.34)(1.34)

O O

O O

This last argument is helpful in many circumstances, but for operations on bit strings, it is not
entirely satisfactory. The problem is that it would be more natural, in the context of AND on bit
strings, to increase the length of the list by adding 0s on the left, rather than the right. That is, the
result of AND on [1,1] and [1,0,1,0] should be the same as [0,0,1,1] and [1,0,1,0].

To overcome this, let's rewrite the AND procedure. Our new and improved AND will still take two
inputs, but the inputs will be allowed to be either bits or bit strings. If the inputs are both bits (0 or
1), then we'll check to see if they are both 1 and return 1 if they are or 0 if not. If the inputs are lists,
then we'll make sure the lists are the same length (possibly by adding 0s on the front of the list), and
then use zip to AND the individual bits. Finally, if the input values are not bits and not lists, then
we'll cause an error to be generated.

Implementing this will require some more Maple commands. The first thing that needs to be done
is to determine the type of input. This will be done with an if-elif-else structure. First, the
if condition is tested. In this case, the if condition will be that the input values are 1s or 0s. If the
if condition passes, then the commands following the then keyword are executed. Otherwise,
we jump ahead to the elif keyword which, like if, is followed by a boolean condition (that the
input are lists) and the then keyword. If that condition is true, then the commands following the
elif's then are executed. Otherwise, we jump ahead to the else keyword and execute those
commands.

We already know how to handle the first condition, that the inputs are 0s and 1s. This amounts to
testing the proposition a = 0n a = 1 o b = 0n b = 1 . If that is the case, then we can use the
same code from the original AND procedure above.

Using type to check for lists
For the second, elif, condition, we need to determine if the inputs are lists. We'll do this with the
type command. Every Maple object, from the number 5 to the procedure AND is of one or more
types. Just as in mathematics, we classify objects as integers or real numbers or matrices or
functions, Maple classifies objects as integer, realcons (real constant), Matrix, or
procedure. We test an object to see if it is of a particular type with the type command. For
example, to see that 5 is an integer and a realcons but not a Matrix, but that AND is a
procedure we issue the following commands.

type(5,integer);
true

type(5,realcons);
true

type(5,Matrix);
false

type(AND,procedure);
true

And to see whether an object is a list, we can test to see if it is of type list.
type([1,2,3],list);

true
type(17,list);

false
So our elif condition will use type to make sure both inputs are lists.

O O

O O

O O

(1.39)(1.39)
O O

O O

O O

(1.42)(1.42)

(1.38)(1.38)

(1.6)(1.6)

(1.43)(1.43)

(1.44)(1.44)

O O

O O

(1.40)(1.40)

(1.41)(1.41)

O O

(1.37)(1.37)

Padding lists with 0s
If the input are lists, we'll need to check their lengths and possibly add 0s to the front to make them
the same length. We can get the length of a list using the nops command. nops is short for
number of operands. It allows only one argument, which can be any expression. Its most common
use is for determining the number of elements of a list or set.

nops([1,0,1,1,0,1]);
6

To compare the lengths of the two lists, we'll use the max command, which returns the largest of its
arguments.

max(3,5);
5

Closely related to nops is the op command. This is another command with a variety of uses. In
this case, we will use op to extract the elements of a list. To see why this is needed, consider the
problem of adding a 0 to a list. The natural approach is to create a new list that has 0 as the first
element, followed by the rest of the original list. You might try this:

exList := [1,1,1,1];
exList := 1, 1, 1, 1

[0,exList];
0, 1, 1, 1, 1

Instead of obtaining a list consisting of 0 followed by the exList elements, we get a list of two
elements. The first element is 0 and the second element is the list exList. The elements of a list
can be anything, including other lists. You can think of exList as a box in which we've stored
five 1s. When we made the new list above, we made a new box and put a 0 and the exList in it
producing a box within a box. In order to get the list we want, we need to extract the elements of
the exList. We use op to take the data out of the exList box so that we can put them directly in
this new box.

[0,op(exList)];
0, 1, 1, 1, 1

In order to add more than one 0 at a time, we will use the seq command. This command creates a
sequence of values. In its most basic form, seq requires two arguments. The first argument is an
expression that determines the values of the sequence. The second argument has the form i=m..n,
where i is an index variable that, like in a for loop, is sequentially assigned the integers between m
and n, inclusive. Typically, the first argument will depend in some way on the value of i. For
example, to produce the first few perfect squares, we can do the following.

seq(i^2,i=1..10);
1, 4, 9, 16, 25, 36, 49, 64, 81, 100

In our AND procedure, we will want all 0s, so the first argument will be 0 and the second argument
will control how many are to be produced. For example, to make a sequence of 3 0s, we can issue
the following command.

seq(0,i=1..3);
0, 0, 0

Note that we can put this in place of the single 0 from above to extend the exList.
[seq(0,i=1..3),op(exList)];

0, 0, 0, 1, 1, 1, 1

O O

(1.48)(1.48)

(1.46)(1.46)

O O

(1.49)(1.49)
O O

O O

O O

(1.6)(1.6)

O O

O O

(1.51)(1.51)

(1.50)(1.50)

O O

(1.47)(1.47)

O O

(1.45)(1.45)

O O

O O

Also, the bounds of the range can be expressions that depend on another variable. For example,
upperBound := 10:
seq(0,i=1..upperBound-2);

0, 0, 0, 0, 0, 0, 0, 0

For example, if we want to extend exList to a list of length 10, we would need to add
upperBound - nops(exList);

6
0s to the front of exList. We can obtain these 6 0s by

seq(0,i=1..upperBound-nops(exList));
0, 0, 0, 0, 0, 0

The new list can thus be obtained as follows:
[seq(0,i=1..upperBound-nops(exList)),op(exList)];

0, 0, 0, 0, 0, 0, 1, 1, 1, 1

nops((1.48));
10

Finally, if the range i=m..n is empty, i.e., n is less than m, then seq outputs nothing. This means
that we don't need to test the length of exList against the desired length because seq won't add
anything if it doesn't need to.

smallBound := 4:
[seq(0,i=1..smallBound-nops(exList)),op(exList)];

1, 1, 1, 1

Now we have all the pieces in place to write the new and improved AND procedure.
AND := proc(A,B)
 local i, maxlen, newA, newB;
 if (A=0 or A=1) and (B=0 or B=1) then
 if A=1 and B=1 then
 return 1;
 else
 return 0;
 end if;
 elif type(A,list) and type(B,list) then
 maxlen := max(nops(A),nops(B));
 newA := [seq(0,i=1..maxlen-nops(A)),op(A)];
 newB := [seq(0,i=1..maxlen-nops(B)),op(B)];
 return zip(AND,newA,newB);
 else
 error "Only bits and bit strings are allowed.";
 end if;
end proc:
AND([1,1,1],[1,0,1,1]);

0, 0, 1, 1
We leave the procedures for the other operations, NOT, OR, and XOR, to the reader.

1.2 Applications of Propositional Logic
In this section we will describe how Maple's computational abilities can be used to solve applied
problems in propositional logic. In particular, we will consider consistency for system

O O

O O
(1.55)(1.55)

(1.56)(1.56)

(1.52)(1.52)

O O

O O

(1.54)(1.54)

(1.6)(1.6)

(1.53)(1.53)

O O

O O

specifications and Smullyan logic puzzles.

System Specifications
The textbook describes how system specifications can be translated into propositional logic and
how it is important that the specifications be consistent. As suggested by the textbook, one way to
determine whether a set of specifications is consistent is with truth tables.

