Differential Equations for Engineers and Scientists

$$
\begin{gathered}
\text { By } \\
\text { Y. Cengel and W. Palm III }
\end{gathered}
$$

ANSWERS TO SELECTED PROBLEMS IN CHAPTER ONE

(Answers to Section Review problems are in the textbook)

CHAPTER 1

$1-33 z^{\prime \prime}=-g-\frac{F_{\text {air }}}{m}$ with $z(0)=0$ and $z^{\prime}(0)=V(0)=V_{i}$
1-35 $\frac{d T(t)}{d t}=\frac{h A}{m c}\left(T-T_{0}\right)$ with $T(0)=T_{i}$
$1-37 \frac{d M}{d t}=-k M, k>0$
1-41C The slope at the given point is 1.
1-43C This can be possible if $\left(\frac{\partial f}{\partial x}\right)_{y}=0$ or $\frac{d x}{d y}=0$, or both are zero.
1-45C High pressure lines are steeper than the low pressure lines.
1-47 (a) $f(x)=x^{2}-1$ is a continuous function on $(-\infty,+\infty)$
(b) $f(x)=\sqrt{x}$ is defined on $[0,+\infty)$ and continuous in that interval
(c) $f(x)=\frac{x}{\sin 2 x}$ is continuous for all x except for $x=0$
(d) $(x)=\frac{e^{2 x}}{x(x-1)}$ is continuous on $\mathfrak{R}-\{0,1\}$, where \mathfrak{R} denotes set of reel numbers

1-49 $\frac{d T}{d P}=\frac{1}{R}\left[\left(1+a / v^{2}\right)(v-b)\right]=$ constant

1-51 (a) $f(x)=x$ satisfies the given condition

(b) $f(x)=-x^{2}$ satisfies the given condition
(20
(c) No elementary function can satisfy the given condition.
$1-53$
(a) Given: $f_{1}=7 x^{4}-\sin 3 x^{3}+2 e^{-3 x}$

Solution: $\frac{\partial f_{1}}{\partial x}=\frac{d f_{1}}{d x}=28 x^{3}-9 x^{2} \cos 3 x^{3}-6 e^{-3 x}$
(b) Given: $f_{2}=7 x^{4}-\sin 3 x^{3} t+t^{2} e^{-3 x}$

Solution: $\frac{\partial f_{2}}{\partial x}=28 x^{3}-9 x^{2} t \cos 3 x^{3}-3 t^{2} e^{-3 x}$
(c) Given: $f_{3}=7 t^{4}-\sin 3 t^{3} x+t^{2} e^{-3 t}$

Solution: $\frac{\partial f_{3}}{\partial x}=28 x^{3}-\sin 3 t^{3}$
1-55 (a) Given: $f=\ln \left(x^{2}+1\right)$
Solution: $\frac{d f}{d x}=\frac{2 x}{x^{2}+1}$
(b) Given: $f=x^{4} \cos (2 x)$

Solution: $\frac{d f}{d x}=4 x^{3} \cos (2 x)-2 x^{4} \sin (2 x)$
c) Given: $f=\frac{5 x}{2 x^{3} \sin (x)}=\frac{5}{2 x^{2} \sin (x)}$

Solution: $\frac{d f}{d x}=-\frac{5}{x^{3} \sin (x)}-\frac{5 \cos (x)}{2 x^{2} \sin ^{2}(x)}=-\frac{5}{2} \frac{2 \sin (x)+x \cos (x)}{x^{3} \sin ^{2}(x)}$
d) Given: $f=\ln \left(e^{2 x}\right)$

Solution: $\frac{d f}{d x}=2$
1-57 (a) Given: $f(x)=x^{2 t}+\sin (2 \omega t)+3 t^{2} x$
Solution: $\quad I=\frac{1}{2 t+1}\left[-1+2 \sin (2 \omega t)+24 t^{3}+12 t^{2}+4 t \sin (2 \omega t)+3^{2 t+1}\right]$
(b) Given: $f=y^{\prime \prime}(x)+3 e^{-2 t x}+\cosh (2 \omega x)$

