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5 Induction and Recursion

Introduction
In this chapter we describe how Maple can be used to help you make conjectures and prove them 
with mathematical induction and strong induction.  We will also look at several examples of using 
Maple to explore recursive definitions and to implement recursive algorithms.  Recursion is an 
important tool in any computer programming language, and Maple is no exception.  We conclude 
the section with an example of proving program correctness of a Maple procedure.

5.1 Mathematical Induction
In this section we will demonstrate how to use Maple both to discover propositions and to aid in the
use of mathematical induction to verify them.  We begin with two examples of how to use Maple to 
discover and prove a summation formula.  We then consider a question of divisibility.

Summation Example 1
As our first example, we will explore a formula that you've already seen:

>
i = 1

n

i = 1C 2C 3C/C n =
n nC 1

2
.

This formula is the subject of Example 1 in Section 5.1 of the text.  Here, we will proceed as if we 
did not already know the formula.

Listing and graphing to find the formula
Our first step is to discover the formula.  To do this, we will have Maple compute the sums for a 
variety of values of n, using the add command.  

The add command requires two arguments.  The first argument is an expression representing the 
values to be added in terms of a variable.  The second argument will be an equation with that 
variable on the left and a range indicating the bounds of the summation on the right side of the 
equation.  The syntax is modeled on the summation symbol syntax.  To compute 

>
i = a

b

f i , 

you enter add(f(i),i=a..b).

In our situation, we want to add the first several positive integers.  For example, the sum of the first 
ten positive integers is

add(i,i=1..10);
55

To discover the formula for the sum of the first n positive integers, we will want several specific 
examples to analyze.  To calculate a lot of examples at once, we'll use a name for the maximum 
value in the range: add(i,i=1..n).  Maple won't execute that command since n has no value.  
But we can make add(i,i=1..n) the first argument to seq, with n as the index to the sequence.
 This will produce the sums of the first n positive integers for different values of n.

seq(add(i,i=1..n),n=1..50);
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253,
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276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780,
820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275

Remember that we're working as if we do not already know the answer.  Just looking at the data, 
you might notice a pattern, but if not, it's sometimes helpful to pair the value of n with the result.  To
do this, we only need to modify the seq command so that the first argument is the list whose first 
element is n and whose second is the add command.

seq([n,add(i,i=1..n)],n=1..50);
1, 1 , 2, 3 , 3, 6 , 4, 10 , 5, 15 , 6, 21 , 7, 28 , 8, 36 , 9, 45 , 10, 55 , 11,

66 , 12, 78 , 13, 91 , 14, 105 , 15, 120 , 16, 136 , 17, 153 , 18, 171 , 19,
190 , 20, 210 , 21, 231 , 22, 253 , 23, 276 , 24, 300 , 25, 325 , 26, 351 ,
27, 378 , 28, 406 , 29, 435 , 30, 465 , 31, 496 , 32, 528 , 33, 561 , 34,

595 , 35, 630 , 36, 666 , 37, 703 , 38, 741 , 39, 780 , 40, 820 , 41, 861 ,
42, 903 , 43, 946 , 44, 990 , 45, 1035 , 46, 1081 , 47, 1128 , 48, 1176 ,
49, 1225 , 50, 1275

The entry 23, 276  indicates that the sum of the first 23 positive integers is 276.

This still may not be enough to get an idea of what the formula could be, in which case a graph of 
the data might be of use.  The plot command is used to graph functions and data, and was first 
discussed in Section 2.3 of this manual.  In this situation, we want to plot the points that the 
previous application of seq produced: 1, 1 , 2, 3 , 3, 6 , 4, 10 ,… .  To do this, we need two
lists.  One list must contain all of the "x" coordinates and the other list all the "y" coordinates.  The 
lists should be the same size and need to match up.  That is, the first element of the x list must 
correspond to the first element of the y list, the second element of the x list must match the second 
element of the y list, and so on.  To get the y-coordinates, we will just repeat (5.2) and the x values 
are just the values of n.  We will name the x-coordinate list nList and the y-coordinates will be
sumList.  Since Maple computes the sums quickly, we'll go out to a maximum of n = 1000.  That 
way, we'll be sure to have a good idea of the shape of the graph.

nList := [seq(n,n=1..1000)]:
sumList := [seq(add(i,i=1..n),n=1..1000)]:

These lists will be the first two arguments to plot, with the x-values as the first argument and the 
yKvalues the second.  These are the only required arguments when graphing data, but we will use 
several options.  The style=point and symbol=solidcircle options will cause Maple to 
draw the graph as a series of dots.  (The default is to "connect the dots" and draw the graph using 
straight line segments.)  We will also increase the size of the dots slightly with the symbolsize=
10 option.  We actually have enough data in this example that even with these options, the graph 
will look like a smooth line, but they are useful options to be aware of.  

plot(nList,sumList,style=point,symbol=solidcircle,symbolsize=
10);
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It is also worth mentioning the option view=[xmin..xmax,ymin..ymax] which specifies the 
region that is displayed in the graph.  Without it, Maple chooses a view window.

The particular values in output (5.3) may not have been helpful at all in figuring out what kind of 
formula we were looking for.  But this graph probably looks very familiar.  It looks very much like 
the right half of a parabola, suggesting that the formula is quadratic.  (Of course, it may be cubic or 
quartic or some other polynomial, but we'll start with the simplest possibility based on the graph.)

Finding the coefficients
Now that we have guessed the kind of formula, we can write it as f n = an2 C bnC c.  
Determining the coefficients a, b, c is our next task.  We will have Maple find them for us.

We already know a bunch of values for this function.  Here are the first few again.
seq([n,add(i,i=1..n)],n=1..10);

1, 1 , 2, 3 , 3, 6 , 4, 10 , 5, 15 , 6, 21 , 7, 28 , 8, 36 , 9, 45 , 10, 55
This data tell us a lot of information about our formula.  For instance, if we plug in n = 2, then 
f 2 = 3, meaning 

3 = a$22 C b$2C c = 4 aC 2 bC c.  
For n = 1, we have

1 = aC bC c.
For n = 3:

6 = 9 aC 3 bC c.

Of course, Maple can produce these formulas for us.  To do this, we'll use the eval command, 
which was introduced in Section 1.1.  Remember that the eval command accepts two arguments.  
The first is an expression and the second is an equation specifying the substitution to be made.  For 
example,

eval(2*x+5,x=3);
11

evaluates the expression 2 xC 5 after substituting 3 for x.  In our case, the first argument will be the
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equation f n = an2 C bnC c.  Instead of f n , we need to use our data sumList.  So our first 
argument will be sumList[n] = a*n^2+b*n+c.  With the second argument n=2, say, Maple 
will replace the n's with 2.  It will then look up the second entry in sumList and simplify the right 
side of the equation for us.

eval(sumList[n] = a*n^2 + b*n + c, n=2);
3 = 4 aC 2 bC c

We can create a list of such equations with the seq command.
[seq(eval(sumList[n] = a*n^2 + b*n + c, n=N),N=1..10)];

1 = aC bC c, 3 = 4 aC 2 bC c, 6 = 9 aC 3 bC c, 10 = 16 aC 4 bC c, 15 = 25 a
C 5 bC c, 21 = 36 aC 6 bC c, 28 = 49 aC 7 bC c, 36 = 64 aC 8 bC c, 45
= 81 aC 9 bC c, 55 = 100 aC 10 bC c

We now have a system of equations.  In particular, we have 10 equations in three variables.  You 
have probably seen systems of at least 2 and 3 equations in 2 or 3 variables in previous mathematics
courses.  You can have Maple solve the system of equations by applying the solve command to 
the list.

solve((5.7));

a =
1
2

, b =
1
2

, c = 0

The first argument to solve can be a single equation or a set or list of equations.  If a set or list of 
equations is provided, as we did here, Maple will solve the equations as a system of simultaneous 
equations (i.e., it finds values for the variables that make all the equations true simultaneously).  
You can also provide an optional second argument: a name or a set or list of names.  If provided, 
Maple will solve the equations for those variables only, treating any other names as if they were 
constants.

You may recall that to solve a system of equations in three unknowns, only three equations are 
required.  In this situation, having more equations is useful.  If we were wrong about the formula 
being quadratic but attempted to find coefficients with only three equations, Maple may still have 
found values for a, b, and c that satisfied the three equations we chose.  With ten equations, if the 
actual formula were not quadratic, there is a greater chance that no values of a, b, and c would 
satisfy all ten equations.  In that case, Maple would have returned nothing to indicate the absence of 
a solution and indicating that our guess about the kind of formula was incorrect.

Let's review what we've done so far.  Our goal is to find a formula for the sum >
i = 1

n

i.  We used 

Maple to compute a bunch of values of this sum and then graphed n versus the sum up to n.  This 
graph suggested a quadratic formula, i.e., one of the form an2 C bnC c for some values of a, b, 

and c.  We then used Maple's solve command to determine that a = b =
1
2

 and c = 0.  In other 

words, we've found the formula 
1
2

n2 C 
1
2

n, which, of course, is the same as 
n nC 1

2
.  

Although we have found a formula, we have not yet proven anything, we've only made a 
conjecture.



O O 

(5.2)(5.2)

O O 

O O 

O O 

(5.13)(5.13)

(5.11)(5.11)

(5.10)(5.10)

(5.12)(5.12)

(5.14)(5.14)

(5.9)(5.9)

O O 

O O 

The induction proof
To prove that our formula is correct, we use mathematical induction.  First, let's make our formula 
into a functional operator.

sumF := n -> (1/2)*n^2 + (1/2)*n;

sumF := n/
1
2

 n2 C
1
2

 n

To complete the basis step of the induction, we need to see that the formula agrees with the sum for 
n = 1.

add(i,i=1..1);
1

sumF(1);
1

They are equal and the basis step is verified.