Recall that a collection of propositions is consistent when there is an assignment of truth values to
the propositional variables which makes all of the propositions in the collection true simultaneously.
 For example, consider the following collection of compound propositions: p / qo r , pn q,
and pn¬ r. We can see that these propositions are consistent because we can satisfy all three with
the assignment p = false, q = true, r = false. In Maple, we can confirm this by evaluating the list of
propositions with that assignment of truth values.

eval([p implies (q and r),p or q, p or (not r)],[p=false,q=
true,r=false]);

true, true, true

To determine if a collection of propositions is consistent, we can create a truth table.

Consider Example 4 from Section 1.2 of the text. We translate the three specifications as the
following list of propositions.

specEx4 := [p or q, not p, p implies q];
specEx4 := p or q, not p, p 0 q

Then we can construct the truth table exactly as we did in the previous section.
for loopP in [true,false] do
 for loopQ in [true,false] do
 print(loopP,loopQ,eval(specEx4,[p=loopP,q=loopQ]));
 end do;
end do;

true, true, true, false, true
true, false, true, false, false
false, true, true, true, true

false, false, false, true, true
We see that the only assignment of truth values that results in all three statements being satisfied is
with p = false and q = true.

We can make the output a bit easier to read if, instead of considering the truth table for the list of the
propositions, we consider the proposition formed by the conjunction of the individual propositions:

pn q o ¬ p o p / q .
specEx4b := (p or q) and (not p) and (p implies q);

specEx4b := p or q and not p and p 0 q
for loopP in [true,false] do
 for loopQ in [true,false] do
 print(loopP,loopQ,eval(specEx4b,[p=loopP,q=loopQ]));
 end do;
end do;

true, true, false
true, false, false

O O

(1.57)(1.57)

(1.56)(1.56)

O O

O O

(1.59)(1.59)
O O

(1.60)(1.60)

O O

(1.6)(1.6)

(1.58)(1.58)

false, true, true
false, false, false

In this case, the fact that the final truth value in the third row is true tells us that that assignment of
truth values satisfies all of the propositions in the system specification.

If we add, as in Example 5, the proposition ¬ q, we see that all of the assignments yield false for the
conjunction of all four propositions.

specEx5 := specEx4b and (not q);
specEx5 := p or q and not p and p 0 q and not q

for loopP in [true,false] do
 for loopQ in [true,false] do
 print(loopP,loopQ,eval(specEx5,[p=loopP,q=loopQ]));
 end do;
end do;

true, true, false
true, false, false
false, true, false
false, false, false

This tells us that this new system specification is inconsistent.

Logic Puzzles
Recall the knights and knaves puzzle presented in Example 7 of Section 1.2 of the text. In this
puzzle, you are asked to imagine an island on which each inhabitant is either a knight and always
tells the truth or is a knave and always lies. You meet two people named A and B. Person A says
"B is a knight" and person B says "The two of us are opposite types." The puzzle is to determine
who kind of inhabitants A and B are.

We can solve this problem with Maple using truth tables. First we must write A and B's statements
as propositions. Let a represent the statement that A is a knight and b the statement that B is a
knight. Then A's statement is "b", and B's statement is " ao¬ b n ¬ ao b ", as discussed in
the text.

While these propositions precisely express the content of A and B's assertions, it does not capture
the additional information that A and B are making the statements. We know, for instance, that A
either always tells the truth (knight) or always lies (knave). If A is a knight, then we know the
statement "b" is true. If A is not a knight, then we know the statement is false. In other words, the
truth value of the proposition a, that A is a knight, is the same as the truth value of A's statement,
and likewise for B. Therefore, we can capture the meaning of "A says proposition p" by the
proposition a 4 p. Using the procedure IFF, we can express the two statements in the puzzle in
Maple as follows.

Ex7A := IFF(a,b);
Ex7A := a 0 b and b 0 a

Ex7B := IFF(b,(a and not b) or (not a and b));
Ex7B := b 0 a and not b or not a and b and a and not b or not a and b

0 b

Like the system specifications above, a solution to this puzzle will consist of an assignment of truth

O O

O O

(1.61)(1.61)

O O

(1.56)(1.56)

(1.62)(1.62)

(1.64)(1.64)

(1.6)(1.6)

O O

O O

(1.65)(1.65)

O O

(1.63)(1.63)

values to the propositions a and b that make both people's statements true.
for loopA in [true,false] do
 for loopB in [true,false] do
 print(loopA,loopB,eval(Ex7A and Ex7B,[a=loopA,b=loopB]));
 end do;
end do;

true, true, false
true, false, false
false, true, false
false, false, true

We see that the only way to satisfy both statements is when both a and b are false. That is, when A
and B are both knaves.

1.3 Propositional Equivalences
In this section we consider logical equivalence of propositions and create a fairly sophisticated
Maple procedure to check equivalence of propositions.

Logical Equivalence
Recall that propositions p and q are said to be logically equivalent if the biconditional p 4 q is a
tautology. With Maple, we can test logical equivalence fairly easily by producing a truth table for
the biconditional. For example, we can demonstrate De Morgan's Laws as follows.

demorgan1 := IFF(not(p and q),not p or not q);
demorgan1 := not p and q 0 not p and q

demorgan2 := IFF(not(p or q),not p and not q);
demorgan2 := not p or q 0 not p or q

for loopP in [true,false] do
 for loopQ in [true,false] do
 print(loopP,loopQ,eval(demorgan1,[p=loopP,q=loopQ]));
 end do;
end do;

true, true, true
true, false, true
false, true, true
false, false, true

for loopP in [true,false] do
 for loopQ in [true,false] do
 print(loopP,loopQ,eval(demorgan2,[p=loopP,q=loopQ]));
 end do;
end do;

true, true, true
true, false, true
false, true, true
false, false, true

We'd like to have a procedure, AreEquivalent, that would take two propositions and determine
whether or not they are equivalent. Such a proposition will be our next goal, but it will require quite

O O

(1.56)(1.56)

(1.69)(1.69)

O O

O O

(1.6)(1.6)

O O

(1.68)(1.68)

(1.70)(1.70)

(1.67)(1.67)

(1.66)(1.66)

O O

O O

a bit of work. The main hurdles for such a procedure are: (1) having Maple determine what
propositional variables are used in the given compound propositions, and (2) without a priori
knowledge of the number of propositional variables, having Maple test every possible assignment
of truth values. Note that we could avoid both of these hurdles by insisting that the propositional
variables be limited to a certain small set of names, perhaps p, q, r, and s. Then we could implement
the procedure as four nested for loops. Many times not all four would be needed, which would add
redundancy but would not impact functionality.

However, the two hurdles mentioned are not insurmountable, will provide a much more elegant and
flexible procedure, and will also give us the opportunity to see examples of some important
programming constructs.

Extracting Variables
The first hurdle is to get Maple to determine the variables used in a logical expression. Consider the
following example.

variableEx := ((p and q) or (p and not r)) and (s implies r);

variableEx := p and q or p and not r and s 0 r
Our goal is to write a procedure that will, given the above expression, tells us that the variables in
use are p, q, r, and s.

The op command and the name type
We've already discussed the op command, which, applied to a list returns the sequence underlying
the list. However, op can be applied to any expression. If you apply op to an algebraic expression
like a*b, it will return the sequence consisting of the operands 2 and 3.

op(a*b);
a, b

Applied to a more complicated algebraic expression, say a*b+c, op effectively obeys order of
operations. In this expression, the addition is the last operation to be performed. In other words,
the expression a*b+c is the sum of a*b and c. So op returns a*b and c as the operands to the
addition.

op(a*b+c);
a b, c

(Note the multiplication sign is not printed.)

