Differential Equations for Engineers and Scientists by Y. Cengel and W. Palm III

ANSWERS TO SELECTED PROBLEMS

(Answers to Section Review problems are in the textbook)

1-33
$$z'' = -g - \frac{F_{air}}{m}$$
 with $z(0) = 0$ and $z'(0) = V(0) = V_i$
1-35 $\frac{dT(t)}{dt} = \frac{hA}{mc}(T - T_0)$ with $T(0) = T_i$
1-37 $\frac{dM}{dt} = -kM, k > 0$

1-41C The slope at the given point is 1.

1-43C This can be possible if $\left(\frac{\partial f}{\partial x}\right)_y = 0$ or $\frac{dx}{dy} = 0$, or both are zero.

1-45C High pressure lines are steeper than the low pressure lines.

1-47 (a) $f(x) = x^2 - 1$ is a continuous function on $(-\infty, +\infty)$

(b)
$$f(x) = \sqrt{x}$$
 is defined on $[0, +\infty)$ and continuous in that interval
(c) $f(x) = \frac{x}{\sin 2x}$ is continuous for all x except for $x = 0$
(d) $(x) = \frac{e^{2x}}{x(x-1)}$ is continuous on $\Re - \{0, 1\}$, where \Re denotes set of reel numbers

1-49
$$\frac{dT}{dP} = \frac{1}{R} [(1 + a/v^2)(v - b)] = \text{constant}$$

1-51 (a) f(x) = x satisfies the given condition

(b) $f(x) = -x^2$ satisfies the given condition

(c) No elementary function can satisfy the given condition.

1-53 (a) Given:
$$f_1 = 7x^4 - \sin 3x^3 + 2e^{-3x}$$

Solution: $\frac{\partial f_1}{\partial x} = \frac{df_1}{dx} = 28x^3 - 9x^2\cos 3x^3 - 6e^{-3x}$
(b) Given: $f_2 = 7x^4 - \sin 3x^3t + t^2e^{-3x}$

Solution:
$$\frac{\partial f_2}{\partial x} = 28x^3 - 9x^2t\cos 3x^3 - 3t^2e^{-3x}$$

(c) Given: $f_3 = 7t^4 - \sin 3t^3x + t^2e^{-3t}$
Solution: $\frac{\partial f_3}{\partial x} = 28x^3 - \sin 3t^3$

1-55 (a) Given: $f = \ln(x^2 + 1)$ Solution: $\frac{df}{dx} = \frac{2x}{x^2+1}$

> **(b) Given:** $f = x^4 \cos(2x)$ **Solution:** $\frac{df}{dx} = 4x^3 \cos(2x) - 2x^4 \sin(2x)$

c) Given:
$$f = \frac{5x}{2x^3 \sin(x)} = \frac{5}{2x^2 \sin(x)}$$

Solution: $\frac{df}{dx} = -\frac{5}{x^3 \sin(x)} - \frac{5 \cos(x)}{2x^2 \sin^2(x)} = -\frac{5}{2} \frac{2 \sin(x) + x \cos(x)}{x^3 \sin^2(x)}$

d) Given:
$$f = \ln (e^{2x})$$

Solution: $\frac{df}{dx} = 2$

1-57 (a) Given:
$$f(x) = x^{2t} + \sin(2\omega t) + 3t^2 x$$

Solution: $I = \frac{1}{2t+1} \left[-1 + 2\sin(2\omega t) + 24t^3 + 12t^2 + 4t\sin(2\omega t) + 3^{2t+1} \right]$

(b) Given: $f = y''(x) + 3e^{-2tx} + \cosh(2\omega x)$ **Solution:** $I = y' - \frac{3e^{-2tx}}{2t} + \frac{\sinh(2\omega x)}{\omega} + C$

1-59 (a) Given:
$$f(x) = 3x^4 + xe^{2x} + \cosh(3x)$$

Solution: $I = \frac{3}{5}x^5 + \frac{e^{2x}}{4}(2x - 1) + \frac{\sinh(3x)}{3} + C$

(b) Given:
$$f(x) = \frac{a}{x} + 4\sin(3x)\cos(3x) - \sinh(2x)$$

Solution: $I = a\ln(2) + \frac{1}{3}[\cos(12) - \cos(24)] - \frac{1}{2}[\cosh(4) - \cosh(8)]$

(c) Given: $f = y''(x) + t^3 \sin(2\omega x) + e^{-2tx}$ Solution: $I = [y'(8) - y'(x)] + \frac{t^3}{2\omega} [\cos(16\omega) - \cos(2\omega x)] + \frac{1}{2t} [e^{-16t} - e^{-2tx}]$

(d) Given:
$$f = 4y(x)y'(x) + xy''(x) + \frac{be^{-3t}}{x^2}$$

Solution: $I = 2y'(x)^2 + xy'(x) - y(x) - \frac{be^{-3t}}{x} + C$

1-63 (a) $y'' + 2y' = \sin(x) + 1$ (Linear, constant coefficient) (b) $y''' + \sin(x) e^{-2x}y' = 0$ (Linear, variable coefficient) (c) $y''' + \sin(2x) y'' + x^4 y = 0$ (Linear, variable coefficient) (d) $y'' + 3y' - y = \frac{\sin(3x)}{x}$ (Linear, constant coefficient) (e) $y'' + e^{2x}e^{-y} = 0$ (Nonlinear, variable coefficient)

- **1-69** y_1 and y_2 are the solutions of the differential equation.
- **1-71** y_1 and y_2 are the solutions of the differential equation.
- **1-73** y_1, y_2 and y_3 are the solutions of the differential equation.
- **1-75** y_1, y_2 and y_3 are the solutions of the differential equation.
- **1-77** z'' = 0 with $z'(0) = -V_0$ and $z(t_0) = 0$ (Upward direction is positive)
- 1-79 (a) y = C₁x + C₂, where C₁ and C₂ are arbitrary constants
 (b) y" + 4ye^{-3x} = 0 cannot be solved by direct integration
 (c) y = e^{-4x}/8 (2x + 1) + C₁x + C₂, where C₁ and C₂ are arbitrary constants.
 (d) y" xy = 0 cannot be solved by direct integration
 (e) The unknown function y(x) cannot be found in terms of elementary functions.
- **1-81** (a) $y = \frac{ax^2}{2} + C$, where C is an arbitrary constant. (b) $y''' + 4y \sinh(2x) = 0$ cannot be solved by direct (c) $y = \frac{bx^2}{2}\ln(ax) - \frac{3bx^2}{4} + C_1x + C_2$, where C_1 and C_2 are arbitrary constants (d) $y' - e^y \cos(x) = 0$ cannot be solved by direct integration (e) The unknown function y(x) cannot be found in terms of elementary functions.

1-83C The ginput function gives the result x = 0.5379 rad.

1-87 The result is 0.4304077247.

1-89

(a) The answer is $\frac{1}{2t+1} \left[-1 + 4\sin\omega t \cos\omega t + 24t^3 + 12t^2 + 8t\sin\omega t \cos\omega t + 3(9^t) \right]$ if $t \neq -1/2$, and $\ln 3 - 2\sin\omega + 3 \text{ If } t = -1/2$.