Solution: $I=y^{\prime}-\frac{3 e^{-2 t x}}{2 t}+\frac{\sinh (2 \omega x)}{\omega}+C$
1-59 (a) Given: $f(x)=3 x^{4}+x e^{2 x}+\cosh (3 x)$
Solution: $I=\frac{3}{5} x^{5}+\frac{e^{2 x}}{4}(2 x-1)+\frac{\sinh (3 x)}{3}+C$
(b) Given: $f(x)=\frac{a}{x}+4 \sin (3 x) \cos (3 x)-\sinh (2 x)$

Solution: $I=a \ln (2)+\frac{1}{3}[\cos (12)-\cos (24)]-\frac{1}{2}[\cosh (4)-\cosh (8)]$
(c) Given: $f=y^{\prime \prime}(x)+t^{3} \sin (2 \omega x)+e^{-2 t x}$

Solution: $I=\left[y^{\prime}(8)-y^{\prime}(x)\right]+\frac{t^{3}}{2 \omega}[\cos (16 \omega)-\cos (2 \omega x)]+\frac{1}{2 t}\left[e^{-16 t}-e^{-2 t x}\right]$
(d) Given: $f=4 y(x) y^{\prime}(x)+x y^{\prime \prime}(x)+\frac{b e^{-3 t}}{x^{2}}$

Solution: $I=2 y^{\prime}(x)^{2}+x y^{\prime}(x)-y(x)-\frac{b e^{-3 t}}{x}+C$
(b) $y^{\prime \prime \prime}+\sin (x) e^{-2 x} y^{\prime}=0 \quad$ (Linear, variable coefficient)
(c) $y^{\prime \prime \prime}+\sin (2 x) y^{\prime \prime}+x^{4} y=0 \quad$ (Linear, variable coefficient)
(d) $y^{\prime \prime}+3 y^{\prime}-y=\frac{\sin (3 x)}{x}$
(Linear, constant coefficient)
(e) $y^{\prime \prime}+e^{2 x} e^{-y}=0$
(Nonlinear, variable coefficient)
1-69 y_{1} and y_{2} are the solutions of the differential equation.
1-71 y_{1} and y_{2} are the solutions of the differential equation.
1-73 y_{1}, y_{2} and y_{3} are the solutions of the differential equation.
1-75 y_{1}, y_{2} and y_{3} are the solutions of the differential equation.
1-77 $z^{\prime \prime}=0$ with $z^{\prime}(0)=-V_{0}$ and $z\left(t_{0}\right)=0$ (Upward direction is positive)
1-79 (a) $y=C_{1} x+C_{2}$, where C_{1} and C_{2} are arbitrary constants
(b) $y^{\prime \prime}+4 y e^{-3 x}=0$ cannot be solved by direct integration
(c) $y=\frac{e^{-4 x}}{8}(2 x+1)+C_{1} x+C_{2}$, where C_{1} and C_{2} are arbitrary constants.
(d) $y^{\prime \prime}-x y=0$ cannot be solved by direct integration
(e) The unknown function $y(x)$ cannot be found in terms of elementary functions.

1-81 (a) $y=\frac{a x^{2}}{2}+C$, where C is an arbitrary constant.
(b) $y^{\prime \prime \prime}+4 y \sinh (2 x)=0$ cannot be solved by direct
(c) $y=\frac{b x^{2}}{2} \ln (a x)-\frac{3 b x^{2}}{4}+C_{1} x+C_{2}$, where C_{1} and C_{2} are arbitrary constants
(d) $y^{\prime}-e^{y} \cos (x)=0$ cannot be solved by direct integration
(e) The unknown function $y(x)$ cannot be found in terms of elementary functions.

1-83C The ginput function gives the result $x=0.5379 \mathrm{rad}$.
1-87 The result is 0.4304077247 .