If the expression involved multiple additions, Maple considers the expression to be an addition of
three terms.

op(a+b/c+d);

a,
b
c

, d

Boolean expressions are essentially the same, except not, and, and or are the operators instead of
the arithmetic operations.

op(variableEx);
p and q or p and not r, s 0 r

In this case, op indicates that the boolean expression had two operands which were joined by the
final and operator. Note that op has the effect of removing the operator.

O O

(1.72)(1.72)

(1.76)(1.76)

O O

(1.56)(1.56)

O O

(1.71)(1.71)

(1.75)(1.75)

(1.74)(1.74)

O O
(1.73)(1.73)

O O

(1.6)(1.6)

O O

O O

If a call to a procedure is involved, the result is the sequence of arguments of the procedure. For
instance,

op(IFF(not(p and q),not p or not q));
not p and q , not p and q

Since we're trying to obtain the variables in use, this is ideal. Our strategy is to keep applying the
op command until we get down to variables. Doing this is a bit more complicated than saying it, of
course.

How do we know when we have a variable as opposed to a compound proposition? In Maple,
whenever you need to distinguish between different kinds of things, it makes sense to consider
types. In fact, one of Maple's fundamental types is the name type. We use the type command as
follows to see that s / r is not a name, but that s is.

type(s implies r,'name');
false

type(s,'name');
true

Illustrating with an example
We can now remove operators to obtain simpler expressions, and we have a way to test whether an
expression is a variable or not. The general idea is that we keep applying the op command to the
operands until we're down to nothing but names. The strategy we will use is a fairly typical one.

It is natural to create a list that will store the results of intermediate steps, so we'll start by initializing
it to the list consisting of just one element, the expression we're analyzing.

varExList := [variableEx];
varExList := p and q or p and not r and s 0 r

To apply the op command to our expression, which is now the first element of the list, we use the
list selection operation.

op(varExList[1]);
p and q or p and not r, s 0 r

Next we'll replace the original expression with the result. We can replace elements in a list with the
subsop command. This command can be used in a variety of ways depending on the particular
arguments given. The form we use here will include two arguments. The second argument will be
the list varExList. The first argument will be an equation of the form i=e, where i is an integer
that refers to an index in the list and e is the expression that will replace whatever is currently in that
position of the list. For example, we can replace the 5 with a 6 in the list [2,4,5,8,10] with the
following command.

subsop(3=6,[2,4,5,8,10]);
2, 4, 6, 8, 10

We emphasize that the left side of the i=e equation is an integer representing the index of the
element of the list that we are replacing while the right side is the replacement. In the above, the
element 5 is in position 3 and is being replaced by the element 6, hence the use of 3=6. Also note
that this command does not modify an existing list (it creates a new list object), so we will need to
reassign the result to the name of our list.

Using subsop on varExList, we obtain the following.

O O

O O

O O

(1.77)(1.77)

(1.56)(1.56)

O O

(1.80)(1.80)

2. 2.

(1.81)(1.81)

(1.79)(1.79)

(1.78)(1.78)

1. 1.

(1.6)(1.6)

O O

4. 4.

(1.82)(1.82)

O O

O O

O O

3. 3.

varExList := subsop(1=op(varExList[1]),varExList);
varExList := p and q or p and not r, s 0 r

The above command is substituting, for the first element of varExList, the result of applying the
op command to the first element of varExList. Now repeat.

varExList := subsop(1=op(varExList[1]),varExList);
varExList := p and q, p and not r, s 0 r

varExList := subsop(1=op(varExList[1]),varExList);
varExList := p, q, p and not r, s 0 r

Observe that it required 3 applications of op to the first element of the list. Continued use of op on
varExList[1] will have no effect since the first element is a name. Likewise the second element
is a name, so we move to element 3.

varExList := subsop(3=op(varExList[3]),varExList);
varExList := p, q, p, not r, s 0 r

The procedure
The explicit example gives us the outline of our procedure:

Initialize a list, L, to the list consisting of the input expression as the sole element. Initialize an
index variable, i, to one.
Test, using type, to see if the element of L referred to by the index i is a name or an
expression. If it is a name, move on to the next element of the list by incrementing i.
If L[i] is not a name, the substitute that element of L with the result of applying the
command op to it.
Repeat steps 2 and 3 until reaching the end of the list. This repetition is controlled by a while
loop which continues as long as i does not exceed the length of the list.

Here is the implementation.
GetVars := proc(exp)
 local L, i, j;
 L := [exp];
 i := 1;
 while i <= nops(L) do
 if type(L[i],name) then
 i := i + 1;
 else
 L := subsop(i=op(L[i]),L);
 end if;
 end do;
 return [op({op(L)})];
end proc:

Note that the last line of this procedure makes use of Maple's set object to remove repetitions from
the list of variables. We turn the list L into a set by applying op and enclosing the result in braces
and then back into a list by applying op and enclosing it in brackets.

GetVars(((p and q) or (p and not r)) and (s implies r));
p, q, r, s

GetVars(prop23 implies IFF(Q or q,P and p));
P, Q, p, prop23, q

Truth Value Assignments
The second hurdle that we mentioned at the beginning of this section is that we don't know the
number of propositional variables in advance. If we knew there would always be two variables, we

O O

(1.85)(1.85)

(1.77)(1.77)

O O
(1.86)(1.86)

(1.84)(1.84)

(1.56)(1.56)

(1.87)(1.87)

O O

(1.6)(1.6)

O O

O O

(1.88)(1.88)

O O
(1.83)(1.83)

O O

O O

would use two nested for loops. But since we want our procedure to work with any number of
variables, we need a different approach.

First note that since our GetVars procedure produces a list of variables, it is natural to model an
assignment of truth values to variables as a list of truth values. For example,

variableExVars := GetVars(variableEx);
variableExVars := p, q, r, s

TAex := [true,true,false,true];
TAex := true, true, false, true

We consider the TAex list (for Truth Assignment example) to indicate that we assign the first
variable of variableExVars to true, the second variable to true, the third to false, and the fourth
to true.

The eval command
Recall the use of the eval command introduced above. In particular, by giving a list of equations
of the form var=val as the second argument, we can evaluate the truth value of the proposition
specified in the first argument with the assignments of the vals to the vars.

eval(variableEx,[p=true,q=true,r=false,s=true]);
false

We can produce a list of assignments as follows. We saw how the zip command applies a binary
function to the elements of two lists. We'll use zip with the function that takes a variable and a
truth value and creates the appropriate equation. A numeric example will be most illustrative, but
the syntax is identical for logical expressions.

zip((a,b) -> a=b,[x,y,z],[5,3,9]);
x = 5, y = 3, z = 9

eval(x+2*y-z,zip((a,b) -> a=b,[x,y,z],[5,3,9]));
2

Indeed, 5C 2 , 3K 9 = 2. Note that the first argument to zip, (a,b) -> a=b, is a functional
operator. A functional operator is a particular kind of procedure designed to mimic function
notation. The left hand side indicates the input variables and the right hand side is an expression in
terms of the variables that yields the value of the function.

The same approach will work with the assignment of truth values to propositional variables.
eval(variableEx,zip((a,b) -> a=b,variableExVars,TAex));

false

Finding all possible truth assignments
Now that we know that we can effectively use lists of truth values to represent truth value
assignments, we need a way to produce all such lists. We'll use a strategy similar to binary
counting. Start with the list of all falses. Get the next list by changing the first element to true. For
the next assignment, change the first element back to false and the second element to true. Then
change the first element to true. Then change the first true to false, the second true to false, and the
third element becomes true. Continue in this pattern: given a list of truth values, obtain the next list
by changing the left-most false to true and changing all trues up until that first false into false. (It is
left to the reader to verify that this produces all possible truth value assignments.)