(b) The answer is
$$y' - \frac{3e^{-2tx}}{2t} + \frac{\sinh 2\omega x}{\omega} + C$$

1-91

(a) The answer is $\frac{3}{5}x^5 + \frac{e^{2x}}{4}(2x-1) + \frac{e^{3x}}{6} - \frac{1}{6e^{3x}}$ or $\frac{3}{5}x^5 + \frac{e^{2x}}{4}(2x-1) + \frac{\sinh(3x)}{3}$

(b) The answer is $a \ln(2) + \frac{1}{3} [\cos(12) - \cos(24)] - \frac{1}{2} [\cosh 4 - \cosh 8]$

Another form returned is $a \ln(2) + \frac{1}{3} [\cos(12) - \cos(24)] + (\cosh 2)^2 - (\cosh 4)^2$

(c) The answer is $y'(8) - y'(x) - \frac{t^3}{2\omega} [\cos(16\omega) - \cos(2\omega x)] - \frac{1}{2t} [e^{-16t} - e^{-2tx}]$ (d) The answer is $2y'(x)^2 + xy'(x) - y(x) - \frac{be^{-3t}}{x}$ or $\frac{[4y(x)-1]^2}{8} + xy'(x) - y(x) - \frac{be^{-3t}}{x}$ 1-93 (a) $y = C_1 x^2 + C_2 x + C_3$ **(b)** $C_1 e^{\sqrt[3]{5}x} + C_2 e^{-\sqrt[3]{5}x/2} \cos(\sqrt[3]{5}x/2) + C_3 e^{-\sqrt[3]{5}x/2} \sin(\sqrt[3]{5}x/2)$ (c) $y = \frac{5}{24}x^4 + C_1x^2 + C_2x + C_3$ (d) $y'' = \pm \sqrt{C_1 - 4e^{-2x}}$ 1-95 (a) $m_1 = i$ and $m_1 = -i$. **(b)** $m_{1,2} = -1$. (c) $m_1 = 1$ and $m_1 = -1$. **1-97** (a) $m_1 = -1$ and $m_1 = -4$. **(b)** $m_{1,2} = -3$. (c) $m_{1,2} = -\frac{1}{2} (1 \pm i\sqrt{11}).$ **1-99** (a) $m_{1,2} = -5$. **(b)** $m_{1,2} = -\frac{5}{2} (1 \pm i\sqrt{3}).$ (c) $m_{1,2} = -5(1 \pm i\sqrt{2})$ **1-101** (a) $r_{1,2} = \frac{1}{2} (1 \pm i\sqrt{3}).$ **(b)** $r_{1,2} = \pm \sqrt{2}$. **1-103** (a) $r_{1,2} = 2 \pm i\sqrt{2}$. **(b)** $r_{1.2} = -2$. **1-105** $V_0 = 2.5 \text{ m/s}.$ **1-107** $T(r) = T(R) + \frac{g_0}{4k}R^2 - \frac{g_0}{4k}r^2 \to T(r) = T(R) + \frac{g_0}{4k}(R^2 - r^2)$ and $T(0) = 210 \,^{\circ}\text{C}$ **1-109** $T(x) = T(L) + \frac{g_0}{nk}(x-L) + \frac{g_0}{n^2k}(e^{pL} - e^{px})$ and T(0) = 323 °C. **1-111 (a)** $C(t) = \frac{1}{\sqrt{y(t)}} = \frac{C(0)}{\sqrt{1+2kC(0)t}}$ and **(b)** $C(t) = \frac{C(0)}{\sqrt{1+2kC(0)t}}$

2-37	(a) $y' + e^x y = 2\sqrt{x} \rightarrow \text{linear}$	(b) $y'y^2 + \cos(y) = x \rightarrow \text{nonlinear}$	
2-39	(a) $yy' + xy = x \rightarrow \text{nonlinear}$	(b) ${y'}^2 - y^2 = x^2 \rightarrow \text{nonlinear}$	
2-41 (a) $y = \frac{1}{3}x^2 + C\sqrt{x}$, (b) $y = \left(1 - \frac{1}{x}\right)e^x + \frac{C}{x}$			
2-43 (a) $y = \frac{x}{9}(3x - 4 + C_1e^{-3x})$ where $C_1 = 9C$, (b) $y = 2(x \tanh(x) - 1 + C \operatorname{sech}(x))$			
2-45 (a) $y = \frac{1}{20x^2} [-10x^2 \cos(2x) + 5\cos(2x) + 10x\cos(2x) - 4x^5 + C_1]$ where $C_1 = 20C$. (b) $y = \frac{e^{2x}}{4x^2} (2x - 1) + \frac{C}{x^2}$			
2-47 (a) $y = -e^{-x} + 2e^{2x-2} + e^{2x-1}$, (b) $y = -x + 5\sqrt{\frac{x^2-1}{3}}$			
2-49 (a) $y = \frac{1}{x} (4 \ln(x) + 3)$, (b) $y = \frac{1}{30} \frac{5x^6 - 24x^5 - 32}{x - 4}$			
2-51 $x = 1 - e^{\frac{1-y}{y}}$			
2-53 $Cy_1(x)$ is also a solution of $y' + P(x)y = 0$, no matter what value of C is.			

2-55 $Cy_1(x)$ cannot be a solution of the given DE.

2-59 *t* = 6 hours

2-63 (a) At steady state, y = 24/3 = 8. **(b)** 5.04 is 63% of 8, so it will take one time constant, or 8, to reach 5.04. **(c)** 7.84 is 98% of 8, so it will take four time constants, or 32, to reach 7.84.

2-65 *T*(2) = 13.3 °C.

2-67 $t \approx 4.8 \text{ min}$

2-69 $E/E_0 = 0.243$ or 24.3%. Therefore we conclude that the fraction of the light that will reach the bottom of the pond is 1 - 0.243 = 0.757 = 75.7%.

2-71 The amount of salt after 30 minutes will be 10 kg, and it will never drop to 1 kg.

$$2-73 \frac{dV}{dt} + \frac{k}{m}V = g\left(1 - \frac{\rho_w}{\rho_b}\right), \text{ The solution is } V(t) = \frac{mg}{k}\left(1 - \frac{\rho_w}{\rho_b}\right)\left(1 - e^{-\frac{k}{m}t}\right), \text{ The terminal velocity is } V_t = \frac{mg}{k}\left(1 - \frac{\rho_w}{\rho_b}\right)$$

2-75 *A*(8 years) = \$25,260.22

2-77 *i* = 13.86% per year.

2-79

- **a)** Theorem 2-2 guarantees both existence and uniqueness of a solution in a neighborhood of any *x*.
- **b)** The given differential equation $y' = xy/(x^2 1)$ must have a unique solution near any point in the *xy*-plane where $x \neq -1$ or $x \neq 1$.

2-81

- **a)** Theorem 2-2 guarantees nothing in some neighborhood of x = 0.
- **b)** The Theorem 2-2 guarantees both existence and uniqueness in some neighborhood of x = 1. **2-83**
 - a) Theorem 2-2 guarantees both existence and uniqueness in some neighborhood of x = 0.
 - **b)** Theorem 2-2 guarantees both existence and uniqueness in some neighborhood of x = 1.

2-87 (a)
$$y(x) = \pm \sin(2\sqrt{x} + C)$$
, **(b)** $y(x) = e^{ax - \frac{bx^2}{2} + C}$

2-89 (a)
$$\ln\left(\frac{1+\sin(y)}{\cos(y)}\right) = \sin(x) - x\cos(x) + C$$
, **(b)** $-(1+y)e^{-y} = e^{x+1}$

2-91 (a)
$$e^{3(y-x)}(3y-3x-1) = 18x + C$$
, where $C = 9C_1$.
(b) $\sqrt{x+2y-3} - \frac{1}{2}\ln(2\sqrt{x+2y-3}+1) = x + C$

2-93 (a)
$$y(x) = \frac{\tan(x^2)}{2}$$
, **(b)** $y(x) = \tanh\left(\frac{x-1}{x}\right)$

2-95 (a)
$$y(x) = e^{x^3 - 8}$$
, **(b)** $\cos(y) + y\sin(y) = \sin(x) - x\cos(x)$

2-97 (a)
$$y(x) = e^{\frac{3x^4}{2} + C}$$
, **(b)** $y(x) = -\frac{e^{K-bx} - c}{b}$

2-99 $y(t) = \left(H^{5/2} - \frac{5}{2} \frac{r^2 \sqrt{2g}}{(R/H)^2} t\right)^{2/5}$, The time required for the tank to be empty can be evaluated by setting y(T) = 0 which yields $T = \frac{1}{5} \sqrt{2H/g} \left(\frac{R}{r}\right)^2$

2-101 $\left(\frac{N}{N_0}\right)^A \left(\frac{a-bN}{a-bN_0}\right)^B \left(\frac{1-cN_0}{1-cN}\right)^C = e^{-t}$, where $A = \frac{1}{a}$, $B = \frac{b}{a^2c-ab}$, and $C = \frac{c}{ac-b}$ Equilibrium points are $N = \frac{a}{b}$, $N = \frac{1}{c}$ and N = 0. 2-103 (a) $v' = \frac{T-mg}{m} - \frac{0.027v^2}{m} = A - Bv^2$, $v = C \tanh BCt$, where $C = \sqrt{A/B}$ (b) v(4) = 200.9 m/s2-105 (a) xy = K, (b) y(x - k) = C2-109 (a) $\frac{dy}{dx} = \frac{x^2 - y^2}{xy}$ is homogeneous, (b) $\frac{dy}{dx} = \frac{x^3 - 2xy^2}{x^2 + y}$ is not homogeneous. 2-111 (a) $\frac{dy}{dx} = \frac{x^4 - 3x^2y^2 + y^4}{xy^3 - 4y^4}$ is homogeneous, (b) $\frac{dy}{dx} = x^3 - y^3$ is not homogeneous.