For the inductive step, we assume that the formula is correct for k and need to demonstrate that it is 
true for kC 1.  In Example 1, this was done by starting with the sum 1C 2C/C kC kC 1  

and applying the inductive hypothesis to the first k terms to obtain 
k kC 1

2
C kC 1 .   Then 

algebra is used to turn that expression into the formula evaluated at kC 1.  With Maple, we can just 
check whether the expressions are the same.

The sum of the first kC 1 terms is 1C 2C/C kC kC 1 = f k C kC 1 .
sumF(k) + (k+1);

1
2

 k2 C
3
2

 kC 1

That used the inductive hypothesis.  We need to see if this is the same as f kC 1 .
sumF(k+1);

1
2

 kC 1 2 C
1
2

 kC
1
2

To check whether they are equal, we can form the equation obtained by equating the two 
expressions, apply simplify to the equation to have Maple simplify both sides as much as it can, 
and then use evalb to find out if the equation is an identity.  Note that without simplify, Maple 
will not return the correct result.  All evalb does in this case is to check to see if the two 
expressions are verbatim the same, it does not automatically do any algebra to check.  The 
application of simplify causes Maple to do the symbolic algebra that allows evalb to recognize 
the truth of the equation.

evalb(simplify(sumF(k) + (k+1) = sumF(k+1)));
true

This indicates that the inductive step is verified, and hence the formula is correct.

Summation Example 2
As a second example of using Maple to find and prove summation formulae, consider the sum 

>
i = 1

n

i2 iC 1 !.  For this example, we won't go through the process of computing values and 

graphing as we did above.  That is a very valuable process, and we strongly recommend that you go
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through it yourself with a few examples.  But Maple includes a command that will give us the 
result.

Using sum to determine the formula
We used the add command for calculating the numeric sum of a sequence of numbers.  Maple also 

has a sum command, which is used for symbolic summation.  To calculate >
i = 1

10

i2 iC 1 !, we use

add as we did in the previous example.
add(i^2*(i+1)!,i=1..10);

4311014402
(Note the use of the exclamation mark for the computation of factorial.  You can also use the 
command factorial, if you prefer.)

The add command is designed specifically for numeric computations like the above.  For symbolic 

calculations, as in >
i = 1

n

i2 iC 1 !, the sum command is used.

sum(i^2*(i+1)!,i=1..n);
nK 1  nC 2 ! C 2

The syntax of the two commands is nearly identical.  The first argument is the expression to be 
summed in terms of an index variable.  The second argument is an equation that sets the index 
variable equal to a range.  The difference is that the sum command allows the range to be symbolic, 
for example  1..n or 0..infinity.  Note that the sum command could be used for the numeric 
calculation as well, but add is optimized for that purpose.  

Similarly, Maple includes mul for computing numeric products and product for computing 
symbolic products.  These commands have the same syntax as add and sum.  

The induction proof
Now that the sum command has determined the formula 

>
i = 1

n

i2 iC 1 ! = nK 1 nC 2 !C 2, 

we will use Maple to help us prove it.  Even though we can be very confident that Maple has given 
us a correct formula, applying a Maple command is not the same as a proof.

As before, we'll define a functional operator based on the formula.  
sumF2 := n -> (n-1)*(n+2)! + 2;

sumF2 := n/ nK 1  nC 2 ! C 2

For the basis step of the induction, we need to see that the formula holds for n = 1.  The value of the
sum for n = 1 is

1^2*(1+1);
2

And the formula applied to n = 1 is
sumF2(1);

2
The basis step is verified.
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For the inductive step, we assume that the formula is correct for k.  That is, we assume that

>
i = 1

k

i2 iC 1 ! = kK 1 kC 2 !C 2.

We need to show that the formula works for kC 1.  Now, 

>
i = 1

k C 1

i2 iC 1 ! = >
i = 1

k

i2 iC 1 !C kC 1 2 kC 1 C 1 !.

Using the inductive hypothesis that the formula is correct for k, this is
sumF2(k) + (k+1)^2*((k+1)+1)!;

kK 1  kC 2 ! C 2C kC 1 2 kC 2 !
We need to check to see if this is the same as the formula applied to kC 1.

sumF2(k+1);
k kC 3 ! C 2

evalb(simplify(sumF2(k) + (k+1)^2*((k+1)+1)!=sumF2(k+1)));
true

This completes the induction and proves the correctness of the formula.

Divisibility
For a final example, we'll see how Maple can be used to help prove results about divisibility.  In 
Example 8 from Section 5.1 of the text, it was shown that n3 K n is divisible by 3 for all positive 
integers n.  Exercise 33 asks you to prove that n5 K n is divisible by 5 for all positive integers.  
These two facts suggest that perhaps n7 K n is divisible by 7 for all positive integers n.  Let's see 
how Maple can help us prove this fact.

We begin by creating a functional operator to represent the expression n7 K n.
divExpr := n -> n^7 - n;

divExpr := n/n7 K n

The basis case is n = 1.  For n = 1, the expression is 
divExpr(0);

0
which is divisible by 7, so the basis case holds.

The inductive hypothesis is that k7 K k is divisible by 7 for a positive integer k.  We need to show 
that kC 1 7 K kC 1  is divisible by 7.  To do this, we'll use the following fact: if n a and 
n bK a then n b.  (The reader should verify this statement, which is equivalent to Theorem 1, part 
(i), of Section 4.1.)  

By assumption, 7 divides k7 K k.  We will have Maple compute the difference.
divExpr(k+1)-divExpr(k);

kC 1 7 K 1K k7

simplify(%);
7 k6 C 21 k5 C 35 k4 C 35 k3 C 21 k2 C 7 k

You can see that the coefficients are all multiples of 7 and thus the expression is divisible by 7.  We 
can confirm this with Maple by checking that the result of that expression modulo 7 is 0.
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% mod 7;
0

Thus, the inductive step is verified and hence n7 K n is divisible by 7 for all positive integers n.

5.2 Strong Induction and Well-Ordering
In this section, we'll see one way that Maple can be used to support a proof by strong induction.  In 
particular, we will consider the class of problems illustrated in Example 4: prove that every amount 
of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.  The second 
solution to that example will form the model for this discussion.  (See also Exercises 3 through 8 as 
other examples of problems of this kind.)

The basis step of the induction argument requires several propositions to be verified.  Using the 
notation in the text, the propositions P b , P bC 1 ,…, P bC j  must all be demonstrated for 
some integer b and a positive integer j.  Maple can be useful in these situations because it can often 
verify the basis cases for you.  This is particularly useful when j is large.

Showing that every amount of postage over 12 cents can be formed using 4 and 5 cent stamps 
requires 4 basis cases: P 12 , P 13 , P 14 , P 15 .  We begin by showing how to use Maple to 
demonstrate P 12 , that postage of 12 cents can be formed using 4 and 5 cent stamps.  While you 
may object that it is obvious that 12 = 4$3, our ultimate goal is to generalize our code to encompass 
the entire class of postage problems.

Making postage
To verify P 12 , we must find nonnegative integers a and b, representing the number of stamps of 
the two denominations, such that 12 = 4 aC 5 b.  The most straightforward way of finding a and b 
is to test all the possibilities.  We know that a and b must both be nonnegative.  

Also, the maximum possible values of a and b are 
12
4

 and 
12
5

, respectively.  (Recall that x  is 

the notation used to represent the floor of x, that is, the largest integer less than or equal to x.)  To 
see why this is so, consider b: 12 = 4 aC 5 b R 5 b since a R 0.  That is, 5 b % 12 and so 

b %
12
5

.  And since b must be an integer, we have b %
12
5

.  Likewise for a.

Since a and b must be between 0 and the floor of 12 divided by 4 or 5, respectively, we can use a 
pair of nested for loops to check all the possible values.  Within the loops, we only need to check to 
see if 4 aC 5 b = 12.  If so, we'll print the pair a, b .

for a from 0 to floor(12/4) do
  for b from 0 to floor(12/5) do
    if 4*a + 5*b = 12 then
      print([a,b]);
    end if;
  end do;
end do;

3, 0

We can very easily generalize this by replacing the target value and the stamp denominations with 
variables.  The following procedure implements this generalization.  It accepts the two 
denominations and the target value as input and returns a list whose elements represent the number 
of each kind of stamp required.  In the event that the procedure fails to form the desired amount of 
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postage with the given stamps, it returns FAIL.
MakePostage := proc(A::posint,B::posint,postage::posint)
  local a, b;
  for a from 0 to floor(postage/A) do
    for b from 0 to floor(postage/B) do
      if A*a + B*b = postage then
        return [a,b];
      end if;
    end do;
  end do;
  return FAIL;
end proc:

Applying MakePostage with stamps 4 and 5 and postage 13, tells us that it requires two 4-cent 
stamps and one 5 cent stamps to make 13 cents postage.  

MakePostage(4,5,13);
2, 1

On the other hand, it is not possible to make 11 cents postage with 4 and 5 cent stamps.
MakePostage(4,5,11);

FAIL

Automating the basis step
The MakePostage procedure finds the number of stamps of each denomination needed to 
produce the desired postage.  As such, it verifies individual basis step propositions.  With a simple 
loop, we can verify all of the basis cases.  Recall that the basis step was to verify that postage can be
made for 12, 13, 14, and 15 cents.

for p from 12 to 15 do
  MakePostage(4,5,p);
end do;

3, 0
2, 1
1, 2
0, 3

We will make a procedure for this in a moment, but first observe that the number of propositions in 
the basis step is equal to the smaller denomination stamp.  The reason for this is in the proof of the 
inductive step.  You should review the second solution to Example 4 in the text.  The key point is 
that to make postage of kC 1 cents, the proof relies on the inductive assumption that you can make 
postage of kC 1K 4 = kK 3 cents.  This requires that kK 3 R 12, that is, k R 15.  

Generically, if a is the smaller of the stamps and x is the minimum postage that we claim can be 
made (x = 12 in the example), then the inductive step requires kC 1K a R x.  Which is to say 
k R xC aK 1 .  Thus P x , P xC 1 ,…, P xC aK 1  must form the basis step.