We implement this idea in the NextTA procedure (for Next Truth Assignment). The NextTA

O O

O O

(1.77)(1.77)

(1.56)(1.56)

O O

2. 2.

(1.6)(1.6)

3. 3.

O O

4. 4.

1. 1.

procedure will accept a list of truth values as input and return the "next" list. The main work of this
procedure is done inside of a for loop. The for loop considers each position in the list of truth
values in turn. If the value in the current position is true, then it is changed to false. On the other
hand, if the value is false, then it is changed to true and the procedure is terminated by returning the
list of truth values. If the for loop ends without having returned a new list, then the input to the
procedure was all trues, which is the last possibility, and the procedure returns NULL to indicate that
there is no next truth assignment.

NextTA := proc(A)
 local i, new;
 new := A;
 for i from 1 to nops(A) do
 if new[i] then
 new[i] := false;
 else
 new[i] := true;
 return new;
 end if;
 end do;
 return NULL;
end proc:

Note that the new variable is necessary because procedure arguments can not be assigned to. Also
note that, in this procedure, we are able to modify list elements using the assignment operator with
the list[index] := value; syntax. This was not possible in GetVars, because in that case
we were potentially replacing a single element with a sequence of values.

Logical Equivalence Implementation
We now have the necessary pieces in place to write the promised AreEquivalent procedure.
This procedure accepts two propositions as arguments and returns true if they are equivalent and
false otherwise.

The procedure proceeds as follows:
First we assign the function (a,b) -> a=b used in the zip command to the name eqZip.
(This is a bit more efficient than including the definition of the function in the zip command.)
Then we create the biconditional, which we name Bicond, that asserts the equivalence of the
two propositions. We also use the GetVars procedure to determine the list of variables used
in the propositions and initialize the truth assignment variable TA to the appropriately sized list
of all false values.
Then we begin a while loop. As long as TA is not NULL, we evaluate the biconditional
Bicond on the truth assignment. If this truth value, is false, we know that the biconditional is
not a tautology and thus the propositions are not equivalent and we immediately return false.
Otherwise, we use NextTA to update TA to the next truth assignment.
If the while loop terminates, that indicates that all possible truth assignments have been applied
to the biconditional and that each one evaluated true, otherwise the procedure would have
returned false and terminated. Thus the biconditional is a tautology and true is returned.

Here is the implementation.
AreEquivalent := proc(P,Q)
 local eqZip, Bicond, Vars, numVars, i, TA, val;
 eqZip := (a,b) -> a=b;
 Bicond := IFF(P,Q);
 Vars := GetVars(Bicond);
 numVars := nops(Vars);

O O

O O

(1.77)(1.77)

O O

(1.56)(1.56)

(1.93)(1.93)

O O

O O

(1.92)(1.92)

(1.94)(1.94)

O O

(1.90)(1.90)

(1.6)(1.6)

O O

O O

(1.89)(1.89)

(1.91)(1.91)
O O

 TA := [seq(false,i=1..numVars)];
 while TA <> NULL do
 val := eval(Bicond,zip(eqZip,Vars,TA));
 if not val then
 return false;
 end if;
 TA := NextTA(TA);
 end do;
 return true;
end proc:

We can use this to computationally verify that ¬ pn ¬ po q h¬ po¬ q. This was shown
in Example 7 of Section 1.3 of the text via equivalences.

AreEquivalent(not(p or (not p and q)),not p and not q);
true

1.4 Predicates and Quantifiers
In this section we will see how Maple can be used to explore propositional functions and their
quantification over a finite universe. We can think about a propositional function P as a function, or
procedure, that takes as input a member of the domain and that outputs a truth value.

For example, let P x denote the statement "x O 0". We will construct a procedure that takes x as
input and returns true or false as appropriate. Note however that Maple does not automatically
evaluate inequalities to their truth value.

3 > 0;
0 ! 3

To have Maple evaluate such expressions to true or false, use the command evalb, for evaluate
boolean.

evalb(3>0);
true

We'll construct our procedure using the functional operator syntax that was discussed in the
previous section. In this case, we'll assign the function to the name GT0 (for greater than 0) and we
include evalb in the definition of the propositional function.

GT0 := x -> evalb(x > 0);
GT0 := x/evalb 0 ! x

GT0(3);
true

GT0(-2);
false

Quantifiers
For finite domains, we can use Maple to determine the truth value of universally and existentially
quantified statements. We will create two procedures, Universal and Existential. Both of
these procedures will accept two arguments: a propositional function of one variable and a list or set
representing the domain.

First consider universal quantification. This procedure should return true only when all members of
the domain satisfy the propositional function and false if even one element of the domain fails to
satisfy the predicate. The procedure will loop through the elements of the domain. If the

O O

O O

(1.77)(1.77)

O O

(1.56)(1.56)

O O

(1.99)(1.99)

(1.96)(1.96)

(1.95)(1.95)

(1.100)(1.100)

O O

O O
(1.97)(1.97)

O O

(1.6)(1.6)

O O

O O

(1.98)(1.98)

O O

O O

propositional function ever returns false, then the procedure will immediately return false. On the
other hand, if we get through the loop without encountering false, then we can conclude that the
universally quantified statement is true.

Universal := proc(P,D)
 local d;
 for d in D do
 if not P(d) then
 return false;
 end if;
 end do;
 return true;
end proc:
Universal(GT0,[1,2,3,4,5]);

true
Universal(GT0,[1,2,3,4,5,-7]);

false

For existential quantification, if we ever encounter a member of the domain for which the
propositional function returns true, then the existential statement is true. If the for loop terminates
without having found such a value, then we return false.

Existential := proc(P,D)
 local d;
 for d in D do
 if P(d) then
 return true;
 end if;
 end do;
 return false;
end proc:
Existential(GT0,[-3,-4,-5,-6,-7]);

false
Existential(GT0,[-3,-4,-5,11,-7]);

true

1.5 Nested Quantifiers
In this section we'll consider propositions with nested quantifiers such as d yc x xC y = 0 and
c yd x xC y = 0 . These propositions are the subject of Example 4 of Section 1.5 in the
textbook. Recall that the first statement is false while the second is true. Nested quantification can
be difficult to understand, but writing procedures to test propositions such as those two examples
can help make their interpretation clearer.

We'll create a procedure, ExistsForAll, which will accept two arguments, a propositional
function with two input values and a domain which will be considered common for both variables.
Consider the example mentioned in the previous paragraph:

sumto0 := (x,y) -> evalb(x+y=0);
sumto0 := x, y /evalb xC y = 0

sumto0Domain := [seq(i,i=-10..10)];
sumto0Domain := K10, K9, K8, K7, K6, K5, K4, K3, K2, K1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10

O O

(1.77)(1.77)

(1.56)(1.56)

O O

O O

(1.6)(1.6)

O O

O O

O O

(1.101)(1.101)

(1.102)(1.102)

Now we will see how to write ExistsForAll. Note that we will keep our variables consistent
with those in the examples above. That is, the "outer," existentially quantified, variable will be y and
the "inner," universally quantified, variable will be x. To see how to write this procedure, think
about how we would go about testing d yc x xC y = 0 . The claim is that there is some y so that
all values of x satisfy the propositional function. So we'll test each value of y in turn. Suppose we
start with -10. Then we're checking to see if c x xK 10 = 0 . We consider, in sequence, each
possible value for x. If any value of x fails to satisfy the proposition, then we know that the
universal statement is false and we can stop checking values of x and move on to the next possible
y. On the other hand, if all of the x values satisfy the proposition, then we've found a y that
demonstrates that the proposition is true.