2-113 (a) $y(x) = \frac{x^2}{x - c'}$ (b) $\ln(K\sqrt{x^2 + y^2}) = 2\arctan(\frac{y}{x})$, where K = 1/C. **2-115 (a)** $y^6 + 2x^3y^3 + x^6 = Ky^3$, where $K = C^3$ **(b)** $\frac{4\sqrt{5}}{5}$ arctanh $\left(\frac{\sqrt{5}}{5}\left(2\frac{y}{x}+1\right)\right) = \ln\left(\frac{c}{y^2+xy-x^2}\right)$ **2-117 (a)** $y(x) = 2x\sin(\ln(C/x^{10}))$, **(b)** $y(x) = \frac{1}{2x}(x^2 + K)$, where $K = C^2$. **2-119 (a)** $y = x/\ln(y)$, **(b)** $y(x) = \frac{2x}{2-9x^{1/3}}$ **2-121 (a)** $y(x) = -\frac{2}{3} + x + C(x-1)^3$, **(b)** $\ln\left(\sqrt{K(x^2 + y^2 - 3(x + y - 1) + xy)}\right) = \sqrt{3}\arctan\left(\frac{\sqrt{3}}{3}\left(2\frac{y - 1}{x - 1} + 1\right)\right)$ **2-123 (a)** $y = (x - 4) \ln(C(x - 4)) - 4$, **(b)** $y = x + Ce^{\left(\frac{x-1}{-x+y+1}\right)} - 1$ **2-127 (a)** $3(x^2 + y^2) + 2(x - y) = K$, where K = 2C(b) The differential equation is inexact **2-129 (a)** $-e^{y}\cos(x) + 2x = C$, **(b)** The differential equation is inexact. **2-131 (a)** $x^3 - y^3 + 3(\sin(y) - \cos(x)) = K$, **(b)** The differential equation is inexact. **2-133 (a)** $x^2 e^y + y = C$, **(b)** The differential equation is inexact. **2-135** $\frac{2x^3}{x^3} + y^4 - y^2 + x + y = 1$ **2-137** $x^2 - y^2 + 3y(x+1) - x = 0$ **2-139** $e^{x}(x^{2}-2x+2) - e^{y}(y^{2}-2y+2) + x + y = 6 - 10e^{4}$ **2-147** $y = C + \frac{\sin 2x}{8} + \frac{x[2(\sin x)^2 - 1]}{4}$ **2-149** Maple gives the answer: $y(x) = e^{\frac{1}{3} \operatorname{LambertW}\left(\frac{1}{3} (e^{-CI})^3 x^3\right) - CI$

2-151 The equation in the first printing is incorrect. It should be $y' = 2(x - y)^2$. The solution is $y(x) = x - \frac{\sqrt{2}}{2} \tanh(\sqrt{2}x)$ 2-159 $y(x) = \begin{cases} Ce^{4x}, & x < 0 \\ -\frac{5}{2} + Ce^{4x}, & x \ge 0 \end{cases}$ 2-161 $y(x) = \begin{cases} -x + 1 + Ce^{-x}, & x < 0 \\ x - 1 + Ce^{-x}, & x \ge 0 \end{cases}$ 2-163 t = 2.56 secs. 2-165 (a) $z_{max} = 101.20$ m, (b) t = 5.85 secs. (c)V(5.85) = -32.06 m/s (downwards). 2-167 $P(t) = \frac{-b + eCe^{-Kt}}{-a + fCe^{-Kt}} = \frac{-b + eCe^{-k(ae - bf)t}}{-a + fCe^{-k(ae - bf)t}}$ 2-169 $x(t) = \frac{ab(e^{k(a-b)t} - 1)}{ae^{k(a-b)t} - b}$

Taking a = 2b we end up with the $x(t) = \frac{2b(e^{kbt}-1)}{2e^{kbt}-1}$ whose limit is b as $t \to \infty$.

2-171
$$x^{2} + 3xy - 2x - 2y^{2} - 3y = C$$

2-173 $-\frac{1}{2}e^{x}(\cos(x) - \sin(x)) + y^{2}x - 3x - \frac{y^{3}}{3} = C$
2-175 $C_{1}(t) = K_{2} - \frac{K_{1}}{2k}e^{-2kt}$
2-177 $y(x) = x + \ln\left(-\frac{e+1}{e^{x} - e^{x+1} - 2e}\right)$
2-179 $y(x) = \frac{1}{8}\left(1 - x\ln^{2}\left(\frac{K}{x^{4}}\right)\right)$
2-181 $y(x) = x\tan(\ln(x))$
2-183 $\ln\left(\frac{Ky^{2}}{y^{2} - x^{2}}\right) = \frac{x^{2}}{y^{2} - x^{2}}$
2-185 $y(x) = \frac{2}{x+2C}$
2-187 $y(x) = \frac{1}{2}e^{x} + C_{1}e^{-x} + C_{2}x + C_{3}$
2-189 $y(x) = \frac{1}{2}x^{2} + 1$
2-191 $y(x) = \frac{1}{12}(x^{4} + 6x^{2} - 32x)$
2-193 $y(x) = -\frac{x^{3}}{6} - \frac{x^{2}}{2} + (x + 1)\ln(x + 1) - 1$
2-195 $y(x) = \ln\left(\frac{2/e}{2-e}e^{x+\ln(2-e)} - 1\right) - x - \ln(2-e)$
2-197 $y(x) = 1$.

2-199
$$y(x) = \sqrt[3]{\frac{1}{-1+2e^{-3x}}}$$

2-201 $\frac{1}{y} = (1+x)\left(\frac{C-\arcsin(x)}{\sqrt{1-x^2}} - 1\right)$
2-203 $y(x) = \pm \sqrt{\frac{a}{-b+aCe^{-2ax}}}$
2-207 $y(x) = \frac{2}{2Ce^{2x}-1}$
2-209 $y(x) = \frac{e^{2x}(5+7Ce^{7x})}{-2+7Ce^{7x}}$

3-57 (a) y" - 5y' + cos y = x + 1; Nonlinear, nonhomogeneous, constant coefficients
(b) y" = 0; Linear, homogeneous, constant coefficients
(c) y" + 2x²y' + 5y = 0; Linear, homogeneous, variable coefficients
(d) y" + e^xy = 1/x; Linear, nonhomogeneous, variable coefficients
3-59 (a) y" + 1/x = 1; Nonlinear, nonhomogeneous, constant coefficients

(b) $y'' + 8y' - e^{\ln y} = 0$; Noninear, homogeneous, constant coefficients

(c) $y'' - \sin 2xy' + y = 0$; Linear, homogeneous, variable coefficients

(d) y'' + y = 7; Linear, nonhomogeneous, constant coefficients

3-61(a) The initial-value problem has a unique solution in the interval $-\infty < x < +\infty$.

(b) The initial-value problem has a unique solution in the interval $-\infty < x < 2$.

3-63 (a) The initial-value problem has a unique solution in the interval −∞ < x < +∞. **(b)** The initial-value problem has a unique solution in the interval −2 < x < 2.

3-65 (a)
$$y'' + 2y' + 10y = 0$$
, **(b)** $4x^2y'' + 4xy' + (4x^2 - 1)y = 0$
3-67 (a) $x^2y'' - 2xy' - 4y = 0$, **(b)** $y'' + 4y = 0$

3-73 (a) y_1 and y_2 are linearly dependent, (b) y_1 and y_2 are linearly dependent.

3-75 (a) y_1 and y_2 are linearly independent, **(b)** y_1 and y_2 are linearly independent.

3-77 (a) y_1 and y_2 are linearly independent, (b) y_1 and y_2 are linearly independent.

3-79 (a) y_1 and y_2 are linearly dependent, **(b)** y_1 and y_2 are linearly dependent.

3-81 y_1 , y_2 and y_3 are linearly dependent.

3-83 y_1 , y_2 and y_3 are linearly independent.

3-85 y_1 , y_2 and y_3 are linearly independent.

3-87 y_1 , y_2 and y_3 are linearly dependent.

3-89 y_1 , y_2 and y_3 are linearly independent.