This is useful to us in the following way: given the values of the stamps and the minimum value of 
postage, we can automate the verification of the appropriate basis cases.

PostageBasis := proc(A::posint,B::posint,minpost::posint)
  local small, postList, post, R;
  small := min(A,B);
  postList := [];
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  for post from minpost to (minpost + small - 1) do
    R := MakePostage(A,B,post);
    if R <> FAIL then
      postList := [op(postList),post=R];
    else
      return false;
    end if;
  end do;
  return postList;
end proc:

We apply it to the example of using 4 and 5 cent stamps to make postage of at least 12 cents.
PostageBasis(4,5,12);

12 = 3, 0 , 13 = 2, 1 , 14 = 1, 2 , 15 = 0, 3

The PostageBasis procedure above accepts as input the denominations of the two stamps, and 
the minimum value such that all postage values equal to or greater than that minimum can be made.  
The procedure uses the min command to set small equal to the lesser of the two denominations.  
The postList variable is used to store the information that shows how to make the various 
amounts of postage.  This list will store equations of the form postage = a, b  which indicate that 
the specified amount of postage can be made with a stamps of value A and b of B.  

The for loop considers each of the basis cases (using the observation above).  For each amount of 
postage, we use MakePostage to determine if it is possible to form that postage from the stamp 
values.  If so, MakePostage returns a pair indicating how the desired postage is made and this is 
added to the postList.  

If MakePostage ever returns FAIL, that indicates that the particular basis case cannot be verified.
In this case, PostageBasis returns false, indicating that the basis step cannot be completed.  For 
instance, the following indicates that it is false that every amount of postage of 12 cents or larger can
be obtained using 4 and 6 cent stamps.

PostageBasis(4,6,12);
false

5.3 Recursive Definitions and Structural Induction
In this section we will show how functions and sets can be defined recursively in Maple.  

A Simple Recursive Function
First we'll consider the recursively defined function from Example 1 in Section 5.3 of the text.  This 
function is defined by f 0 = 3 and f nC 1 = 2$ f n C 3.

In order to represent this function in Maple, the first thing we must do is transform the recursive 
part of the definition into an equation for f n  instead of f nC 1 .  We have to decrease all of the 
arguments in the recursive part of the definition by 1: f n = 2 f nK 1 C 3.  The formula 
f nC 1 = 2 f n C 3 is perhaps more expressive in that the nC 1 suggests that the definition is 
about the "next" value of the function.  But Maple cannot interpret nC 1 as a parameter in a 
function definition.

It is also important to point out that changing the recursive formula also changes the domain over 
which it is valid.  The formula f nC 1 = 2 f n C 3 applies for all n R 0, while 
f n = 2 f nK 1 C 3 applies for all n R 1.  This does not affect the value of f n  for any n, 
however.
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In Section 2.3 of this manual, we saw three ways to represent functions in Maple: as a procedure, a 
functional operator, or as a table.  Technically, all three of these representations could be used to 
represent a recursively defined function.  However, a table representation would be less natural and 
much less convenient for implementing the recursion than the other options.  We will not use tables 
in this section.

The most natural way to create a recursively defined function in Maple is with a functional operator.
Recall that the definition of a functional operator takes the following form: the name of the operator 
followed by the := assignment operator, then the arguments to the function followed by the -> 
arrow operator, and finally the formula defining the function.  For example, the function 
f x = 3 x2 K 2 xC 4 would be defined by the following. 

functionEx := x -> 3*x^2 - 2*x + 4;
functionEx := x/3 x2 K 2 xC 4

Defining a functional operator recursively is essentially the same.  Just as in the mathematical 
formula f n = 2 f nK 1 C 3, the formula contains reference to the function name.

f := n -> 2*f(n-1) + 3;
f := n/2 f nK 1 C 3

We also must define the basis step.  To declare f 0 = 3, you make the assignment
f(0) := 3;

f 0 := 3
(Note that the basis values must be declared after the recursive formula has been assigned.)

Now that the recursive definition and the basis step have been assigned, you can use f like any 
other function.

f(10);
6141

And you can compute the values of f  from 1 to 9 using seq.
seq(f(n),n=1..9);

9, 21, 45, 93, 189, 381, 765, 1533, 3069

Remember tables
It's worth understanding a bit of what Maple is doing when you define and evaluate a recursively 
defined function.  Any time you evaluate a procedure (including a functional operator), Maple 
automatically checks the procedure's remember table (if one exists) before executing any commands.
 The remember table for a procedure is a table used to keep track of the output for certain input 
values.  So if you've already executed a procedure on a particular input and stored it in the remember
table, Maple can return the previous result rather than recomputing it.  

When you define the recursive formula for a function, Maple stores the formula as the definition of 
the functional operator.  When you then enter the statement f(0) := 3;, Maple interprets that as 
a command to add an entry to f's remember table.  In fact, you can look at the remember table of 
any procedure you write by applying op and eval to the name of the procedure.

op(eval(f));
n, operator, arrow, table 0 = 3

The last entry in this list is the remember table which stores the pair 0=3 to indicate that the value of
the procedure applied to 0 is 3.  
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Note that if you define the basis value first and then enter the recursive definition, the functional 
operator definition wipes out the basis value.  This is a good feature to have, because if you define a
procedure and then later redefine it to something else, you don't want the new function reporting 
values from the old function's remember table.

If you apply f to 0, Maple sees that 0 is an index in the table and returns the value.  If you apply f 
to a different value, say 2, Maple sees that 2 is not in the table and so it applies the formula.  The 
formula says that f 2 = 2$f 1 C 3.  When Maple tries to evaluate this, it recognizes that it needs 
to find f 1 .  Again, it checks the remember table and, not finding 1 in the table, it applies the 
formula f 1 = 2$f 0 C 3.  Since f 0  is in the remember table, Maple looks up f 0 , which 
allows it to compute f 1 = 9 and then f 2 = 21.

You may be wondering why output (5.39) indicates that f's remember table only stores the value 
for f 0 , even though we've computed other values.  The reason is that Maple doesn't automatically 
store values in a remember table.  Most of the time, you don't execute procedures on the same input 
multiple times, so it would be a waste of memory to store a remember table for every procedure.  
You have to explicitly tell Maple to create a remember table and store values in it.  

For a functional operator, we've seen that you explicitly store a value in the remember table with the 
syntax f(x) := v.  Unfortunately, there is no way to have a functional operator automatically 
store values that it computes.  Even though we computed f 10  (which required the recursive 
calculations f 9 , f 8 , f 7 ,… f 1 ), we did not explicitly tell Maple to store any of those values 
and so it did not add them to the remember table.  Procedures, on the other hand, do give you the 
option to have Maple automatically populate the remember table with all the values they compute.  
We will see this in the next example.

You may occasionally want to clear a procedure or function's remember table.  To do this, you 
apply the forget command to the name of the function or procedure, e.g., forget(f).

A Second Recursive Function
Now let's consider the function F defined by the basis values F 0 = 1 and F 1 = 1 and the 
recursive formula F n  = F nK 1 C F nK 2  for n R 2.  This is the function whose values are
the Fibonacci sequence.

We could define this function as a functional operator as we did in the previous subsection.  
However, modeling the function as a procedure will allow us to instruct Maple to automatically 
create a remember table.  This will make the procedure much more efficient.

To model the function F as a procedure, we define a procedure F that accepts a positive integer as 
input.  The only statement in the procedure is the computation defined by the recursive formula.  We
instruct Maple to automatically construct a remember table by issuing the option remember as 
shown below.

F := proc(n::nonnegint)
  option remember;
  F(n-1) + F(n-2);
end proc:

We declare the basis values in the same way as for functional operators.
F(0) := 1;

F 0 := 1
F(1) := 1;
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F 1 := 1

The procedure F is now completely defined and produces correct output.  
seq(F(n),n=0..10);

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

Also note that, unlike the functional operator above, F has added the results of its calculations to its 
remember table.

op(eval(F));
n::nonnegint, remember, table 0 = 1, 1 = 1, 2 = 2, 3 = 3, 4 = 5, 5 = 8, 6 = 13, 7 = 21, 8

= 34, 9 = 55, 10 = 89

Comparing Complexity
The difference in time complexity between a recursive procedure that builds a remember table and 
one that doesn't is very significant, perhaps much more than you might think.  Let's create two new 
procedures, both of which model the function g n = 2$g nK 1 C 3$g nK 2  with g 0 = 5 
and g 1 = 2.  The procedure gR will include the remember option while gF will be "forgetful" and
not build a remember table. 

Here are the two procedures.
gR := proc(n::nonnegint)
  option remember;
  2*gR(n-1) + 3*gR(n-2);
end proc:
gR(0) := 5;

gR 0 := 5
gR(1) := 2;

gR 1 := 2
gF := proc(n::nonnegint)
  2*gF(n-1) + 3*gF(n-2);
end proc:
gF(0) := 5;

gF 0 := 5
gF(1) := 2;

gF 1 := 2

In order to track what these procedures do, and particularly what they do differently, we're going to 
trace them both.  The trace command accepts as its arguments a sequence of procedure names.  It 
has the effect of "turning on" tracing (also called debugging) for the listed procedures.  In particular,
when tracing is on and you execute a procedure, Maple will display any results of assignments 
made within the procedure and calls to other procedures.  Let's turn on tracing for both gR and gF.

trace(gR,gF);
gR, gF

Tracing the procedure with a remember table
Now we'll execute gR on 5.

gR(5);
{--> enter gR, args = 5
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{--> enter gR, args = 4
{--> enter gR, args = 3
{--> enter gR, args = 2
value remembered (in gR): gR(1) -> 2
value remembered (in gR): gR(0) -> 5

19
<-- exit gR (now in gR) = 19}
value remembered (in gR): gR(1) -> 2

44
<-- exit gR (now in gR) = 44}
value remembered (in gR): gR(2) -> 19

145
<-- exit gR (now in gR) = 145}
value remembered (in gR): gR(3) -> 44

422
<-- exit gR (now at top level) = 422}

422
Let's analyze what happened.  The first line of green output tells us that the gR procedure was 
entered (or called or executed) with argument 5.  That's because we entered the command gR(5).  