We'll use two for loops to check all possible values of y and x, respectively. Note that the inner, x
loop, can be stopped as soon as we find a value that fails to satisfy the proposition. We can abort a
loop with the break command, which causes the innermost loop to terminate. In this procedure,
that means that we move on to the next possible y.

Also note that the outer loop can be stopped as soon as we find a y value that satisfies the predicate
for all possible x. This is a bit trickier to program. What we'll do is to assume that a y value
"works" (i.e., satisfies the proposition for all x) until we discover otherwise. We'll set a variable,
yworks, equal to true as the first statement of the for y loop. Immediately after each new y value is
chosen, yworks is set to true indicating that we "believe" that the current y value satisfies the
requirements. If an x is found so that the proposition fails, then before using break to end the x
loop, we'll set yworks to false. Thus, at the conclusion of the inner x loop, yworks is true when
the current value of y causes every possible value of x to satisfy the proposition. In that case, we
can abort the procedure and return true. If the y loop terminates, then no such y was found and so
the procedure returns false.

Here is the procedure.
ExistsForAll := proc(P,D)
 local x, y, yworks;
 for y in D do
 yworks := true;
 for x in D do
 if not P(x,y) then
 yworks := false;
 break;
 end if;
 end do;
 if yworks then
 return true;
 end if;
 end do;
 return false;
end proc:

As was mentioned, this should return false for sumto0.
ExistsForAll(sumto0,sumto0Domain);

false
On the other hand, consider the predicate that asserts that the product is 0.

multo0 := (x,y) -> evalb(x*y = 0);
multo0 := x, y /evalb x y = 0

O O

O O

O O

(1.77)(1.77)

(1.56)(1.56)

O O

(1.105)(1.105)

(1.103)(1.103)

O O

(1.6)(1.6)

O O

O O

(1.104)(1.104)

ExistsForAll(multo0,sumto0Domain);
true

As it can be a useful way to help better understand nested quantifiers, we will leave it to the reader
to write the procedure for c yd x P x, y .

1.6 Rules of Inference
In this section we'll see how Maple can be used to verify the validity of arguments in propositional
logic. In particular, we'll write a procedure, that, given a list of premises and a possible conclusion,
will determine whether or not the conclusion necessarily follows from the premises. Recall from
Definition 1 in the text that an argument is defined to be a sequence of propositions, the last of
which is called the conclusion and all others are premises. Also recall that an argument
p1, p2,…, pn, q is said to be valid when p1 o p2 o/o pn / q is a tautology.

We can use the AreEquivalent procedure from Section 1.4 of this manual to test whether a
proposition is a tautology. Since a tautology is merely a proposition that is always true, it is
logically equivalent to the proposition "true". So we can see if a proposition P is a tautology by
executing the command AreEquivalent(P,true). For example, we can confirm modus
tollens. (See Table 1 in Section 1.6 of the text for the tautologies associated to the rules of
inference.)

AreEquivalent((not q and (p implies q)) implies not p,true);
true

To determine if an argument is valid, we need to: (1) form the conjunction of the premises, (2) form
the conditional statement that the premises imply the conclusion, and (3) test the resulting
proposition with AreEquivalent. This IsValid procedure below will accept as input an
argument, i.e., a list of propositions, and return true if the argument is valid.

IsValid := proc(L::list)
 local premises, i;
 premises := L[1];
 for i from 2 to nops(L)-1 do
 premises := premises and L[i];
 end do;
 AreEquivalent(premises implies L[-1],true);
end proc:

Note that we use L[-1] to obtain the last element of the list. It is a useful property of selection that
negative integers count from the end of the list.

We can use this procedure to verify that the argument described in Exercise 12 of Section 1.6 of the
text is in fact valid.

IsValid([(p and t) implies (r or s),q implies (u and t),u
implies p, not s,q implies r]);

true
Note that Exercise 12, which this example was based on, asks you to verify the validity of the
argument using rules of inference. It is important to note that our procedure did not do that.
IsValid used truth tables to establish validity. It would be considerably more difficult to program
Maple to check validity with rules of inference than it was to do so with truth tables. On the other
hand, for a human it is typically much easier to use rules of inference than a truth table. Especially
with practice, you will develop an intuition about logical arguments that cannot be easily created in a

O O

(1.77)(1.77)

(1.56)(1.56)

O O

(1.103)(1.103)

O O

(1.6)(1.6)

O O

O O

computer.

Finding Conclusions (optional)
In the remainder of this section we'll consider a slightly different question: given a list of premises,
what conclusions can you draw using valid arguments? We'll approach this problem in Maple in a
straightforward (and naïve) way: generate possible conclusions and use IsValid to determine
which are valid conclusions.

Making compound propositions
To generate possible conclusions, we'll use the following procedure, AllCompound. This
procedure takes a list of propositions and produces all possible propositions formed from one
logical connective (from and, or, and implies) and two of the given propositions, along with the
negations of the propositions. To avoid including some trivialities, we'll exclude those propositions
that are tautologies or contradictions.

The procedure is provided below. We provide no additional explanation other than to mention the
use, once again, of the [op({op(L)})] structure to remove duplicates. Also note that the
original propositions are included in the result since these are equivalent to their conjunction with
themselves which the procedure includes in the output.

AllCompound := proc(L)
 local p, q, tempL, PropList;
 PropList := [];
 tempL := L;
 for p in L do
 tempL := [op(tempL),not p];
 end do;
 for p in tempL do
 for q in tempL do
 if not AreEquivalent(p and q,true) and
 not AreEquivalent(p and q,false) then
 PropList := [op(PropList),p and q];
 end if;
 if not AreEquivalent(p or q,true) and
 not AreEquivalent(p or q,false) then
 PropList := [op(PropList),p or q];
 end if;
 if not AreEquivalent(p implies q,true) and
 not AreEquivalent(p implies q,false) then
 PropList := [op(PropList),p implies q];
 end if;
 end do;
 end do;
 return [op({op(PropList)})];
end proc:

Finding valid conclusions
Now we write a procedure to explore possible conclusions given a set of premises. This procedure
will take two arguments. The first will be a list of premises. The second a positive integer
indicating the number of times that AllCompound should, recursively, be used to generate
possibilities. You will generally not want to use any number other than 1 for this second value as
the time requirement for this procedure can be quite substantial.

The operation of this procedure is very straightforward. First, it determines the variables used in the

O O

(1.77)(1.77)

(1.56)(1.56)

(1.106)(1.106)

O O

(1.107)(1.107)

(1.103)(1.103)

O O

O O

(1.6)(1.6)

O O

O O

O O

premises. These become the basis for the potential conclusions. Second, the procedure applies the
AllCompound procedure to generate the propositions formed using one logical connective and
two of the variables and their negations. (Note that the resulting list will include the variables with
no connective as well.) Third, the procedure joins the premises into one proposition by
conjunction. And finally, each possible conclusion is evaluated with the IsValid procedure.

FindConsequences := proc(Premises,level)
 local Vars, possibleC, C, c, P, i;
 Vars := GetVars(Premises);
 possibleC := Vars;
 for i from 1 to level do
 possibleC := AllCompound(possibleC);
 end do;
 C := [];
 P := Premises[1];
 for i from 2 to nops(Premises) do
 P := P and Premises[i];
 end do;
 for c in possibleC do
 if AreEquivalent(P implies c,true) then
 C := [op(C),c];
 end if;
 end do;
 return C;
end proc:

Here is the result of applying FindConsequences to the premises of Exercise 12 with only one
iteration of AllCompound. (With two iterations of AllCompound, the procedure takes quite
some time to complete and produces thousands of valid conclusions.)