- **3-93 (a)** ky₁ is also a solution, (b) ky₁ is not a solution
 (c) ky₁ is not a solution, (d) ky₁ is not a solution
- **3-95 (a)** ky₁ is not a solution, (b) ky₁ is not a solution
 (c) ky₁ is also a solution, (d) ky₁ is also a solution

3-97 (a) $y_1 + y_2$ *is* also a solution, **(b)** $y_1 + y_2$ is *not* a solution (c) $y_1 + y_2$ is *not* a solution, **(d)** $y_1 + y_2$ is *not* a solution

3-99 (a) $y_1 + y_2$ is *not* a solution, **(b)** $y_1 + y_2$ *is* also a solution **(c)** $y_1 + y_2$ *is* also a solution, **(d)** $y_1 + y_2$ *is* also a solution

3-101 (a) The Wronskian of y_1 and y_2 is never zero for x > 0

(b) The Wronskian of y_1 and y_2 is zero

(c) The Wronskian of y_1 and y_2 is zero

- **3-103 (a)** The Wronskian of y₁ and y₂ is never zero for x > 0 **(b)** The Wronskian of y₁ and y₂ is zero
 - **b** The wronskian of y_1 and y_2 is zero
 - (c) The Wronskian of y_1 and y_2 is zero

3-105 (a)
$$y(x) = \frac{C_1}{x} + C_2 \frac{\ln x}{x}$$

(b) $y(x) = \frac{2C_1}{x} + C_2 \frac{\ln x}{x}$
(c) y_1 and y_2 does **not** form a fundamental set of solutions.

3-107 (a) $y(x) = e^{x} (C_1 \sin \sqrt{2}x + C_2 \cos \sqrt{2}x)$ **(b)** $y(=e^{x} (C_1 \sin \sqrt{2}x + C_2 \cos \sqrt{2}x))$ **(c)** $y(x) = e^{x} (C_1 \cos \sqrt{2}x + C_2 \sin \sqrt{2}x)$

3-111
$$y = (C_1 + C_2 x)e^{-x}$$

3-113
$$y = C_1 e^{2x} + C_2 e^{-2x}$$

3-115 $y = C_1 \sin 3x + C_2 \cos 3x$
3-117 $y = \frac{C_1}{x} + \frac{C_2 \ln x}{x}$
3-119 $y = C_1 x + C_2 e^{2x} \left(\frac{x}{2} - 1\right)$
3-121 $y = C_1 x^{1/3} - \frac{C_2}{x^{13/3}}$
3-129 (a) $y = C_1 \cos \lambda x + C_2 \sin \lambda x$, **(b)** $y = (C_1 + C_2 x)e^{2x}$, **(c)** $y = C_1 e^{\lambda x} + C_2 e^{-\lambda x}$
3-131 (a) $y = (C_1 + C_2 x)e^{3x}$, **(b)** $y = e^{-3x/2} \left(C_1 \cos \frac{\sqrt{7}}{2}x + C_2 \sin \frac{\sqrt{7}}{2}x\right)$,
(c) $y = C_1 e^{(3+\sqrt{13})x} + C_2 e^{(3-\sqrt{13})x}$

3-133
$$y = \frac{1}{4}(e^{2x} - e^{-2x})$$

3-134 $y = e^{x-1} + e^{-4(x-1)}$

3-135
$$y = -\frac{17}{2}e^{-x} + \frac{2}{3}e^{x/2}$$

3-137 $y = \frac{1}{2}e^{\pi-2x} \sin 4x$
3-139 $y(x) = \frac{e^{4x-4}+4e^{4x-x}}{4e^{4x+1}}$
3-141 $T(x) = -29.6e^{3.75x} + 129.6e^{-3.75x}$
3-143 $T(x) = 0.0083e^{12.613x} + 199.991e^{-12.613x}$
3-147 (a) $y = C_1 \cos x + C_2 \sin x + e^x$, (b) $y = C_1 \cos x + C_2 \sin x + e^x$
3-149 (a) $y = C_1e^{-2x} + C_2xe^{-2x} + x^2e^{-2x}$, (b) $y = C_1e^{-2x} + (C_2 + 1)xe^{-2x} + C_2xe^{-2x}$
3-151 (a) $= C_1 + C_2x + \frac{1}{12}x^4 - \frac{1}{2}x^2$, (b) $y = C_1 + C_2x + \frac{1}{12}x^4 - \frac{1}{2}x^2$
3-155 $y = C_1 \cos 2x + C_2 \sin 2x + 2x^2 + x + 2e^x$
3-155 $y = C_1 \cos x + C_2 \sin x - 2 \sin 2x + 2$
3-161 (a) $y = C_1e^{2x} + C_2xe^{2x} - 2e^{3x}$, (b) $y = C_1e^{2x} + C_2xe^{2x} + x^2e^{2x+3}$
(c) $y = C_1e^{2x} + C_2xe^{2x} - \frac{5}{9}x^3$, (b) $y = C_1e^{2x} + C_2xe^{2x} - \frac{1}{25}(3\cos 2x + 4\sin 2x)e^x$
3-163 (a) $y = C_1 + C_2e^{3x} - \frac{1}{6}x^2 + \frac{5}{9}x$, (b) $y = C_1 + C_2e^{3x} + \left(-\frac{1}{2}x + \frac{3}{4}\right)e^x$
(c) $y = C_1 + C_2e^{3x} + \frac{1}{2x}(10x\cos 2x - 19\cos 2x - 8\sin 2x - 30x\sin 2x)$
3-165 (a) $y = C_1 \cos x + C_2 \sin x - \frac{x}{2}(2\cos x + 3\sin x)$
(b) $y = C_1 \cos x + C_2 \sin x - \frac{x}{2}(2\cos 3x + \sin 3x)e^{2x}$
(c) $y = C_1 \cos x + C_2 \sin x - \frac{1}{40}(3\cos 3x + \sin 3x)e^{2x}$
3-167 $y = \left(-10\sin x + \frac{17}{2}\cos x\right)e^x + \frac{1}{2}x^3 + \frac{3}{2}x^2 + \frac{3}{2}x - \frac{5}{2}$
3-169 $y = -\frac{3}{2}e^x + \frac{5}{2}e^{-x} + 2xe^x + \frac{1}{2}\sin x - \frac{x}{2}\cos x$
3-171 (a) $y = C_1e^{-2x} + C_2e^{2x} + \frac{1}{6}(2x^2 - 2x + 1)$
3-173 (a) $y = C_1e^{2x} \sin x + C_2e^{2x} \cos x - \frac{3}{8}e^{2x}(\cos 2x - 1)\cos x$
(b) $y = C_1e^{2x} \sin x + C_2e^{2x} \cos x - \frac{1}{8}e^{2x}(\cos 2x - 1)\cos x$
(b) $y = C_1e^{2x} \sin x + C_2e^{2x} \cos x - \frac{1}{8}e^{2x}(\cos 2x - 1)\cos x$
(b) $y = C_1e^{2x} \sin x + C_2e^{2x} \cos x - \frac{1}{8}e^{2x}(\cos 2x - 1)\cos x$
(b) $y = C_1e^{2x} \sin x + C_2e^{2x} \cos x - \frac{1}{8}e^{2x}(\cos 2x - 1)\cos x$
(b) $y = C_1e^{2x} \sin x + C_2e^{2x} \cos x - \frac{1}{8}e^{2x}(\cos 2x - 1)\cos x$

3-175 (a)
$$y = C_1 + C_2 e^{4x} - \frac{1}{8} x^2 - \frac{21}{16} x$$

(b) $y = C_1 + C_2 e^{4x} + \frac{1}{2(x-2)}$
3-177 (a) $y = C_1 e^x + C_2 x e^x + e^{2x} + 8$, (b) $y = C_1 e^x + C_2 x e^x + x^{-2} e^x$
3-181 (a) $y = C_1 x^{-1+\sqrt{3}} + C_2 x^{-1-\sqrt{3}}$, (b) $y = C_1 (x-1)^{-1+\sqrt{3}} + C_2 (x-1)^{-1-\sqrt{3}} - 3$
3-183 (a) $y = C_1 \frac{1}{x} + C_2 \frac{\ln x}{x}$, (b) $y = C_1 \frac{1}{x} + C_2 \frac{\ln x}{x} + \frac{2}{9} x^2$