When gR was executed on 5, its only command is the computation 2*gR(4) + 3*gR(3).  
When Maple sees gR(4), it immediately calls the gR procedure on the argument 4.  (gR(3) has to 
wait until Maple resolves gR(4).)  This is the second line of green.  

Maple is now executing gR(4).  The same thing happens.  Maple comes to the statement 2*gR
(3)+3*gR(2) and immediately calls gR on 3.  This is what trace is reporting on the third line.

Again, executing gR(3) Maple finds that it must compute 2*gR(2) + 3*gR(1).  So it executes
gR with argument 2.  This is the fourth line of output above.

While executing gR(2), Maple must compute 2*gR(1) + 3*gR(0).  It looks at gR(1) and 
since gR's remember table has an entry for 1, it can look up that value instead of executing the 
procedure.  Maple can then continue on with the rest of the formula and it finds that it can also use 
the remember table for gR(0).  Lines 5 and 6 in green above are reporting the use of the remember 
table.  And now Maple has resolved the formula into the expression 2*(2) + 3*5, so it 
computes this and gR(2) returns 19.  The trace displays the return value 19 in blue, and the green 
line after that tells us that gR(2) is being exited with return value 19.  Also, while the trace does 
not report this, 19 is added to the remember table.  This is because we defined gR with the
remember option.

All this time, Maple has been keeping track of where it is in all of these calls to gR.  It knows that
gR(2) was called when it was trying to compute 2*gR(2) + 3*gR(1) within gR(3).  When
gR(2) returns 19, it now knows that the expression is 2*19+3*gR(1).  Now it needs to know
gR(1), but this is in the remember table.  So it is able to compute the value 44 and exits gR(3).  In
the trace above, the reference to the remember table is the green line above the blue 44, the blue 44 
indicates that 44 was returned by the procedure call, and the green line after that is the report that
gR was exited with return value 44.

Once gR(3) returns 44, Maple continues "backing out of the recursion."  gR(3) was called in the 
computation of gR(4), specifically the formula 2*gR(3)+3*gR(2).  Since gR(3) just returned 
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44, Maple can turn this expression into 2*44+3*gR(2).  And now it needs to determine the value
of gR(2).  Thanks to the remember option, gR(2) was added to the remember table.  The trace 
tells us this two lines below the blue 44.  Maple replaces gR(2) with the remembered value of 19 
and computes that gR(4) is 145.  It returns this value and exits the gR(4) computation.

Now we're back up to gR(5) and the computation 2*gR(4) + 3*gR(3).  gR(4) was just 
returned and again Maple can look up the value for gR(3).  So gR(5) returns 422 and exits.  
Since this was the "top level", the computation is finished.

Tracing the forgetful procedure
Contrast the above to what happens when we execute the forgetful gF on 5.

gF(5);
{--> enter gF, args = 5
{--> enter gF, args = 4
{--> enter gF, args = 3
{--> enter gF, args = 2
value remembered (in gF): gF(1) -> 2
value remembered (in gF): gF(0) -> 5

19
<-- exit gF (now in gF) = 19}
value remembered (in gF): gF(1) -> 2

44
<-- exit gF (now in gF) = 44}
{--> enter gF, args = 2
value remembered (in gF): gF(1) -> 2
value remembered (in gF): gF(0) -> 5

19
<-- exit gF (now in gF) = 19}

145
<-- exit gF (now in gF) = 145}
{--> enter gF, args = 3
{--> enter gF, args = 2
value remembered (in gF): gF(1) -> 2
value remembered (in gF): gF(0) -> 5

19
<-- exit gF (now in gF) = 19}
value remembered (in gF): gF(1) -> 2

44
<-- exit gF (now in gF) = 44}

422
<-- exit gF (now at top level) = 422}

422

The trace begins in the same way as before.  We asked Maple to compute gF(5).  For this it needs 
to execute gF(4), which requires gF(3) which uses gF(2).  

When Maple gets to gF(2), it again uses the remember table and looks up the values for gF(1) 
and gF(0).  It calculates that gF(2) is 19, so it returns that value and the trace reports that it exits 
that application of gF.  

Maple then tracks up back to the execution of gF(3) and the expression 2*gF(2)+3*gF(1).  It 
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just  returned the value of gF(2) and it looks up gF(1).  So it returns 44 and exits gF(3).  

The first eleven lines of the output from the trace are the same as for gR.  But now something 
different happens.  Once Maple exists gF(3), it's back to the execution of gF(4) and the formula
2*gF(3)+3*gF(2).  It's just returned 44 for gF(3), so the expression has been partially 
resolved and stands as 2*44+3*gF(2).  When gR was at this stage, it was able to look up the 
value of gF(2) because it had automatically stored that in the remember table.  But gF is not 
automatically recording output in its remember table.  So to complete the computation of gF(4), it 
has to once again call gF with argument 2.  

After executing gF(2) and recomputing 19, gF(4) is able to complete and it returns 145.

This brings it back to gF(5).  Recall that gF(5) needed to compute 2*gF(4)+3*gF(3).  It 
now knows gF(4), but it must once again execute gF(3), which requires another execution of gF
(2).  gF(2) is able to look up values and returns 19 for the third time.  Then gF(3), armed with 
the return value from gF(2), can look up gF(1) and return 44 for the second time.  And that, 
finally, allows gF(5) to perform its computation and return the final value of 422.

As you can imagine, the difference between having the remember table and not is even more 
extreme for larger input values.  With the remember table, once the recursion starts working its way 
back up the ladder, it remembers all the results from the lower values.  Without the remember 
option, the chain of recursive calls has to keep recomputing the results from lower valued inputs.  

A Recursive Function with Two Parameters
In Example 13 of Section 5.3 of the text, the sequence am, n is defined.  While it may seem natural to
model a mathematical sequence like am, n as an expression sequence, it is actually more accurate in 
Maple to model the sequence as a procedure, like we did with the function above.  

We will define a function A m, n  that models the sequence am, n.  The basis value is A 0, 0 = 0, 
and the recursion formula is

A m, n =
A m K 1, n C 1 if n = 0 and m O 0

A m, nK 1 C n if n O 0
.

As with the previous example, we will model this using a procedure A with the remember option.
A := proc(m::nonnegint,n::nonnegint)
  option remember;
  if n=0 and m>0 then
    return A(m-1,n)+1;
  else
    return A(m,n-1)+n;
  end if;
end proc:
A(0,0) := 0;

A 0, 0 := 0

Now we can compute some values of A.
A(3,2);

6
A(5,3);
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Displaying values of A
To get a better idea of what the values of A are, it may be useful to display a table of them.  In 
Maple, the easiest way to display a table of values is to create a matrix.  In this case, we'll use the
Matrix command with two arguments.  The first argument will be the size of the matrix, say 10.  
This will produce a square matrix of dimension 10.  

The second argument that we'll pass to Matrix will be an "initializer" which tells Maple what values 
to put in the entries of the matrix.  In our case, we want the values of A in the matrix.  Luckily, 
Maple allows the initializer for a matrix to be a procedure, so long as the procedure accepts pairs of 
positive integers as input.  Maple evaluates the procedure at the index (location) to the matrix. That 
is, in order to determine the entry at location i, j  in the matrix, Maple executes the procedure with 
input i, j .

However, there is one complication.  Specifically, the top left entry in a matrix is considered (1,1).  
It would be more natural to display A 0, 0  as the top left entry.

To do this, we'll use a functional operator as the initializer for the matrix.  The functional operator 
will take a pair (i,j), the position of an entry in the matrix, and subtract one from i and j before 
passing the values to A.  This means that when Matrix calls the functional operator on (1,1) to 
obtain the top left entry, it will receive A 0, 0 .

Matrix(10,(i,j)->A(i-1,j-1));
0 1 3 6 10 15 21 28 36 45

1 2 4 7 11 16 22 29 37 46

2 3 5 8 12 17 23 30 38 47

3 4 6 9 13 18 24 31 39 48

4 5 7 10 14 19 25 32 40 49

5 6 8 11 15 20 26 33 41 50

6 7 9 12 16 21 27 34 42 51

7 8 10 13 17 22 28 35 43 52

8 9 11 14 18 23 29 36 44 53

9 10 12 15 19 24 30 37 45 54

A Recursively Defined Set
In Example 5, the text describes how to recursively define a set.  Here, we will consider a slightly 
more complicated example.  

Let S be the subset of the integers defined by
     Basis step: 4 2 S and 7 2 S.
     Recursive step: if x 2 S and y 2 S, then xC y 2 S.
(Note that this is the set of all postage that can be formed with 4 cent and 7 cent stamps.)

To model S in Maple, we will define a set that includes the elements called for in the basis step.  For
the recursive step, we will define a procedure that applies the recursion to the set.
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The basis step requires that 4 and 7 are members of S.  So we define S to be the set consisting of 4 
and 7.

S := {4,7};
S := 4, 7

To implement the recursive step, we will create a procedure recurseS.  This procedure will accept
as input the current S and will return the set obtained after applying the recursive rule.  For instance,
in the first application of recurseS, the procedure needs to add 4C 4, 4C 7, 7C 4, and 7C 7.  
(The duplication obtained from commutativity will be automatically removed by Maple.)

We will use a pair of for loops of the form for x in S do and for y in S do.  Recall that 
for sets and lists, the in clause in a for loop causes the index variable to be assigned to each element 
of the set in turn.  By nesting these two loops, we ensure that every possible pair of x and y is added
together.