FindConsequences([(p and t) implies (r or s),q implies (u and
t),u implies p, not s],1);

not s, not p and s , not q and s , not r and s , not s and p , not s and
q , not s and r , not s and t , not s and u , not t and s , not u and
s , p or not q, p or not s, p or not u, q or not s, r or not q, r or not s, t or
not q, t or not s, u or not q, u or not s, not q or p, not q or r, not q or t, not
q or u, not s or p, not s or q, not s or r, not s or t, not s or u, not u or p, p
0 not s, q 0 p, q 0 r, q 0 t, q 0 u, q 0 not s, r 0 not s, s 0 p, s 0 q, s
0 r, s 0 t, s 0 u, s 0 not p, s 0 not q, s 0 not r, s 0 not s, s 0 not t, s
0 not u, t 0 not s, u 0 p, u 0 not s, not p 0 not q, not p 0 not s, not p
0 not u, not q 0 not s, not r 0 not q, not r 0 not s, not t 0 not q, not t
0 not s, not u 0 not q, not u 0 not s

nops((1.106));
62

Observe that some of the conclusions are just merely restating premises. But even after eliminating
those, there are still 60 valid conclusions involving at most two of the propositional variables. Most
of those conclusions are going to be fairly uninteresting in any particular context. This illustrates a
fundamental difficulty with computer assisted proof. Neither checking the validity of conclusions
nor generating valid conclusions from a list of premises are particularly difficult. The difficulty is in

O O

(1.77)(1.77)

(1.56)(1.56)

O O

(1.103)(1.103)

O O

O O

O O

(1.6)(1.6)

O O

O O

(1.108)(1.108)

creating heuristics and other mechanisms to help direct the computer to useful results.

1.7 Introduction to Proofs
In this section we will see how Maple can be used to find counterexamples. This is, perhaps, the
proof technique most suitable to Maple's computational abilities.

Example 14 of Section 1.7 of the textbook considers the statement "Every positive integer is the
sum of the squares of two integers." This is demonstrated to be false with 3 as a counterexample.
Here, we'll consider the related statement that "every positive integer is the sum of the squares of
three integers." This statement is also false.

Finding a counterexample
To find a counterexample, we'll create a procedure that, given an integer, looks for three integers
such that the sum of their squares are equal to the given integer. If the procedure finds three such
integers, it will return a list containing them. On the other hand, if it cannot find three such integers,
it will return false. Here is the procedure:

Find3Squares := proc(n)
 local a, b, c, max;
 max := floor(sqrt(n));
 for a from 0 to max do
 for b from 0 to max do
 for c from 0 to max do
 if n = a^2 + b^2 + c^2 then
 return [a,b,c];
 end if;
 end do;
 end do;
 end do;
 return false;
end proc:

The Find3Squares procedure is fairly straightforward. We use three for loops to check all
possible values of a, b, and c. Each for loop can range from 0 to the floor of n (the floor of a
number is the largest integer that is less than or equal to the number). Note that these bounds are
sufficient to guarantee that if n can be written as the sum of the squares of three integers, then this
procedure will find them. We observe that 3, the counterexample from Example 14, can be written
as the sum of three squares.

Find3Squares(3);
1, 1, 1

To find a counterexample, we write a procedure that, starting with 1, tests numbers with
Find3Squares, until it finds a value that causes Find3Squares to return false.

Find3Counter := proc()
 local n;
 n := 1;
 while Find3Squares(n) <> false do
 n := n + 1;
 end do;
 return n;
end proc:

First observe that this procedure does not take an argument, but the parentheses are still required.

O O

(1.77)(1.77)

(1.56)(1.56)

O O

(1.103)(1.103)

O O

(1.6)(1.6)

O O

O O

(1.109)(1.109)

Also note that the while loop is controlled by the return value of the Find3Squares procedure.
This is a fairly common approach when you are looking for an input value that will cause another
procedure to return a desired result.

To find the counterexample, all we need to do is run the procedure.
Find3Counter();

7
This indicates that 7 is an integer that is not the sum of the squares of three integers.

Let's take a step back and review what we did. Our goal was to disprove the statement c n P n
where P n is the statement that "n can be written as the sum of the squares of three integers." We
first wrote Find3Squares, which is a procedure whose goal is to find three integers whose
squares add to n. Observe that if Find3Squares returns three values for a given n, then we
know P n is true for that n. Only after we wrote the Find3Squares procedure did we write
Find3Counter, whose task was to find a counterexample to the universal statement. This is a
common strategy when using a computer to find a counterexample — write a program that seeks to
verify the P n statement for n and then look to find a value of n that causes the program to fail.

Proof
We have not yet actually disproved the statement that "every positive integer is the sum of the
squares of three integers." The procedures we wrote found a candidate for a counterexample, but
we don't yet know for sure that it is in fact a counterexample (after all, our program could be
flawed). To prove the statement is false, we must prove that 7 is in fact a counterexample. We can
approach this in one of two ways. The first approach is to follow the Solution to Example 17 in
Section 1.8 of the text.

The alternative is to prove the correctness of our algorithm. Specifically, we need to prove the
statement: "The positive integer n can be written as the sum of the squares of three integers if and
only if Find3Squares(n) returns a list of three integers." Let's prove this biconditional.

First we'll prove that: if the positive integer n can be written as the sum of the squares of three
integers, then Find3Squares(n) returns a list of three integers. We'll use a direct proof. We
assume that n can be written as the sum of three squares. Say n = a2 C b2 C c2 for integers a, b, c.
Note that we may take a, b, and c to be nonnegative integers, since an integer and its negative have
the same square. Also, n = a2 C b2 C c2 R a2. So n R a2 and a R 0, which means that
a % n . Since a is an integer and is less than or equal to the square root of n, a must be less than
or equal to the floor of n since the floor of a real number is the greatest integer less than or equal
to the real number. The same argument applies to b and c. We started with n = a2 C b2 C c2 and
have now shown that a, b, and c can be assumed to be nonnegative integers and must be less than
or equal to the floor of the square root of n. The nested for loops in Find3Squares set a, b, and
c equal to every possible combination of integers between 0 and max, which is the floor of the
square root of n. Hence, a, b, and c must, at some point during the execution of Find3Squares,
be set to a, b, and c, and thus the condition that n=a^2+b^2+c^2 will be satisfied and [a,b,c]
will be returned by the procedure. We've assumed that n can be written as the sum of three squares
and concluded that Find3Squares(n) must return a list of the integers.

The converse is: if Find3Squares returns a list of three integers, then n can be written as the sum
of the squares of three integers. This is nearly obvious, since if Find3Squares(n) returns [a,
b,c], it must have been because n=a^2+b^2+c^2 was found to be true.

O O

(1.77)(1.77)

(1.56)(1.56)

O O

(1.103)(1.103)

O O

(1.6)(1.6)

O O

O O

Therefore, the Find3Squares procedure is correct and since Find3Squares(7) returns false,
we can conclude that 7 is, in fact, a counterexample to the assertion that every positive integer is the
sum of the squares of three integers.

We will typically not be proving the correctness of procedures in this manual — that is a topic for
another course. The above merely serves to illustrate how you can approach such a proof and to
reinforce the principle that just because a program produces output does not guarantee that the
program or the output is correct.

1.8 Proof Methods and Strategy
In this section, we will consider two additional proof techniques that Maple can assist with:
exhaustive proofs and existence proofs.