3-185 (a)
$$y = x^2 [C_1 \cos(\sqrt{2} \ln x) + C_2 \sin(\sqrt{2} \ln x)]$$

(b) $y = x^2 [C_1 \cos(\sqrt{2} \ln x) + C_2 \sin(\sqrt{2} \ln x)] - \frac{1}{6}x + \frac{1}{12}$

3-193 $\omega_0 = 31.62 \text{ s}^{-1}$, $T \approx 0.2 \text{ s}$, A = 0.316 m

3-195
$$x(t) = \frac{200}{981 - \omega^2} (\cos \omega t - \cos 31.32t), \omega = \omega_0 = 31.32 \text{ s}^{-1}$$
 will cause the resonance.
3-197 $v(t) = 4\cos 20t - 4\cos 30t, v_{\text{max}} = 8 \text{ m/s}, \Delta t = \frac{\pi}{5} \text{ s}$

3-199 The mass will pass through its static equilibrium position at the time t = 0.182 s, with a velocity of V(0.182) = -0.0245 m/s (upward)

 $3-201 \ x(t) = e^{-20t} \left(C_1 \sin \frac{\sqrt{362}}{2} t + C_2 \cos \frac{\sqrt{362}}{2} t \right) + \frac{F_0 \cos \left(\omega t - \arctan \left(\frac{c\omega}{k - m\omega^2} \right) \right)}{\sqrt{(mk - m^2 \omega^2) + c^2 \omega^2}}, \quad \omega = 0$ $3-203 \ mx'' + (k_1 + k_2)x = k_1 y$ $3-205 \ x(0.4643) = 0.2080 \ m$ $3-207 \ mL^2 \varphi'' = mgL \sin \varphi - kL_1^2 \varphi - cL_1^2 \varphi'$ $3-209 \ x = \frac{b\omega^2}{k - m\omega^2} \left(\sin \omega t - \frac{\omega}{\omega_0} \sin \omega_0 t \right)$ $3-211 \ x(t) = e^{-\zeta \omega_0 t} \left(\frac{x'(0) + \zeta \omega_0 x(0)}{\omega_d} \sin \omega_d t + x(0) \cos \omega_d t \right)$ $3-215 \ Q(t) = C_1 \sin \omega_0 t + C_2 \cos \omega_0 t + \frac{E_0/L}{\omega_0^2 - \omega^2} \cos \omega t$

The charge of capacitor would be, at least mathematically, unbounded as $t \to \infty$

3-217

If $R^2 - 4\frac{L}{c} > 0$ then there are two real and distinct roots, m_1 and m_2 . Thus the general solution of the differential equation is

$$I(t) = C_1 e^{m_1 t} + C_2 e^{m_2 t}$$

If $R^2 - 4\frac{L}{c} = 0$ then there are two real and equal roots, $m_1 = m_2 = m = -\frac{R}{2L}$. Thus the general solution of the differential equation is

$$I(t) = (C_1 + C_2 t)e^{mt}$$

If $R^2 - 4\frac{L}{c} < 0$ then there are two complex and conjugate roots, $m_{1,2} = \alpha \mp i\beta$. Thus the general solution of the differential equation is

$$I(t) = e^{\alpha t} (C_1 \cos \beta t + C_2 \sin \beta t)$$

where $\alpha = -\frac{R}{2L}$ and $\beta = \frac{\sqrt{4L/C - R^2}}{2L}$

3-219 x(t) =
$$Ae^{-3t} + Bte^{-3t}$$

3-221 y(t) = $A\sin 2t + B\cos 2t$
3-223 y = $-\frac{17}{3}e^{-x} + \frac{2}{3}e^{x/2}$
3-225 y = $e^{-2x}(\frac{e^{x}}{2}\sin 4x) = \frac{1}{2}e^{\pi-2x}\sin 4x$
3-227 y = $6xe^{2-x}$
3-229 y = $e^{-2x} + C_2e^{2x} + (-\frac{3}{5}x^2 + \frac{36}{25}x - \frac{186}{125})e^{3x}$
3-230 y = $C_1\cos 3x + C_2\sin 3x + \frac{1}{4}\sin x$
3-231 y = $C_1\cos 3x + C_2\sin 3x + \frac{1}{2}x\cos x + \frac{1}{16}\sin x$
3-233 y = $C_1 + C_2e^{3x} + \frac{e^{x}}{200}(10x\cos 2x - 19\cos 2x - 8\sin 2x - 30x\sin 2x)$
3-235 y = $\frac{3}{4}\cos 4x + \frac{1}{24}\sin 4x - \frac{1}{4}\cos 2x + \frac{1}{12}\sin 2x$
3-237 Note: the equation is incorrect in the first printing of the textbook. It should be $x^2y'' + y = 0$. The solution is $y = x^{1/2} [C_1\cos(\frac{\sqrt{3}}{2}\ln x) + C_1\sin(\frac{\sqrt{3}}{2}\ln x)]$
3-241 y = $C_1e^{4x} + C_2e^{-4x}$
3-245 y = $c_1 + C_2x^{-3/2} + \frac{1}{14}x^2 - \frac{1}{3}\ln x$
3-247 y = $C_1 + C_2e^{-2x}$
3-249 y = $(C_1 + C_2x)e^{3x}$

3-251
$$y = 1 - e^{-x}$$

3-253 $y = C_1 + C_2 e^{4x} - \frac{1}{8} x^2 - \frac{5}{16} x$
3-255 $y = C_1 + C_2 e^x - \frac{1}{3} x^3 - x^2 - 3x + \frac{e^x}{2} (\sin x + \cos x)$
3-257 $y = C_1 e^x + C_2 e^{8x} - \frac{1}{500} (50x^2 - 30x + 19)e^{3x}$
3-259 $y = \cosh x$
3-261 $y = C_1 x^{2+\sqrt{3}} + C_2 x^{2-\sqrt{3}}$
3-263 $y = x^{1/2} \left[C_1 \cos \left(\frac{\sqrt{15}}{2} \ln x \right) + C_2 \sin \left(\frac{\sqrt{15}}{2} \ln x \right) \right]$
3-265 $y(x) = -\frac{47}{128} e^{-4x} + \frac{1}{12} x^3 - \frac{1}{16} x^2 - \frac{15}{32} x + \frac{47}{128}$
3-267 $v(t) = 0.39047 \sin 10t + 0.060992 \cos 10t$, $T \approx 0.628$ s.

3-269 $I_{st} \cong 0.002435 \cos(60t) - 0.0003985 \sin(60t), C = 1.67$ farad

- **4-25** (a) $y^{(iv)} 5y' + \cos y = x + 1$; Nonlinear, nonhomogeneous, constant coefficients (b) $y^{(iv)} = 0$; Linear, homogeneous, constant coefficients (c) $y^{(iv)} + 2x^2y' + 5y = 0$; Linear, homogeneous, variable coefficients (d) $y^{(iv)} + e^x y = \frac{1}{x}$; Linear, nonhomogeneous, variable coefficients
- 4-27 (a) y^(v) + ¹/_y = 1; Nonlinear, nonhomogeneous, constant coefficients
 (b) y^(v) 8y' e^{ln y} = 0; Nonlinear, homogeneous, constant coefficients
 (c) y^(v) sin 2x y' + y = 0; Linear, homogeneous, variable coefficients
 (d) y^(v) + y = 7; Linear, nonhomogeneous, constant coefficients
- 4-29 (a) The initial-value problem has a unique solution in the interval −∞ < x < +∞.
 (b) The initial-value problem has a unique solution in the interval −∞ < x < 2.
- 4-31 (a) The initial-value problem has a unique solution in the interval −∞ < x < +∞.
 (b) The initial-value problem has a unique solution in the interval −2 < x < 2.
- 4-35 (a) The Wronskian of these three solution functions is never zero for x > 0.
 (b) The solutions e^x, 2e^{2+x} and -5 are linearly dependent.
- 4-37 (a) y₁ = 1, y₂ = e^x and y₃ = e^{-x} do not form a set of fundamental solutions.
 (b) y₁ = 1, y₂ = sinh x and y₃ = cosh x do not form a set of fundamental solutions.
- **4-39 (a)** y_1 , y_2 and y_3 are linearly independent.
 - **(b)** y_1 , y_2 and y_3 are linearly independent.