Here is the procedure.  (Remember that we cannot modify a parameter, and so the first command in 
the procedure is to copy S.)

recurseS := proc(S::set)
  local x, y, T;
  T := S;
  for x in S do
    for y in S do
      T := T union {x + y};
    end do;
  end do;
  return T;
end proc:

Now we apply this procedure to S.
S := recurseS(S);

S := 4, 7, 8, 11, 14
After a second iteration:

S := recurseS(S);
S := 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 21, 22, 25, 28

A third:
S := recurseS(S);

S := 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 53, 56

A Set of Strings
As the final example in this section, we will look at how to generate sets of strings over a finite 
alphabet, as described in Definition 1 of Section 5.3.  

The alphabet we will use is "a", "b", "c", "d" .  We begin by assigning this to a name.
Alphabet := {"a","b","c","d"};

Alphabet := "a", "b", "c", "d"

According to Definition 1, the basis step is that our set of strings must contain the empty string.  In 
Maple, the empty string is given by "".  We will use the name S2 for our set of strings, since S is 
used above.
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S2 := {""};
S2 := ""

Note that this is not the same as the empty set.  The empty set contains no elements.  This set 
contains one element, which happens to be the empty string.

Like the previous example, we will create a procedure to build the set of strings.  The recursive step 
in the definition tells us that we build the set by combining every element of S2 with every letter in 
the alphabet.  Again we will use nested loops.  We will define the procedure to accept the current 
version of the set and the alphabet as arguments.

Recall from the Introduction that the cat command concatenates strings.  Here is the procedure.
buildStrings := proc(S::set,A::set)
  local T, w, x;
  T := S;
  for w in T do
    for x in A do
      T := T union {cat(w,x)};
    end do;
  end do;
  return T;
end proc:

The first application of the recursion adds the alphabet to the set.
S2 := buildStrings(S2,Alphabet);

S2 := "", "a", "b", "c", "d"
The second application adds all the two-character strings.

S2 := buildStrings(S2,Alphabet);
S2 := "", "a", "aa", "ab", "ac", "ad", "b", "ba", "bb", "bc", "bd", "c", "ca", "cb", "cc",

"cd", "d", "da", "db", "dc", "dd"
The third application includes the three-character strings.

S2 := buildStrings(S2,Alphabet);
S2 := "", "a", "aa", "aaa", "aab", "aac", "aad", "ab", "aba", "abb", "abc", "abd", "ac",

"aca", "acb", "acc", "acd", "ad", "ada", "adb", "adc", "add", "b", "ba", "baa", "bab",
"bac", "bad", "bb", "bba", "bbb", "bbc", "bbd", "bc", "bca", "bcb", "bcc", "bcd", "bd",
"bda", "bdb", "bdc", "bdd", "c", "ca", "caa", "cab", "cac", "cad", "cb", "cba", "cbb",
"cbc", "cbd", "cc", "cca", "ccb", "ccc", "ccd", "cd", "cda", "cdb", "cdc", "cdd", "d",
"da", "daa", "dab", "dac", "dad", "db", "dba", "dbb", "dbc", "dbd", "dc", "dca", "dcb",
"dcc", "dcd", "dd", "dda", "ddb", "ddc", "ddd"

A general procedure
We can put this process all together in one procedure.  Given a set of strings representing the 
alphabet and a positive integer indicating the number of iterations desired, the following procedure 
will return the set of strings obtained after the given number of iterations.

AllStrings := proc(A::set,n::posint)
  local S, i;
  S := {""};
  for i from 1 to n do
    S := buildStrings(S,A);
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  end do;
  return S;
end proc:

Below, we apply this procedure to the alphabet consisting of the strings "ab" and "ba" (in discrete 
mathematics, an alphabet does not have to consist of single letters).

AllStrings({"ab","ba"},4);
"", "ab", "abab", "ababab", "ababba", "abba", "abbaab", "abbaba", "ba", "baab",

"baabab", "baabba", "baba", "babaab", "bababa", "abababab", "abababba",
"ababbaab", "ababbaba", "abbaabab", "abbaabba", "abbabaab", "abbababa",
"baababab", "baababba", "baabbaab", "baabbaba", "babaabab", "babaabba",
"bababaab", "babababa"

5.4 Recursive Algorithms
In this section we will use Maple to implement several different recursive algorithms.  First, we will
look at two different recursive implementations of modular exponentiation and compare their 
performance.  Then we will contrast a recursive approach to computing factorial with an iterative 
approach.  And finally, we will provide an implementation of merge sort.

Modular Exponentiation
Example 4 of Section 5.4 of the text describes two recursive approaches to computing bn mod m.  
Both of these use the initial condition b0 mod m = 1.  The first approach is based on the fact that 
bn mod m = b$ bn K 1 mod m  mod m .  

The second approach is based on the observation that for even exponents, we can compute via the 

formula bn mod m = bn / 2 mod m
2
 mod m.  And if the exponent is odd, we can use the identity 

bn mod m = b n / 2  mod m
2
 mod m $ b mod m  mod m.  

Approach 1
First we will implement exponentiation based on the initial condition b0 mod m = 1 and the formula
bn mod m = b$ bn K 1 mod m  mod m .  The procedure power1 will accept three arguments: 
the base b, the exponent n, and the modulus m.  

If the exponent is 0, then regardless of the base or the modulus, the procedure returns 1.  If the 
exponent is greater than 0, then it computes the product of the base with the procedure applied to the
same base and modulus but the power decreased by 1.

power1 := proc(b::integer,n::nonnegint,m::posint)
  if n=0 then
    return 1;
  else
    return modp(b * power1(b,n-1,m),m);
  end if;
end proc:

Note that for this procedure we cannot use the remember table to store the basis case as we did in 
the previous section.  This is because our basis case includes all possible values of b and m and the 
remember table only stores particular values.  
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Also note that we did not use the remember option in this procedure.  The reason for this is that 
each iteration of the procedure only depends on one other call to the procedure.  This is in contrast 
to the gR and gF procedures from the previous section.  Those procedures called themselves twice 
in each iteration.  As a result, those procedures made use of the same value multiple times.  Our
power1 procedure will not, unless you execute the procedure on the same input values.  When 
deciding whether or not to use the remember option, you must weigh its potential benefit for not 
repeating computation with the cost of storage requirements.

We can use power1 to compute 36 mod 7 and compare the result to Maple's computation of the 
same expression.

power1(3,6,7);
1

3^6 mod 7;
1

Approach 2
The second approach computes the power based on Algorithm 4 from Section 5.4.  For exponent 0,
it returns 1, just as before.  If the exponent is even, then the algorithm uses the formula 

bn mod m = bn / 2 mod m
2
 mod m, and for odd powers, it computes the power using the identity

bn mod m = b n / 2  mod m
2
 mod m $ b mod m  mod m.  

Since there are three possibilities, 0, even, or odd, we'll use the elif clause as part of an if 
statement.  Refer to the Introduction for details about elif.  Note that even is a Maple type, so we
can use the type command to form the condition.

Here is the implementation of Algorithm 4.
power2 := proc(b::integer,n::nonnegint,m::posint)
  if n=0 then
    return 1;
  elif type(n,even) then
    return modp(power2(b,n/2,m)^2,m);
  else
    return modp(modp(power2(b,floor(n/2),m)^2,m)*b,m);
  end if;
end proc:

We apply power2 to 36 mod 7 as well.
power2(3,6,7);

1

Comparing performance of the algorithms
Now that we've implemented these two algorithms, let's compare their performance on a variety of 
input values.  

We fix the base 3 and the modulus 7 and consider the exponents from 900 to 1000.  We start by 
forming the list of exponents.

N := [seq(i,i=900..1000)]:

To compare the performance, we'll time the execution of each procedure on the exponents from 900 
to 1000.  We use a for loop to build two lists containing the amount of time required for each 
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procedure.
times1 := []:
times2 := []:
for n from 900 to 1000 do
  st := time();
  power1(3,n,7);
  t := time() - st;
  times1 := [op(times1),t];
  st := time();
  power2(3,n,7);
  t := time() - st;
  times2 := [op(times2),t];
end do:

We have suppressed the output in the statements above, but now times1 and times2 contain the 
running times for power1 and power2, respectively.  We can compare their maximum values 
using the max command.

max(times1);
0.004

max(times2);
0.001

We see that the worst performance of the power1 procedure is much worse than the worst 
performance of power2.

Now let's graph the time results.  We define P1 and P2 to be the plots for times1 and times2.
P1 := plot(N,times1,style=point,symbol=solidcircle,view=[900.
.1000,0..(.003)],color=red,symbolsize=8,legend="power1");

P1 := PLOT ...
P2 := plot(N,times2,style=point,symbol=solidcircle,view=[900.
.1000,0..(.003)],color=blue,symbolsize=7,legend="power2");

P2 := PLOT ...
We made the symbol size in the first plot slightly larger in order to be able to see them when the two
plots overlap.  The legend option defines a legend that will be displayed on the composite graph.  

We display the plots using the display command in the plots package.
plots[display](P1,P2);
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This gives us a visual comparison of the time complexity of the two algorithms.  You can see that 
the second approach significantly outperforms the first.

Recursion and Iteration
In this subsection we'll compare recursive and iterative procedures for computing factorial. 

Recursive factorial
First we will implement Algorithm 1 from Section 5.4, a recursive algorithm for computing n!.  
This procedure accepts a nonnegative integer n as its input.  If the input value is 0, the procedure 
returns 1.  Otherwise, it multiplies n by the value of the procedure applied to nK 1.

factorialR := proc(n::nonnegint)
  if n=0 then
    return 1;
  else
    return n * factorialR(n-1);
  end if;
end proc:

We test this procedure on 10 and verify that it has the same result as Maple's built-in operator.
factorialR(10);

3628800
10!;

3628800

Iterative factorial
We can implement factorial with an iterative algorithm as well.  Our procedure will use a variable f, 
initialized to 1, to store the value of the factorial.  It will compute using a for loop with a loop 
variable looping from 1 to n.  Within the loop, f will be multiplied by the current value of the loop 
variable.  
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factorialI := proc(n::nonnegint)
  local f, i;
  f := 1;
  for i from 1 to n do
    f := f * i;
  end do;
  return f;
end proc:

We again check to make sure the result is correct on n = 10.
factorialI(10);

3628800

Comparing recursion and iteration
Note that these two algorithms require exactly the same number of multiplications.  From this point 
of view, their complexity is the same.