Exhaustive Proof
In an exhaustive proof we must check all possibilities. For an exhaustive proof to be feasible by
hand, there must be a fairly small number of possibilities. With computer software such as Maple,
though, the number of possibilities can be greatly expanded. Consider Example 2 from Section 1.8
of the text. There it was determined by hand that the only consecutive positive integers not
exceeding 100 that are perfect powers are 8 and 9.

We will consider a variation of this problem: prove that the only consecutive positive integers not
exceeding 100,000,000 that are perfect powers are 8 and 9.

Our approach will be the same as was used in the text. We will generate all the perfect powers not
exceeding the maximum value and then we will check to see which of the perfect powers occur as a
consecutive pair. We will implement this strategy with two procedures. The first procedure,
FindPowers, will accept as an argument the maximum value to consider (e.g., 100) and will
return all of the perfect powers no greater than that maximum. The second procedure,
FindConsecutivePowers, will also accept the maximum value as its input. It will use
FindPowers to generate the powers and then check them for consecutive pairs.

For the first procedure, FindPowers, we need to generate all perfect powers up to the given limit.
To do this we'll use a nested pair of loops for the exponent (p) and the base (b). Both of the loops
will be while loops controlled by a boolean variable, continuep and continueb. In the inner
loop, we check to see if b^p is greater than the limit. If it is, then we set continueb to false,
which terminates the loop, and if not, we add b^p to the list of perfect powers and increment b.
Once the b loop has terminated, we increment the power p. If 2^p exceeds the limit, then we know
that no more exponents need to be checked and we terminate the outer loop by setting continuep
to false.

FindPowers := proc(n::posint)
 local L, b, p, continuep, continueb;
 L := [];
 p := 2;
 continuep := true;
 while continuep do
 b := 1;
 continueb := true;
 while continueb do
 if b^p > n then
 continueb := false;
 else

O O

(1.77)(1.77)

(1.56)(1.56)

O O

O O

(1.103)(1.103)

(1.110)(1.110)

O O

O O

(1.6)(1.6)

O O

O O

O O

(1.111)(1.111)

 L := [op(L),b^p];
 b := b + 1;
 end if;
 end do;
 p := p + 1;
 if 2^p > n then
 continuep := false;
 end if;
 end do;
 return {op(L)};
end proc:

(Note that we return the set formed from the elements of the list of perfect powers so as to remove
duplicates.) We can confirm that the list of powers produced by this algorithm is the same as the
powers considered in Example 2 from the text.

FindPowers(100);
1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100

The second procedure, FindConsecutivePowers, begins by calling FindPowers and storing
the set of perfect powers as powers. Then we begin a for loop, using the for x in S structure
with x a variable and S a set or list. This sets the variable x equal to each element of the set or list
S in turn. In our procedure, we are considering each perfect power x in the set powers. In the
body of the loop, we check to see if the next consecutive integer, x+1, is also a perfect power by
using the in operator. The syntax element in obj tests to see if the element is a member of
the set or list obj. When we find consecutive perfect powers, we print them. At the end of the
procedure, the value NULL is returned, which means that the procedure will not display anything
other than what was printed.

FindConsecutivePowers := proc(n)
 local powers, x;
 powers := FindPowers(n);
 for x in powers do
 if x + 1 in powers then
 print(x,x+1);
 end if;
 end do;
 return NULL;
end proc:

Subject to the correctness of our procedures, we can demonstrate that the only consecutive perfect
powers less than 100,000,000 are 8 and 9 by running the procedure.

FindConsecutivePowers(100000000);
8, 9

It is worth pointing out that in fact, 8 and 9 are the only consecutive perfect powers. That assertion
was conjectured by Eugéne Charles Catalan in 1844 and was finally proven in 2002 by Preda
Mihăilescu.

Existence Proofs
Proofs of existence can also benefit from Maple. Consider Example 10 in Section 1.8 of the text.
This example asks, "Show that there is a positive integer than can be written as the sum of cubes of
positive integers in two different ways." The solution reports that 1729 is such an integer and
indicates that a computer search was used to find that value. Let's see how this can be done.

O O

(1.77)(1.77)

(1.56)(1.56)

O O

(1.103)(1.103)

(1.112)(1.112)

O O

O O

(1.6)(1.6)

O O

O O

O O

The basic idea will be to generate numbers that can be written as the sum of cubes. If we generate a
number twice, that will tell us that the number can be written as the sum of cubes in two different
ways. We'll create a list L and every time we generate a new sum of two cubes, we'll check to see if
that number is already in L using the in operator. If the new value is already in L, then that's the
number we're looking for. Otherwise, we add the new number to L and generate a new sum of two
cubes.

We'll generate the sums of cubes with two nested loops that control integers a and b. The inner
loop will be a for loop that causes b to range from 1 to the value of a. Using a as the maximum
value means that b will always be less than or equal to a and so the procedure will not falsely report
results coming from commutativity of addition (e.g., 9 = 23 C 13 = 13 C 23). The outer loop will
be a while true do loop. The value of a will be initialized to 1 and incremented by 1 after the
inner b loop completes. The while true do loop is called an infinite loop because it will never
stop on its own. When the procedure finds an integer which can be written as the sum of cubes in
two different ways, the procedure will return that value which ends the procedure. The infinite loop
means that the value of a will continue getting larger and larger with no upper bound. This is useful
because we don't know how large the numbers will need to be in order to find the example.
However, infinite loops should be used with caution, especially if you're not certain that the
procedure will terminate in a reasonable amount of time.

Here is the procedure and its result.
TwoCubes := proc()
 local L, a, b, n;
 L := [];
 a := 1;
 while true do
 for b from 1 to a do
 n := a^3 + b^3;
 if n in L then
 return n;
 else
 L := [op(L),n];
 end if;
 end do;
 a := a + 1;
 end do;
end proc:
TwoCubes();

1729

Solutions to Computer Projects and Computations and Explorations

Computer Projects 3

Given a compound proposition, determine whether it is satisfiable by checking its truth value
for all positive assignments of truth values to its propositional variables.

Solution: Recall that a proposition is satisfiable if there is at least one assignment of truth values
to variables that results in a true proposition. Our approach will be similar to the way we
checked for logical equivalence in the AreEquivalent procedure in Section 1.3.

O O

O O

(1.77)(1.77)

O O

(1.115)(1.115)

O O

(1.6)(1.6)

(1.56)(1.56)

O O

(1.114)(1.114)

(1.103)(1.103)

O O

O O

O O

O O

(1.113)(1.113)

We create a procedure, IsSatisfiable, that checks all possible assignments of truth values
to the propositional variables. The IsSatisfiable procedure accepts one argument, a logical
expression. It will print out all, if any, truth value assignments that satisfy the proposition. We
will initialize a result variable to false. When an assignment that satisfies the proposition is
found, this variable is set to true and the assignment is printed. After all possible assignments
are considered, the procedure returns the result variable.

Since this procedure is otherwise very similar to AreEquivalent, we offer no further
explanation.

IsSatisfiable := proc(P)
 local eqZip, Vars, numVars, i, TA, val, TAeqns, result;
 result := false;
 eqZip := (a,b) -> a=b;
 Vars := GetVars(P);
 numVars := nops(Vars);
 TA := [seq(false,i=1..numVars)];
 while TA <> NULL do
 TAeqns := zip(eqZip,Vars,TA);
 val := eval(P,TAeqns);
 if val then
 result := true;
 print(TAeqns);
 end if;
 TA := NextTA(TA);
 end do;
 return result;
end proc:

We apply this procedure to the propositions in Example 9 of Section 1.3 of the text.
IsSatisfiable((p or not q) and (q or not r) and (r or not
p));

p = false, q = false, r = false
p = true, q = true, r = true

true
IsSatisfiable((p or q or r) and (not p or not q or not r));

p = true, q = false, r = false
p = false, q = true, r = false
p = true, q = true, r = false
p = false, q = false, r = true
p = true, q = false, r = true
p = false, q = true, r = true

true
IsSatisfiable((p or not q) and (q or not r) and (r or not
p) and (p or q or r) and (not p or not q or not r));

false

Computations and Explorations 1

Look for positive integers that are not the sum of the cubes of eight positive integers.