4-43
$$y_3(x) = \frac{1}{3}\sin 3x$$

4-45 $y_3(x) = -\frac{1}{3x}$
4-53 (a) $y = (C_1 + C_2 x + C_3 x^2)e^{-x}$, (b) Given: $y = C_1 + C_2 e^{-3x} + C_3 x e^{-3x}$
4-55 (a) $y = C_1 e^{-x} + e^{3x/2} \left(C_2 \cos \frac{\sqrt{7}}{2} x + C_3 \sin \frac{\sqrt{7}}{2} x \right)$,
(b) $y = e^{-x} \left(C_2 \cos \sqrt{3} x + C_3 \sin \sqrt{3} x \right) + x e^{-x} \left(C_3 \cos \sqrt{3} x + C_4 \sin \sqrt{3} x \right)$
4-57 $y(x) = \frac{1}{3} e^x + \frac{2}{3} e^{-x/2} \cos \frac{\sqrt{3}}{2} x$

4-59
$$y(x) = \left(1 - x + \frac{x^2}{2}\right)e^x$$

4-61 $x(t) = Ae^{-6037t} + e^{-1982t} (B \sin 16,500t + C \cos 16,500t)$

4-63
$$\beta = \pm i\sqrt{2\alpha}, \pm i\sqrt{\alpha} = \pm i\sqrt{\frac{2k}{m}}, \pm i\sqrt{\frac{k}{m}}$$

4-67 (a) $y(x) = (C_1 + C_2 x)e^x + C_3 e^{-2x} - \frac{1}{10}e^{3x}$
(b) $y(x) = (C_1 + C_2 x)e^x + C_3 e^{-2x} + \frac{2}{9}xe^{3-2x}$
(c) $y(x) = (C_1 + C_2 x)e^x + C_3 e^{-2x} + (\frac{5}{18}x^2 + \frac{10}{27}x)e^{-2x}$
(d) $y(x) = (C_1 + C_2 x)e^x + C_3 e^{-2x} - (\frac{3}{52}\cos 2x + \frac{1}{26}\sin 2x)e^x$

4-69 (a)
$$y(x) = C_1 e^{-x} + C_2 e^x + C_3 \cos x + C_4 \sin x - x + 2$$

(b) $y(x) = C_1 e^{-x} + C_2 e^x + C_3 \cos x + C_4 \sin x + \frac{1}{8} (x^2 - 5x) e^x$
(c) $y(x) = C_1 e^{-x} + C_2 e^x + C_3 \cos x + C_4 \sin x - x^2 + 1$
(d) $y = C_1 e^{-x} + C_2 e^x + C_3 \cos x + C_4 \sin x + (\frac{3}{80}x - \frac{41}{800}) e^x \cos 2x - (\frac{1}{80}x + \frac{19}{400}) e^x \sin 2x$

4-71 (a)
$$y(x) = C_1 e^{-2x} + e^x (C_2 \cos \sqrt{3}x + C_3 \sin \sqrt{3}x) - \frac{1}{65} (22\cos x - 19\sin x)$$

(b) $y(x) = C_1 e^{-2x} + e^x (C_2 \cos \sqrt{3}x + C_3 \sin \sqrt{3}x) + \frac{1}{8}x^2 - \frac{1}{9}e^x$
(c) $y(x) = C_1 e^{-2x} + e^x (C_2 \cos \sqrt{3}x + C_3 \sin \sqrt{3}x) + \frac{1}{81} (9x^2 - 6x - 13)e^x$
(d) $y(x) = C_1 e^{-2x} + e^x (C_2 \cos \sqrt{3}x + C_3 \sin \sqrt{3}x) - \frac{1}{1525} (9\cos 3x + 38\sin 3x)$

4-73 $x_{p1} = \alpha^2, x_{p2}(t) = C_1 \sin 0.618\alpha t + C_2 \cos 0.618\alpha t + C_3 \sin 1.618\alpha t + C_4 \cos 1.618\alpha t + \alpha^2$ $(\alpha = \sqrt{k/m})$

4-77 (a)
$$y_p = \frac{1}{10} \sin 2x$$

(b) $y_p = \frac{1}{9} \ln(\sec 2x + \tan 2x) + \sin 3x \left(\frac{2}{9} \cos x - \frac{\sqrt{2}}{18} \operatorname{arctanh}(\sqrt{2} \cos x)\right) + (\cos 3x) \left(-\frac{2}{9} \sin x + \frac{\sqrt{2}}{18} \operatorname{arctanh}(\sqrt{2} \sin x)\right)$

4-79 (a)
$$y_p = \frac{1}{4}x^4 - 3x^2 - x + 6$$

(b) $y_p = \ln|x| - \sin x \int \frac{\sin x}{x} dx - \cos x \int \frac{\cos x}{x} dx$

4-81 (a)
$$y_p = (x^2 - 6x + 12)e^x$$

(b) $y_p = -x \ln|x|$
4-87 $y(x) = \frac{C_1}{x} + \frac{C_2}{x^2} + C_3 x^3$
4-89 $y(x) = C_1 x + x [C_2 \cos(\sqrt{2} \ln x) + C_3 \sin(\sqrt{2} \ln x)]$

4-91
$$y(x) = C_1 x^3 + \frac{C_2}{x^2} + \frac{C_3 \ln x}{x^2}$$

4-93

(a) -2, -6, -8(b) $-5, -2 \pm 5.6465i$ (c) $-2, -2 \pm 5.3 \times 10^{-5}i$ (d) $-3, -5 \pm 8i$ (e) $-5 \pm 8i, -3 \pm 6i$ (f) $-3, -3, -5 \pm 8i$ (g) $-3 \pm 5i, -3 \pm 5i$

(a)
$$y(x) = -\frac{13}{18} - \frac{1}{6}x + _C1 e^{3x} + _C2 e^{-x} \cos(x) + _C3 e^{-x} \sin(x)$$

(b) $y(x) = \frac{1}{26} e^{3x} + _C1 e^{x} + _C2 e^{-\frac{1}{2}x} \cos\left(\frac{1}{2}\sqrt{3}x\right)$
 $+ _C3 e^{-\frac{1}{2}x} \sin\left(\frac{1}{2}\sqrt{3}x\right)$

$$4-97 y(x) = -1 + e^{2x} - e^{2x} x$$

$$4-99 (a) 2 e^{3x}, (b) 0$$

$$4-103 y(x) = y_h + y_p = C_1 + C_2 e^x + C_3 e^{-x} + e^{2x} \left(-\frac{1}{10} x + \frac{3}{25} \right) \cos x + \frac{2}{25} e^{2x} \sin x$$

$$4-105 y_p = \frac{x^2}{2} \ln|x| - \frac{3}{4} x^2 - 3 \sin x + x \cos x$$

$$4-107 y(x) = C_1 e^{-x} + e^{-x} (C_2 \cos \sqrt{3}x + C_3 \sin \sqrt{3}x) + \frac{1}{4} x^3 - \frac{9}{8} x^2 + \frac{9}{4} x - \frac{41}{16}$$

$$4-109 y = C_1 + C_2 x + C_3 x \ln x - \frac{1}{4x} - 2 \ln x$$

$$4-111 y = C_1 e^x + C_2 x e^x + C_3 x^2 e^x$$

$$4-113 y(x) = C_1 e^{-x} + e^{x/2} \left(C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right) + \frac{1}{7} e^{3x} - x$$

$$4-115 y(x) = C_1 e^x + e^{3x/2} \left(C_2 \cos \frac{\sqrt{21}}{2} x + C_3 \sin \frac{\sqrt{21}}{2} x \right) + \frac{1}{5} e^{2x} - \frac{1}{3}$$

$$4-117 y = e^{x/\sqrt{2}} \left(C_1 \sin \frac{x}{\sqrt{2}} + C_2 \cos \frac{x}{\sqrt{2}} \right) + e^{-x/\sqrt{2}} \left(C_3 \sin \frac{x}{\sqrt{2}} + C_4 \cos \frac{x}{\sqrt{2}} \right) + \cos x + \frac{x}{2} \sin x$$

$$4-119 y = e^{\sqrt{2x}} \left(C_1 \sin \frac{x}{\sqrt{2}} + C_2 \cos \sqrt{2x} \right) + e^{-\sqrt{2x}} \left(C_3 \sin \sqrt{2x} + C_4 \cos \sqrt{2x} \right) + \frac{1}{32} (x - 1) e^{2x} - \frac{1}{16}$$

$$4-121 y(x) = C_1 + C_2 \sin 3x + C_3 \cos 3x - \frac{3}{50} x \cos 2x + \left(\frac{1}{10} x^2 - \frac{69}{500}\right) \sin 2x$$