However, let's look at their performance.  We consider values of n from 1 to 1500.
M := [seq(i,i=1..1500)]:

We use the same approach as we did for power1 and power2 above to record and plot the time 
performance.

timesR := []:
timesI := []:
for n from 1 to 1500 do
  st := time();
  factorialR(n);
  t := time() - st;
  timesR := [op(timesR),t];
  st := time();
  factorialI(n);
  t := time() - st;
  timesI := [op(timesI),t];
end do:

We compute the maximum of all the values in the two lists in order to know how large to specify 
the maximum y-value in the view window for the graph.

max(timesR,timesI);
0.042

PR := plot(M,timesR,style=point,symbol=solidcircle,view=[0.
.1500,0..(.05)],color=red,symbolsize=8,legend="recursive");

PR := PLOT ...
PI := plot(M,timesI,style=point,symbol=solidcircle,view=[0.
.1500,0..(.05)],color=blue,symbolsize=7,legend="iterative");

P := PLOT ...
plots[display](PR,PI);
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First, you might wonder about the outliers which appear to be values of n for which one procedure 
or the other performs particularly poorly.  These are essentially "noise" resulting from other 
processes on your computer.  They are also inconsistent; running the commands again will produce 
slightly different results.

However, it is clear that, despite the occasional peculiar value, the iterative procedure outperforms 
the recursive one for large values of n.  This is in spite of the fact that the two algorithms involve the
same number of multiplications.  Let's consider other sources of potential differences in complexity.

The for loop in the iterative procedure includes an implicit comparison (i must be tested against n to
determine if the loop continues) in contrast to the explicit comparison that the recursive procedure 
makes.  So the two procedures are effectively equal in terms of the number of comparisons used, 
even though it does not appear so at first glance.  

The iterative procedure involves two assignments (the explicit assignment of f and the implicit 
assignment of i) absent from the recursive procedure.  But two assignments are much less costly 
than a procedure call.  Recursive procedure calls require Maple to perform several operations in the 
background, both in order to execute the recursive call and to keep track of where Maple is in the 
chain of recursive calls.  All of which takes time and memory that the iterative approach does not 
require. 

It is important to keep in mind the cost of recursion.  When an iterative algorithm is available, it may
be more efficient.  On the other hand, recursive algorithms are often more natural to use and can 
better reveal the mathematical concepts.

Also be aware that Maple, like most programming languages, imposes a limit on the number of 
recursive calls that can be made simultaneously.  When the recursion becomes too "deep", Maple 
will generate an error.  How many calls is too deep may vary based on your computer.

Merge Sort
We conclude this section by implementing merge sort.  Note that Maple's sort command for 
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sorting lists is an implementation of merge sort.  

The merge sort algorithm is described in Algorithm 9 of the text.  The mergesort procedure will 
accept as its input a list of integers.  Its main function is to split the single list it receives into two 
halves, unless the list contains only one element.  The return value of mergesort is the result of 
applying mergesort to both halves of the list and then recombining them with merge.  

The following implements Algorithm 9.  Note that the merge procedure will be written next.  For 
now, Maple simply accepts merge as a name.  

mergesort := proc(L::list(integer))
  local m, L1, L2;
  if nops(L) > 1 then
    m := floor(nops(L)/2);
    L1 := L[1..m];
    L2 := L[(m+1)..-1];
    return merge(mergesort(L1),mergesort(L2));
  else
    return L;
  end if;
end proc:

Implementing merge
To complete the procedure, we need to define merge.  The merge procedure accepts two lists, 
which it assumes are sorted, and returns a single list that contains all the elements of both of the 
inputs and is sorted.  The procedure is described in Algorithm 10 of the text.

In implementing merge, the first step is to duplicate the input lists.  This is because the lists are 
emptied of their elements as the merge proceeds, and arguments to a procedure cannot be modified.  
We also initialize the list that will be the result as the empty list.

The main work of merge is contained in a while loop conditioned on both lists being nonempty.  
Within this while loop there are two if statements.  The first if statement will implement the 
instruction to "remove smaller of first elements of L1 and L2 from its list; put it at the right end of L"
from Algorithm 10.  This if statement will test whether the first element of L1 is smaller than the 
first element of L2.  If so, then the first element is removed from L1 and added to L.  If not, in the 
else clause, the first element of L2 is moved to L.

The second if statement will implement the explicit if statement found in Algorithm 10.  The if 
condition will be that L1 is empty, and if so the remainder of L2 will be added to L and L2 will be 
emptied.  In an elif clause, L2 will be tested.  

Here is the implementation of merge.
merge := proc(l1::list(integer),l2::list(integer))
  local L, L1, L2;
  L1 := l1;
  L2 := l2;
  L := [];
  while L1 <> [] and L2 <> [] do
    if L1[1] < L2[1] then
      L := [op(L),L1[1]];
      L1 := L1[2..-1];
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    else
      L := [op(L),L2[1]];
      L2 := L2[2..-1];
    end if;
    if L1 = [] then
      L := [op(L),op(L2)];
      L2 := [];
    elif L2 = [] then
      L := [op(L),op(L1)];
      L1 := [];
    end if;
  end do;
  return L;
end proc:

We apply mergesort to a list as follows.
mergesort([7,4,1,5,2,3,6]);

1, 2, 3, 4, 5, 6, 7

Tracing merge sort
Applying trace to mergesort and merge will allow us to see the steps that these procedures 
take.  We apply them to a small list so that the output is not too excessive. 

trace(mergesort,merge):
mergesort([3,1,2]);

{--> enter mergesort, args = [3, 1, 2]
m := 1

L1 := 3
L2 := 1, 2

{--> enter mergesort, args = [3]
<-- exit mergesort (now in mergesort) = [3]}
{--> enter mergesort, args = [1, 2]

m := 1
L1 := 1
L2 := 2

{--> enter mergesort, args = [1]
<-- exit mergesort (now in mergesort) = [1]}
{--> enter mergesort, args = [2]
<-- exit mergesort (now in mergesort) = [2]}
{--> enter merge, args = [1], [2]

L1 := 1
L2 := 2
L :=
L := 1
L1 :=

L := 1, 2
L2 :=

<-- exit merge (now in mergesort) = [1, 2]}
<-- exit mergesort (now in mergesort) = [1, 2]}
{--> enter merge, args = [3], [1, 2]
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L1 := 3
L2 := 1, 2

L :=
L := 1
L2 := 2
L := 1, 2
L2 :=

L := 1, 2, 3
L1 :=

<-- exit merge (now in mergesort) = [1, 2, 3]}
<-- exit mergesort (now at top level) = [1, 2, 3]}

1, 2, 3
We recommend reading through the result of the trace.  Then try it with a larger example, say with 7
elements, to make sure that you understand how merge sort works.  To turn tracing off, use the
untrace command.

untrace(mergesort,merge):

5.5 Program Correctness
In this section we will prove the correctness of the merge sort program that we implemented in the 
last section.  This will require that we prove the correctness of merge as well as mergesort.  We
begin with merge.

merge
For convenience, we will repeat the definition of merge.  Also, we've added comments to indicate 
that we've broken the procedure into three segments: S1, S2, and S3.

merge := proc(l1::list(integer),l2::list(integer))
  local L, L1, L2;
  # begin S1
   L1 := l1;
   L2 := l2;
   L := [];
  # end S1
  while L1 <> [] and L2 <> [] do
    # begin S2
     if L1[1] < L2[1] then
       L := [op(L),L1[1]];
       L1 := L1[2..-1];
     else
       L := [op(L),L2[1]];
       L2 := L2[2..-1];
     end if;
    # end S2
    # begin S3
     if L1 = [] then
       L := [op(L),op(L2)];
       L2 := [];
     elif L2 = [] then
       L := [op(L),op(L1)];
       L1 := [];
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     end if;
    # end S3
  end do;
  return L;
end proc:

Let p be the assertion that l1 and l2 (the inputs to the procedure) are ordered, nonempty, and disjoint 
lists of integers.  Let q be the proposition that L (the output) is an ordered list and that L = l1W l2 as 
sets (that is, the set of integers appearing in L is equal to the union of the set of integers appearing in
l1 and the set of integers in l2).   We claim that p merge q, that is, that merge is partially correct 
with respect to the initial condition p and the final assertion q.

Let q1 be the proposition that L1 = l1 and L2 = l2 and L is the empty list.  It is clear that 
pS1 po q1 .

Define the following propositional variables:
r1 is the proposition that L1 is a sublist of l1; that is, the set of elements appearing in L1 is a 
subset of the set of elements appearing in l1, and the order of the elements in L1 is the same as 
their order in l1.  Note that it immediately follows that L1 is ordered.
r2 is the proposition that L2 is a sublist of l2 (and thus L2 is ordered).
r3 is the assertion that L is ordered. 
r4 is the assertion that LWL1WL2 = l1W l2 as sets.
r5 is the proposition that all members of L are smaller than all members of L1 and L2.  That is, 
c x 2 L  c y 2 L1WL2  x ! y .

r is the proposition r1 o r2 o r3 o r4 o r5.

We claim that po q1 / r.  Assume po q1.  That is, l1 and l2 are ordered, nonempty, and disjoint 
lists of integers.  Also, L1 = l1 and L2 = l2 and L is empty.  Then r1 and r2 hold since a list is a 
sublist of itself.  Proposition r3 holds since L is empty and thus is ordered vacuously.  That r4 is 
true follows from substituting l1 and l2 and  for L1, L2, and L.  And r5 is vacuous since L is 
empty.  From pS1 po q1  and po q1 / r, we have pS1r.