O O

(1.77)(1.77)

(1.56)(1.56)

O O

(1.103)(1.103)

O O

O O

(1.6)(1.6)

O O

O O

Solution: We will find integers n such that n s a1
3 C a2

3 C/C a8
3 for any integers

a1, a2,…, a8. We can restate the problem as finding a counterexample to the assertion that every
integer can be written as the sum of eight cubes.

Our approach will be to generate all of the integers that are equal to the sum of eight cubes and
then check to see what integers are missing. For this, we need to set a limit n, i.e., the maximum
integer that we're considering as a possible answer to the question. For instance, we might
restrict our search to integers less than 100. Then we know that each ai is at most the cube root

of this limit, since ai
3 ! n.

We'll also want to make our approach as efficient as possible in order to find as many such
integers as we can. So we make the following observations.

Every number that can be expressed as the sum of eight cubes can be expressed as the sum of
two integers each of which is the sum of four cubes. Those, in turn, can be expresses as the
sum of two integers which are the sum of two cubes each. That is,

n = a1
3 C a2

3 C a3
3 C a4

3 C a5
3 C a6

3 C a7
3 C a8

3 .
This means that we don't need to write a procedure to find all possible sums of eight cubes.
Instead, we'll write a procedure that, given a list of numbers, will find all possible sums of two
numbers that are both in that list. If we apply this procedure to the cubes of the numbers from 0
through n

3
, that will produce all numbers that are the sums of two cubes. Applying the

procedure again to that result will give all numbers that are the sum of four cubes. And applying
it once again to that result will produce the numbers (up to n) that are the sum of eight cubes.

Additionally, when we find all the possible sums of two integers, we will exclude any sum that
exceeds our maximum. Recall that we've determined that if an integer less than or equal to n can
be written as the sum of cubes, then it can be written as the sum of cubes with each ai between 0

and n
3

. There will be numbers greater than n that are generated as the sum of cubes of
integers less that n

3
, however, these do not provide us with any information about numbers

that cannot be generated as the sum of eight cubes. And excluding them at each step of the
process decreases the number of sums that need to be computed.

Finally, we may assume that the second number is at least as large as the first. Since if we add
23 C 53 to our list of sums, there is no need to also include 53 C 23.

Here is the procedure that finds all possible sums of pairs of integers from the given list L up to
the specified maximum value max. Note that we again use the [op({op(sums)})] structure
to turn the list into a set and then back into a list. This removes redundancies and also puts the
list in increasing order.

AllPairSums := proc(L, max)
 local a, b, s, sums, num;
 sums := [];
 num := nops(L);
 a := 1;
 while a <= num do
 b := a;
 while b <= num do
 s := L[a] + L[b];

O O

(1.118)(1.118)

(1.77)(1.77)

(1.56)(1.56)

(1.119)(1.119)

O O

O O

O O

(1.103)(1.103)

(1.117)(1.117)
O O

O O

O O

(1.116)(1.116)

(1.6)(1.6)

O O

O O

O O

 if s <= max then
 sums := [op(sums),s];
 else
 b := num;
 end if;
 b := b + 1;
 end do;
 a := a + 1;
 end do;
 return [op({op(sums)})];
end proc:

With this procedure in place, we need to apply it (three times) to a list of cubes. We'll consider
cubes up to 73, and including 0.

somecubes := [seq(i^3,i=0..7)];
somecubes := 0, 1, 8, 27, 64, 125, 216, 343

Applying the AllPairSums procedure once gives us all pairs of cubes.
TwoCubes := AllPairSums(somecubes,343);

TwoCubes := 0, 1, 2, 8, 9, 16, 27, 28, 35, 54, 64, 65, 72, 91, 125, 126, 128, 133,
152, 189, 216, 217, 224, 243, 250, 280, 341, 343

Applying it to that result gives all possible sums of four cubes (up to 343).
FourCubes := AllPairSums(TwoCubes,343);

FourCubes := 0, 1, 2, 3, 4, 8, 9, 10, 11, 16, 17, 18, 24, 25, 27, 28, 29, 30, 32, 35, 36,
37, 43, 44, 51, 54, 55, 56, 62, 63, 64, 65, 66, 67, 70, 72, 73, 74, 80, 81, 82, 88,
89, 91, 92, 93, 99, 100, 107, 108, 118, 119, 125, 126, 127, 128, 129, 130, 133,
134, 135, 136, 137, 141, 142, 144, 145, 149, 152, 153, 154, 155, 156, 160, 161,
163, 168, 179, 180, 182, 187, 189, 190, 191, 192, 193, 197, 198, 200, 205, 206,
216, 217, 218, 219, 224, 225, 226, 232, 233, 240, 243, 244, 245, 250, 251, 252,
253, 254, 256, 258, 259, 261, 266, 270, 271, 277, 278, 280, 281, 282, 285, 288,
289, 296, 297, 304, 307, 308, 314, 315, 317, 322, 334, 341, 342, 343

And once again we obtain all integers up to 343 which can be obtained as the sum of eight
cubes.

EightCubes := AllPairSums(FourCubes,343);
EightCubes := 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,
169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200,

O O

(1.120)(1.120)

(1.77)(1.77)

(1.119)(1.119)

O O

O O

(1.6)(1.6)

O O

(1.56)(1.56)

O O

(1.103)(1.103)

O O

O O

201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216,
217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232,
233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249,
250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265,
266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281,
282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297,
298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313,
314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329,
330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343

And finally, we print out the integers that are missing from the list.
for i from 1 to 343 do
 if not (i in EightCubes) then
 print(i);
 end if;
end do;

23
239

Exercises
Exercise 1. Write procedures NOT, OR, and XOR to implement those bit string operators.

Exercise 2. Use Maple to solve exercises 19 through 23 in Section 1.2 using the knights and
knaves puzzle that was solved earlier in this chapter as a guide.

Exercise 3. Write a Maple procedure to find the dual of a proposition. Dual is defined in the
Exercises of Section 1.3. (Hint: you may find it useful to know that `and` and `or` are
considered types in Maple and thus can be used as the second argument to the type command.)

Exercise 4. Write a procedure UniqueExists, similar to the Universal and Existential
procedures in Section 1.4 of this manual. This procedure should accept as its arguments a
propositional function and a finite domain and return true if there is a unique element of the domain
that satisfies the proposition and false otherwise.

Exercise 5. Write a procedure ForAllExists that is analogous to the ExistsForAll
procedure given in Section 1.5 of this manual.

Exercise 6. Write a Maple procedure that plays the obligato game in the role of the student, as
described in the Supplementary Exercises of Chapter 1. Specifically, the procedure should accept
two arguments. The first argument is the new statement that you, as the teacher, provide. The
second argument should be the list of Maple's responses to all the previous statements. For
example, suppose the teacher's first statement is p / qn r , the second statement is ¬ p n q, and
the third statement is r. If the procedure/student accepts the first statement and denies the second
statement, then you would obtain the response to the third statement by executing
 Obligato(r, [p implies (q or r), not(not p or q)]);
The procedure must accept the statement r and thus returns the list with this response included:
[p implies (q or r), not(not p or q),r]