$$4-123 y(x) = \frac{c_1}{64} (1 - \cosh 2x \cos 2x)$$

$$4-125 y(x) = \frac{c_1}{x} + x^2 [C_1 \cos(\sqrt{2} \ln x) + C_2 \sin(\sqrt{2} \ln x)]$$

$$5 - 41 (a) 5x \sum_{n=1}^{\infty} (n+1)^{2} x^{n+3} = 20x^{5} + 45x^{6} + 80x^{7} + 5x \sum_{n=4}^{\infty} (n+1)^{2} x^{n+3}$$
(b) $\sum_{n=2}^{\infty} \frac{n+5}{n+3} C_{2n+1} x^{2n+1} = \frac{7}{5} C_{5} x^{5} + \frac{4}{3} C_{7} x^{7} + \frac{9}{7} C_{9} x^{9} + \sum_{n=5}^{\infty} \frac{n+5}{n+3} C_{2n+1} x^{2n+1}$

$$5 - 43 (a) \sum_{n=4}^{\infty} (n-4)^{2} 2^{n-3} x^{n}, (b) \sum_{n=4}^{\infty} C_{n-1} x^{n}$$

$$5 - 45 (a) \sum_{n=5}^{\infty} C_{n-1} x^{n-1}, (b) \sum_{n=3}^{\infty} C_{n+1} x^{n-1}$$

$$5 - 47 (a) \sum_{n=5}^{\infty} C_{n-1} x^{n+1}, (b) \sum_{n=1}^{\infty} (n+3)^{2} 2^{n+1} x^{n+1}$$

$$5 - 49 15C_{0} \frac{1}{x} - \frac{1}{x^{2}} + \sum_{n=0}^{\infty} \left[(n+1)^{2} - 5(n-2)C_{n+1} + \frac{n+1}{n+3} \right] x^{n} = 0$$

$$5 - 51 \text{ The equality holds for any x value.}$$

$$5 - 53 \text{ The equality holds for any x value.}$$

$$5 - 55 \text{ Not correct}$$

$$5 - 57 (a) \rho = 1/3, -1/3 \le x < 1/3, (b) \rho = 1/2, 1/2 \le x < 3/2$$

$$5 - 59 (a) C_{n+2} = \frac{3C_{n}}{(n+2)(n+1)^{r}}, (b) C_{n+2} = -\frac{1}{2} \frac{n(n+1)C_{n+1}+(2-n)C_{n}}{(n+2)(n+1)}$$

$$5 - 61 (a) C_{n+2} = \frac{-(n+1)C_{n+1}+2C_{n}}{(n+2)(n+1)}, (b) C_{n+2} = \frac{nC_{n}}{(n+1)}$$

$$5 - 63 (a) y(x) = C_{0} \left(1 + \frac{x^{2}}{2} + \frac{x^{4}}{44} + \cdots\right) + C_{1} \left(x + \frac{x^{3}}{4} + \frac{x^{5}}{120} + \cdots\right)$$

$$(b) y(x) = C_{0} \left(1 + 2x^{2} + \frac{2}{3}x^{4} + \frac{4}{45}x^{6} + \cdots\right) + C_{1} \left(x + \frac{2}{3}x^{3} + \frac{2}{15}x^{5} + \cdots\right)$$

$$5 - 65 y(x) = C_{0} + C_{1}x + (-2C_{1} + 6C_{0})x^{2} + \left(\frac{14}{3}C_{1} - 8C_{0}\right)x^{3} + \left(-\frac{364}{45}C_{1} + \frac{244}{14}C_{0}\right)x^{6} + \cdots$$

5 – 69 (a) All points are ordinary points.

(b) Both x = -2 and x = 2 are the regular singular points of the differential equation.

5 - 71 (a) Both x = -1 and x = 1 are the regular singular points of the differential equation.
(b) All points are ordinary points of the differential equation.

$$\begin{aligned} \mathbf{5} - \mathbf{73} \ \rho &= 1. \\ \mathbf{5} - \mathbf{75} \ \rho &= 4. \\ \mathbf{5} - \mathbf{77} \ \rho &= 1. \\ \mathbf{5} - \mathbf{77} \ \rho &= 1. \\ \mathbf{5} - \mathbf{79} \ y(x) &= C_0 \left(1 - \frac{1}{2} x^2 - \frac{1}{24} x^4 - \frac{11}{720} x^6 - \cdots \right) + C_1 \left(x - \frac{1}{6} x^3 - \frac{1}{24} x^5 - \frac{19}{1008} x^7 - \cdots \right) \end{aligned}$$

Interval of convergence: -1 < x < 1.

$$5 - 81 y(x) = C_0 \left(\frac{33}{10} - 3x - 3x^2 + 7x^3 - \frac{9}{2}x^4 + \frac{6}{5}x^5 + \cdots \right) \\ + C_1 \left(-\frac{9}{5} + \frac{7}{2}x - 3x^2 + 2x^3 - x^4 + \frac{3}{10}x^5 + \cdots \right) \\ 5 - 83 y(x) = C_0 \left(1 + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{7}{24}x^4 + \frac{4}{15}x^5 + \cdots \right) + C_1 \left(x + \frac{1}{6}x^3 + \frac{1}{6}x^4 + \frac{19}{120}x^5 + \cdots \right)$$

Interval of the convergence: -1 < x < 1.

$$5 - 85 y(x) = C_0 \left(\frac{7}{60} - \frac{8}{3} x^2 + \frac{59}{24} x^3 - \frac{7}{12} x^4 + \frac{11}{120} x^5 + \cdots \right) + C_1 (x - 1)$$

$$5 - 87 y(x) = C_0 \left(1 - \frac{1}{2} x^2 - \frac{1}{2} x^3 - \frac{5}{12} x^4 - \frac{1}{3} x^5 - \cdots \right) + C_1 \left(x + \frac{1}{2} x^2 + \frac{1}{6} x^3 - \frac{1}{12} x^5 - \frac{1}{8} x^6 \dots \right)$$

Interval of the convergence: $-1 < x < 1$.

5 - **89**
$$y(x) = C_0 \left(1 + \frac{1}{3}x^3 - \frac{1}{12}x^4 + \frac{1}{60}x^5 + \cdots \right) + C_1 \left(x - \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{8}x^4 - \frac{3}{40}x^5 + \cdots \right)$$

Interval of convergence is $(-\infty, \infty)$.

5 - **91**
$$y(x) = 1 + \frac{2}{3}x^3 + \frac{4}{45}x^6 + \frac{2}{405}x^9 + \frac{2}{13365}x^{12} + \cdots$$

5 - **97** $y(x) = C_0(1 - 3x^2) + C_1\left(x - \frac{2}{3}x^3 - \frac{1}{5}x^5 - \frac{4}{35}x^7 - \frac{5}{63}x^9 - \cdots\right), -1 < x < 1.$

5 - 99
$$P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)$$

5 - 105 (a) $r_1 = 1 + \sqrt{3}i$ and $r_2 = 1 - \sqrt{3}i$
(b) $r_1 = 1 + \sqrt{3}i$ and $r_2 = 1 - \sqrt{3}i$
5 - 107 (a) $r_1 = \frac{1}{2} + \frac{\sqrt{15}}{2}i$ and $r_2 = \frac{1}{2} - \frac{\sqrt{15}}{2}i$
(b) $r_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ and $r_2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$

5 - 109

(a) $y_1(x) = x^{r_1} \sum_{n=0}^{\infty} a_n x^n$ and $y_2(x) = x^{r_2} \sum_{n=0}^{\infty} b_n x^n$, where $a_0 \neq 0$ and $b_0 \neq 0$. Since x = 0 is the only singular point for the given differential equation, the series solution converges for all x > 0. (b) $y_1(x) = x^r \sum_{n=0}^{\infty} a_n x^n$ and $y_2(x) = y_1(x) \ln x + x^r \sum_{n=0}^{\infty} b_n x^n$, where $a_0 \neq 0$. It is clear from either P(x) or Q(x) that x = 1 is another singular point of the given differential equation. Therefore the series will converge for all x such that 0 < x < 1.