Next, we will show that r is a loop invariant for the loop while L1 s  and L2 s  S2; S3.  
Denote by c the condition L1 s  and L2 s .  We must show that if r and c hold, then r is true
after S2; S3 is executed.  First we will show r o c S2r and then that rS3r.

To show that r o c S2r, assume r o c.  That is, L1 is a sublist of l1, L2 is a sublist of l2, L is 
ordered, LWL1WL2 = l1W l2, and all members of L are smaller than every member of L1 and L2.  
Also, L1and L2 are nonempty.  Then both L1 and L2 have first elements.  Assume that the if 
condition of S2 holds.  That is, the first element of L1 is smaller than the first element of L2.  Then 
the two commands in the then clause of S2 are executed: the first element of L1 is added to the end 
of L and L1 has its first element removed.  
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We need to show that r holds following the execution of the then clause of S2.  
r1: the new L1 is a sublist of the old L1 since an element was removed meaning that 
L1 new 3 L1 old as sets and the order of the remaining elements was not modified.  Since L1 new 
is a sublist of L1 old which was a sublist of l1, the new L1 is a sublist of l1.
r2: the new L2 is identical is the old L2 and thus remains a sublist of l2.
r3: the old L was ordered, and, since we assume that r5 held before execution of S2, every 
element of Lold was smaller than every element of L1 oldWL2 old.  In particular, the first element 
of L1 old was larger than all elements of Lold.  And so Lnew is ordered.
r4: The smallest element of L1 was removed from L1 and added to L.  Thus 
LnewWL1 new = LoldWL1 old and hence LWL1WL2 = l1W l2.
r5: We must show that all members of Lnew are smaller than all members of both L1 new and 
L2 new.  Let x be an arbitrary element of Lnew.  Either x was a member of Lold or x was the first 
element of L1 old.  If x was a member of Lold then the assumption that r5 held before execution of
S2 guarantees that x is smaller than all elements of L1 newWL2 new.  On the other hand, assume x 
was the first element of L1 old.  Since L1 old is a sublist of l1, it is ordered and thus x was also the
smallest element of L1 old and hence is less than all elements of L1 new.  Also, by the assumption 
that the if condition of S2 evaluated true, x is smaller than the first (and smallest) element of 
L2 old = L2 new as well.  So x is smaller than all members of L1 newWL2 new.

The above shows that if the if condition of S2 holds, then r holds after executing the then clause.  In 
case the condition fails and the else clause executes, the proof is similar.  We conclude that 
r o c S2r.

Next we will show that rS3r.  Assume r holds.  Consider the case that L1 is empty.  Then L2 is 
appended on the end of L and L2 is set to the empty list.  

r1: L1 is, since we assume the if condition, empty and thus a sublist of l1.
r2: the second statement in the then clause sets L2 equal to the empty list, which is a sublist of l2.
r3: we assume that Lold is ordered, that L2 old is a sublist of l2 and thus is ordered, and that all 
members of Lold are smaller than all members of L2 old.  Thus, adding L2 old to the end of Lold to
produce Lnew results in an ordered list.
r4: as sets, Lnew = LoldWL2 old, so LnewWL1 newWL2 new = LoldWL2 old WL1 oldW:.  This 
is equal to l1W l2 by the assumption that r4 held before execution.
r5: after execution of S3, both L1 and L2 are empty and assertion r5 is true vacuously.

The case that L2 is empty is similar.  Thus, rS3r.  

We have shown r o c S2r and rS3r, and thus r o c S2S3r.  Hence r is a loop invariant for the 
while loop.  By the inference rule for while loops, we have that r while c S2S3 ¬ co r .

Combining this result with the conclusion that pS1r from the paragraph immediately following the 
definition of r, we have that p merge ¬ co r .  
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We conclude by claiming ¬ co r / q.  Recall that q was the final assertion that L is ordered and 
L = l1W l2 as sets.  Assume ¬ co r.  That L is ordered is the claim of r3.  By r4, we have that, as 
sets, LWL1WL2 = l1W l2.  But ¬ c implies that L1 and L2 are empty.  Hence, L = l1W l2.  Thus q 
holds and we have completed the proof that p merge q and hence merge is partially correct.

mergesort
Now we turn to the mergesort procedure. We repeat its definition below.

mergesort := proc(L::list(integer))
  local m, L1, L2;
  if nops(L) > 1 then
    m := floor(nops(L)/2);
    L1 := L[1..m];
    L2 := L[(m+1)..-1];
    return merge(mergesort(L1),mergesort(L2));
  else
    return L;
  end if;
end proc:

Let p be the assertion that L is a nonempty list of distinct integers, and let q be the assertion that the 
procedure returns a list which has the same elements as L and is ordered.  Our claim is that 
p mergesort q.  Since mergesort is recursive, our proof will be by strong induction on the 
length of the list L.

For the basis case, assume that L has only one element.  Also assume p.  Then the if condition of
mergesort fails and the program terminates by returning L unmodified.  But since L has only one
element, it is trivially ordered.  Thus, under the basis assumption that L has only one element, 
p mergesort q.

For the inductive case, we make the inductive assumption that for all k % n, if a list has length k 
then mergesort returns the list sorted.  Assume L has nC 1 elements.  Also assume p.  Under 
these assumptions, the if condition is satisfied.  

The first command in the then clause assigns m =
nC 1

2
.  Note that m ! nC 1 and, since n O 1,

m O 0.  All of the inequalities are strict.

The next two commands assign L1 to the list consisting of the first m elements in L and L2 to the 
remainder.  Note that since 0 ! m ! nC 1, both of these lists are nonempty with at most n 
elements.  

In the final statement of the if clause, mergesort is applied to L1 and to L2.  Since these two lists 
both have length at most n, the inductive assumption implies that the results of mergesort on L1 
and L2 are lists with the same elements and ordered.  Since merge is partially correct, as shown in 
the previous subsection, the result of merge is an ordered list consisting of the elements of its input
lists.  Hence, the result of mergesort is an ordered list consisting of the same elements as L.  
That is, q holds.

This concludes the inductive step and we conclude p mergesort q for all lengths of L.  Hence,
mergesort is partially correct.
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Solutions to Computer Projects and Computations and Explorations
Computer Projects 2

Generate all well-formed formulae for expressions involving the variables x, y, and z and the 
operators C, $ , / , K  with n or fewer symbols.

Solution:  This problem asks us to not only generate well-formed formulae, but to generate all 
such formulae subject to a limitation on the number of symbols.  

To begin, we present a recursive definition of the set of well-formed formulae on the symbols.
Basis Step: x, y, and z are well-formed formulae.
Recursive Step: If F and G are well-formed formulae, then so are: KF , FCG , FKG ,

F$G , and F / G .
Note that we will fully parenthesize the well-formed formulae so as to avoid ambiguity, but 
parentheses will not be considered symbols.

Also note that we will implement the well-formed formulae as strings, not as algebraic 
expressions.  The reason for this is that if we build algebraic expressions, Maple will perform 
unwanted simplification.  For example, KKx  is a well-formed formula distinct from x, but if 
we enter KKx  as a Maple expression, it will be simplified to x.  

We will approach this problem in two steps.  First, we generate well-formed formulae using a  
procedure with sufficiently many applications of the recursive step to guarantee that every well-
formed formula of length n or less is produced.  Second, we will prune the well-formed 
formulae with greater than n symbols.  This will leave us with all well-formed formulae 
involving at most n symbols.

Generating formulae
The first step is to generate well-formed formulae.  For this, we will create a pair of procedures, 
similar to AllStrings and buildStrings from Section 5.3 of this manual.  

The procedure buildWFFs will accept a single argument, a set of well-formed formulae.  It 
will apply the recursive step to the existing set.  The procedure first makes a copy of the input 
set, since arguments cannot be modified.  Second, using a for loop over the input set, it applies 
unary negation.  Then, with two for loops over the input set and a third nested for loop over the 
binary operations, the procedure adds the rest of the well-formed formulae.

buildWFFs := proc(S::set)
  local T, f, g, o;
  T := S;
  for f in S do
    T := T union {cat("(-",f,")")};
  end do;
  for o in ["+","*","/","-"] do
    for f in S do
      for g in S do
        T := T union {cat("(",f,o,g,")")};
      end do;
    end do;
  end do;
  return T;
end proc:
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Let's confirm that this works as expected by applying it to the basis set "x", "y", "z" .
buildWFFs({"x","y","z"});

"(-x)", "(-y)", "(-z)", "(x*x)", "(x*y)", "(x*z)", "(xCx)", "(xCy)", "(xCz)", "(x-x)",
"(x-y)", "(x-z)", "(x/x)", "(x/y)", "(x/z)", "(y*x)", "(y*y)", "(y*z)", "(yCx)",
"(yCy)", "(yCz)", "(y-x)", "(y-y)", "(y-z)", "(y/x)", "(y/y)", "(y/z)", "(z*x)",
"(z*y)", "(z*z)", "(zCx)", "(zCy)", "(zCz)", "(z-x)", "(z-y)", "(z-z)", "(z/x)",
"(z/y)", "(z/z)", "x", "y", "z"

Note that the order is not the order in which the well-formed formulae are added, it is the order 
Maple imposes on the set.

The other component is the procedure that calls buildWFFs.  This is nearly identical to
AllStrings.  AllWFFs accepts a positive integer m representing the number of applications 
of the recursive step that are to be performed.  It initializes the set of formulae to the basis set and
applies buildWFFs as many times as is called for.

AllWFFs := proc(m::posint)
  local S, i;
  S := {"x","y","z"};
  for i from 1 to m do
    S := buildWFFs(S);
  end do;
  return S;
end proc:

Now the question is: how many applications of the recursive step are needed to be sure that the 
result contains all well-formed formulae of length at most n?  Clearly, 0 applications of
buildWFFs are needed to obtain all formulae consisting of 1 symbol, as this is the basis step.  
Also, the formulae produced by an application of buildWFFs contain at least one symbol more
than was present in the previous step (from the unary negation).  So after nK 1 applications of
buildWFFs, we are guaranteed to have all well-formed formulae with n symbols or fewer.