$1-89$

(a) The answer is $\frac{1}{2 t+1}\left[-1+4 \sin \omega t \cos \omega t+24 t^{3}+12 t^{2}+8 t \sin \omega t \cos \omega t+3\left(9^{t}\right)\right]$ if $t \neq-1 / 2$, and $\ln 3-2 \sin \omega+3$ If $t=-1 / 2$.
(b) The answer is $y^{\prime}-\frac{3 e^{-2 t x}}{2 t}+\frac{\sinh 2 \omega x}{\omega}+C$

1-91
(a) The answer is $\frac{3}{5} x^{5}+\frac{e^{2 x}}{4}(2 x-1)+\frac{\mathrm{e}^{3 x}}{6}-\frac{1}{6 e^{3 x}}$ or $\frac{3}{5} x^{5}+\frac{e^{2 x}}{4}(2 x-1)+\frac{\sinh (3 x)}{3}$
(b) The answer is $a \ln (2)+\frac{1}{3}[\cos (12)-\cos (24)]-\frac{1}{2}[\cosh 4-\cosh 8]$

Another form returned is $a \ln (2)+\frac{1}{3}[\cos (12)-\cos (24)]+(\cosh 2)^{2}-(\cosh 4)^{2}$
(c) The answer is $y^{\prime}(8)-y^{\prime}(x)-\frac{t^{3}}{2 \omega}[\cos (16 \omega)-\cos (2 \omega x)]-\frac{1}{2 t}\left[e^{-16 t}-e^{-2 t x}\right]$
(d) The answer is $2 y^{\prime}(x)^{2}+x y^{\prime}(x)-y(x)-\frac{b e^{-3 t}}{x}$ or $\frac{[4 y(x)-1]^{2}}{8}+x y^{\prime}(x)-y(x)-\frac{b e^{-3 t}}{x}$

1-93

(a) $y=C_{1} x^{2}+C_{2} x+C_{3}$
(b) $C_{1} e^{\sqrt[3]{5} x}+C_{2} e^{-\sqrt[3]{5} x / 2} \cos (\sqrt[3]{5} x / 2)+C_{3} e^{-\sqrt[3]{5} x / 2} \sin (\sqrt[3]{5} x / 2)$
(c) $y=\frac{5}{24} x^{4}+C_{1} x^{2}+C_{2} x+C_{3}$
(d) $y^{\prime \prime}= \pm \sqrt{C_{1}-4 e^{-2 x}}$,

1-95 (a) $m_{1}=i$ and $m_{1}=-i$.
(b) $m_{1,2}=-1$.
(c) $m_{1}=1$ and $m_{1}=-1$.

1-97 (a) $m_{1}=-1$ and $m_{1}=-4$.
(b) $m_{1,2}=-3$.
(c) $m_{1,2}=-\frac{1}{2}(1 \pm i \sqrt{11})$.
$1-99 \quad$ (a) $m_{1,2}=-5$.
(b) $m_{1,2}=-\frac{5}{2}(1 \pm i \sqrt{3})$.
(c) $m_{1,2}=-5(1 \pm i \sqrt{2})$

1-101 (a) $r_{1,2}=\frac{1}{2}(1 \pm i \sqrt{3})$.
(b) $r_{1,2}= \pm \sqrt{2}$.

1-103 (a) $r_{1,2}=2 \pm i \sqrt{2}$.
(b) $r_{1,2}=-2$.
$\mathbf{1 - 1 0 5} V_{0}=2.5 \mathrm{~m} / \mathrm{s}$.
1-107 $T(r)=T(R)+\frac{g_{0}}{4 k} R^{2}-\frac{g_{0}}{4 k} r^{2} \rightarrow T(r)=T(R)+\frac{g_{0}}{4 k}\left(R^{2}-r^{2}\right)$ and $T(0)=210{ }^{\circ} \mathrm{C}$
1-109 $T(x)=T(L)+\frac{g_{0}}{p k}(x-L)+\frac{g_{0}}{p^{2} k}\left(e^{p L}-e^{p x}\right)$ and $T(0)=323^{\circ} \mathrm{C}$.
1-111 (a) $C(t)=\frac{1}{\sqrt{y(t)}}=\frac{C(0)}{\sqrt{1+2 k C(0) t}}$ and (b) $C(t)=\frac{C(0)}{\sqrt{1+2 k C(0) t}}$