To illustrate, we will find all well-formed formulae of length at most 3.  Apply AllWFFs to 2.
AllWFF3 := AllWFFs(2):

We suppressed the output since the output would be lengthy.
nops(AllWFF3);

7101
Here is the set of every 300th formula.

AllWFF3[[seq(300*i+1,i=0..19)]];
"(-(-x))", "((-y)-(x*x))", "((x*x)C(x-x))", "((x*z)*(y*x))", "((xCx)/(y-x))",

"((xCz)-(z*x))", "((x-y)C(z-x))", "((x/x)*x)", "((x/z)*(x*x))", "((y*x)/(x-x))",
"((y*z)-(y*x))", "((yCy)C(y-x))", "((y-x)*(z*x))", "((y-y)/(z-x))", "((y/x)-x)",
"((y/z)-(x*x))", "((z*y)C(x-x))", "((zCx)*(y*x))", "((zCy)/(y-x))",
"((z-x)-(z*x))"

Note that these involve up to seven symbols.  Since we want the formulae with at most three 
symbols, we must remove from this set all the formulae with more than three.  For this, we will 
need a procedure that calculates the number of symbols in a formula.
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Pruning the set
To count the number of symbols in a formula, we can use the length command.  If you apply
length to a string, the command returns the number of characters in the string.

length("abcde");
5

However, the number of symbols in a well-formed formula is not equal to its length, since 
parentheses are not considered symbols.  So we will need to count the number of parentheses in 
the formula.  To do this, we use the fact that we can use the for i in S form of a for loop 
with S a string.  Then i will be successively assigned to each character.  We can then see if i is 
"(" or ")" to count the number of parentheses.  Here is the procedure.

countSymbols := proc(WFF::string)
  local count, i;
  count := length(WFF);
  for i in WFF do
    if i="(" or i=")" then
      count := count - 1;
    end if;
  end do;
  return count;
end proc:

For example, the number of symbols in "((z-x)-(z*x))" is:
countSymbols("((z-x)-(z*x))");

7

In order to prune the set AllWFF3 so that it contains only the formulae with 3 or fewer 
symbols, we'll use the select command.  The select command can be used to find the 
subset of a given set consisting of those elements satisfying a given condition.  select 
requires two arguments.  The first is a boolean-valued function and the second will be a set.  The
result is the set of elements of the original set for which the function returned true.  (Technically, 
the second argument can be any expression.  Refer to the help page for more information.)

In our case, the boolean-valued function should return true if the well-formed formula has three 
or fewer symbols.  We will test the result of countSymbols against 3 using a functional 
operator.

AllWFF3:=select(f -> evalb(countSymbols(f) <= 3),AllWFF3):

This results in a much more manageable number of results.
AllWFF3;

"(-(-x))", "(-(-y))", "(-(-z))", "(-x)", "(-y)", "(-z)", "(x*x)", "(x*y)", "(x*z)",
"(xCx)", "(xCy)", "(xCz)", "(x-x)", "(x-y)", "(x-z)", "(x/x)", "(x/y)", "(x/z)",
"(y*x)", "(y*y)", "(y*z)", "(yCx)", "(yCy)", "(yCz)", "(y-x)", "(y-y)", "(y-z)",
"(y/x)", "(y/y)", "(y/z)", "(z*x)", "(z*y)", "(z*z)", "(zCx)", "(zCy)", "(zCz)",
"(z-x)", "(z-y)", "(z-z)", "(z/x)", "(z/y)", "(z/z)", "x", "y", "z"

Computations and Explorations 2

Determine which Fibonacci numbers are divisible by 5, which are divisible by 7, and which 
are divisible by 11.  Prove that your conjectures are correct.
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Solution:  First we will generate some data to work with.  We use the fibonacci command in 
the combinat package.  This command applied to an integer n returns the nth Fibonacci 
number.

with(combinat):
fibList := [seq(fibonacci(i),i=1..50)]:

To answer the first part of the question, we want to know which Fibonacci numbers are divisible
by 5.  That is, we want to determine for which n is the nth Fibonacci divisible by 5.  We will use
the data above to construct a list consisting of those indices between 1 and 50 for which the 
corresponding Fibonacci number is divisible by 5.

fib5 := [];
fib5 :=

for i from 1 to 50 do
  if fibList[i] mod 5 = 0 then
    fib5 := [op(fib5),i];
  end if;
end do;
fib5;

5, 10, 15, 20, 25, 30, 35, 40, 45, 50

This list suggests that the nth Fibonacci number is divisible by 5 when n is.  To obtain more 
evidence, we'll design a procedure to look for counterexamples to the assertion: Fn is divisible 
by 5 if and only if n is divisible by 5.

Our procedure will accept a maximum index to check.  For each n from 1 to this maximum 
index, it will use the fibonacci command to compute the nth Fibonacci number.  If n is 
divisible by 5 and Fn is not, or if n is not divisible by 5 but Fn is, it will print a message 
indicating that it found a counterexample.  At the conclusion, the procedure will print a message 
indicating that it has finished computing.

testFib5 := proc(m::posint)
  local n, F;
  uses combinat;
  for n from 1 to m do
    F := fibonacci(n);
    if (n mod 5 = 0) and (F mod 5 <> 0) then
      print("n divisible by 5, Fn not:",n,F);
    elif (n mod 5 <> 0) and (F mod 5 = 0) then
      print("Fn divisible by 5, n not:",n,F);
    end if;
  end do;
  print("finished");
end proc:

Running the procedure up to 500 provides some evidence that our conjecture is true.
testFib5(500);

"finished"

Proving the conjecture, as well as forming and proving conjectures for 7 and 11, is left to the 
reader.
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Exercises
Exercise 1.  Use Maple to find and prove formulas for the sum of the first k nth powers of positive 
integers for n = 4, 5, 6, 7, 8, 9, 10.

Exercise 2.  For what positive integers k is nkK n divisible by k for all positive integers n?

Exercise 3.  Use Maple to help you find and prove the formulas sought in Exercises 9, 10, and 11 
of Section 5.1 of the text.  Do not use the sum command to form your conjectures.

Exercise 4.  Find integers a and d such that d divides an C 1 C aC 1 2 n K 1 for all positive 
integers n.  (Exercises 36 and 37 in Section 5.1 indicate that a = 4, d = 21 and a = 11, d = 133 are 
two such pairs.)

Exercise 5.  Supplementary Exercises 4 and 5 suggest a more general conjecture.  Use Maple's
sum command to produce evidence for this conjecture.  

Exercise 6.  Use the PostageBasis algorithm from Section 5.2 of this manual to find the 
smallest n such that every amount of postage of n cents or more can be made from stamps worth 78 
cents and $5.95.

Exercise 7.  Write a procedure that accepts two stamp denominations as input and returns the 
smallest n such that every amount of postage of n cents or more can be made from the given 
denominations, or returns FAIL if it cannot find such an n.  Use your procedure to make a 
conjecture that describes for which pairs of denominations such an n exists and for which there is 
no such n.

Exercise 8.  Write a procedure to recursively build a set from the following definition: basis step: 2 
and 3 belong to the set; recursive step: if x and y are members, then xy is a member.

Exercise 9.  Use the time command to compare the performance of gR and gF from Section 5.3.  
Graph the time performance for the two procedures.  (Be sure to apply the forget command to gR 
prior to every execution so that the comparison is fair.)

Exercise 10.  Write a procedure that accepts two stamp denominations and returns all amounts of 
postage that can be paid with up to n stamps.

Exercise 11.  The solution provided for Computer Projects 2 is inefficient as a means of finding all 
well-formed formulae involving at most n symbols.  This is because each iteration produces 
formulae with too many symbols.  In particular, after n iterations, the resulting set includes formulae
of up to 2n C 1 K 1 symbols (but not all such formulae).  Use the countSymbols procedure to 
modify the approach taken in the solution to Computer Projects 2 so that, with each application of 
the recursive step, only symbols that include up to n symbols are included.

Exercise 12.  Write a procedure to compute the number of partitions of a positive integer (see 
Exercise 47 in Section 5.3 of the text).

Exercise 13.  Write a procedure to compute Ackerman's function (see the prelude to Exercise 48 in 
Section 5.3).

Exercise 14.  Implement Algorithm 3 for computing gcd a, b  from Section 5.4 of the text.
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Exercise 15.  Implement Algorithm 5, the recursive linear search algorithm, from Section 5.4 of the 
text.  

Exercise 16.  Implement Algorithm 6, the recursive binary search algorithm, from Section 5.4 of the
text.

Exercise 17.  Compare the performance of your implementations of Algorithm 5 and Algorithm 6 
as follows: for a variety of values of n, let L be the list of integers from 1 to n.  Randomly choose 
one hundred integers between 1 and n and measure the average of the times taken for each algorithm
to find the randomly chosen integers.  Graph n versus the average times.  (See Section 4.6 of this 
manual for a description of the rand command for generating random integers.) 

Exercise 18.  Create three procedures to compute Fibonacci numbers: an iterative procedure, a 
recursive procedure with the remember option, and a recursive procedure without the remember 
option.  Base your procedures on Algorithms 7 and 8 in Section 5.4 of the text.  Create a graph 
illustrating the time performance of the three procedures.

Exercise 19.  Implement quick sort, described in the prelude to Exercise 50 in Section 5.4 of the 
text.  Compare the performance with the merge sort implemented in this manual.

Exercise 20.  Implement the algorithm described in Supplementary Exercise 44 for expressing a 
rational number as a sum of Egyptian fractions.

Exercise 21.  Use Maple to study the McCarthy 91 function.  (See the prelude to problem 45 in the 
Supplementary Exercises of Chapter 5.)