5 - 111

(a) $y_1(x) = x^{r_1} \sum_{n=0}^{\infty} a_n x^n$ and $y_2(x) = Cy_1(x) \ln x + x^{r_2} \sum_{n=0}^{\infty} b_n x^n$, where $a_0 \neq 0$ and $b_0 \neq 0$, whereas the constant *C* may be zero. The series solution will converge for any x > 0. (b) $y_1(x) = x^{r_1} \sum_{n=0}^{\infty} a_n x^n$ and $y_2(x) = Cy_1(x) \ln x + x^{r_2} \sum_{n=0}^{\infty} b_n x^n$, where $a_0 \neq 0$ and $b_0 \neq 0$, whereas the constant *C* may be zero. The series solution will converge for any x > 0. 5 - 113

(a) $y_1(x) = x^{r_1} \sum_{n=0}^{\infty} a_n x^n$ and $y_2(x) = x^{r_2} \sum_{n=0}^{\infty} b_n x^n$, where $a_0 \neq 0$ and $b_0 \neq 0$. Since x = 0 is the only singular point for the given differential equation, the series solution converges for all x > 0.

(b) $y_1(x) = x^{r_1} \sum_{n=0}^{\infty} a_n x^n$ and $y_2(x) = Cy_1(x) \ln x + x^{r_2} \sum_{n=0}^{\infty} b_n x^n$, where $a_0 \neq 0$ and $b_0 \neq 0$, whereas the constant *C* may be zero. It is clear from either P(x) or Q(x) that $x = \mp 2$ are two other singular points of the given differential equation. Therefore the series solution will converge for all *x* such that 0 < x < 2.

5 - 115 (a)
$$y(x) = C_1 x^{1+\sqrt{3}} \left(1 - \frac{1}{4} x^2 + \frac{1}{32} \frac{3+\sqrt{3}}{2+\sqrt{3}} x^4 + \cdots \right) + C_2 x^{1-\sqrt{3}} \left(1 - \frac{1}{4} x^2 + \frac{1}{32} \frac{-3+\sqrt{3}}{-2+\sqrt{3}} x^4 + \cdots \right)$$

(b) $y(x) = C_1 x + C_2 \left(x \ln x + \frac{1}{4} x^3 + \frac{3}{32} x^5 + \frac{5}{96} x^7 + \frac{35}{1024} x^9 + \cdots \right)$

5 - 117
(a)
$$y(x) = C_1 x^{\frac{5}{4} + \frac{\sqrt{41}}{4}} + C_2 x^{\frac{5}{4} - \frac{\sqrt{41}}{4}}$$

(b) $y(x) = C_1 x^{\frac{3}{2}} \Big[1 - \frac{1}{2}x + \frac{23}{128}x^2 - \frac{281}{3840}x^3 + \frac{7397}{245760}x^4 - \frac{222991}{17203200}x^5 + \cdots \Big] + \frac{7C_2}{32} x^{\frac{3}{2}} \Big[1 - \frac{1}{2}x + \frac{23}{128}x^2 - \frac{281}{3840}x^3 + \frac{7397}{245760}x^4 - \frac{222991}{17203200}x^5 + \cdots \Big] \ln x + C_2 x^{\frac{1}{2}} \Big[1 - \frac{1}{2}x + \frac{1}{12}x^3 - \frac{1385}{49152}x^4 + \frac{76739}{7372800}x^5 + \cdots \Big]$

5 - 119 (a)
$$y(x) = \frac{C_1}{x^2} + \frac{C_2 \ln x}{x^2}$$
, **(b)** $y(x) = C_1 x^{\frac{4}{3}} + C_2 x^{-1}$

5-125
$$J_2(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n+2}n!(n+2)!} x^{2n+2} = \frac{1}{8}x^2 - \frac{1}{96}x^4 + \frac{1}{3072}x^6 - \frac{1}{184320}x^8 + \cdots$$

5-129

(a) $I = -xJ_0(x) + \int J_0(x) dx + C$, The integral in the result cannot be evaluated in finite form in terms of any of the known Bessel's functions.

(b)
$$I = -x^{-3}J_3(x) + C = -\frac{J_3(x)}{x^3} + C$$

5-131

(a)
$$y(x) = C1 e^{x} + C2 e^{-x}$$

The series solution found in Problem 5-63a is

$$y(x) = C_0 \left(1 + \frac{x^2}{2} + \frac{x^4}{24} + \dots \right) + C_1 \left(x + \frac{x^3}{6} + \frac{x^5}{120} + \dots \right)$$

(b) $y(x) = C1 e^{4x}$

The series solution found in Problem 5-63b is

$$y(x) = C_0 \left(1 + 2x^2 + \frac{2}{3}x^4 + \frac{4}{45}x^6 + \dots \right) + C_1 \left(x + \frac{2}{3}x^3 + \frac{2}{15}x^5 + \dots \right)$$

5-133 $y(x) = C1 e^{2x} + C2 e^{-6x}$

The series solution found in Problem 5-65 is

$$y(x) = C_0 + C_1 x + (-2C_1 + 6C_0)x^2 + \left(\frac{14}{3}C_1 - 8C_0\right)x^3 + \left(-\frac{20}{3}C_1 + 14C_0\right)x^4 \\ + \left(\frac{122}{15}C_1 + 16C_0\right)x^5 + \left(-\frac{364}{45}C_1 + \frac{244}{14}C_0\right)x^6 + \cdots \right)x^6 + \frac{1}{\sqrt{x-1}}$$

$$y(x) = \frac{-CI \operatorname{HeunC}\left(0, 0, 0, -2\mathrm{I}, \mathrm{I}, \frac{1}{2} - \frac{1}{2}\mathrm{I}x\right)\sqrt{\mathrm{I}x+\mathrm{I}}}{\sqrt{x-\mathrm{I}}} \\ + \frac{1}{\sqrt{x-\mathrm{I}}}\left(-C2 \operatorname{HeunC}\left(0, 0, 0, -2\mathrm{I}, \mathrm{I}, \frac{1}{2}\right)x^2 + \frac{1}{2}\mathrm{I}x^2} - \frac{1}{2}\mathrm{I}x\right)\sqrt{\mathrm{I}x+\mathrm{I}}}{\sqrt{x-\mathrm{I}}} \\ = \frac{-\frac{1}{2}\mathrm{I}x}\sqrt{\mathrm{I}x+\mathrm{I}}\left(x^2 + \mathrm{I}\right)\operatorname{HeunC}\left(0, 0, 0, -2\mathrm{I}, \mathrm{I}, \frac{1}{2} - \frac{1}{2}\mathrm{I}x\right)^2(\mathrm{I}x+\mathrm{I})} dx\right)$$

The series solution found in Problem 5-80 is

$$y(x) = C_0 \left(1 + \frac{1}{6}x^3 - \frac{1}{10}x^5 + \frac{1}{180}x^6 + \cdots \right) + C_1 \left(x - \frac{1}{3}x^3 + \frac{1}{12}x^4 + \frac{1}{5}x^5 + \cdots \right)$$

5-137

$$y(x) = _C I (x^2 - 1) \text{ hypergeom} \left(\left[\frac{3}{4} + \frac{1}{4} \sqrt{17}, \frac{3}{4} - \frac{1}{4} \sqrt{17} \right], \\ \left[\frac{1}{2} \right], x^2 \right) + _C 2 (x^3 - x) \text{ hypergeom} \left(\left[\frac{5}{4} - \frac{1}{4} \sqrt{17}, \frac{5}{4} + \frac{1}{4} \sqrt{17} \right], \left[\frac{3}{2} \right], x^2 \right)$$

The series solution found in Problem 5-82 is

$$y(x) = C_0 \left(1 - 2x^2 + \frac{1}{3}x^4 + \frac{4}{45}x^6 + \cdots \right) + C_1 \left(x - \frac{2}{3}x^3 - \frac{1}{15}x^5 - \frac{8}{315}x^7 + \cdots \right)$$

5-139 $y(x) = _CI \sqrt{x}$ BesselJ $(1, 2\sqrt{2} \sqrt{x}) + _C2 \sqrt{x}$ BesselY $(1, 2\sqrt{2} \sqrt{x})$

The series solution found in Problem 5-84 is

$$y(x) = C_0 \left(\frac{2}{15} - \frac{8}{3}x + \frac{7}{3}x^2 - \frac{2}{3}x^3 + \frac{1}{12}x^4 - \frac{1}{240}x^5 + \cdots \right) + C_1 \left(-1 + \frac{3}{2}x + \frac{1}{3}x^2 - \frac{1}{2}x^3 + \frac{1}{8}x^4 - \frac{1}{96}x^5 + \cdots \right)$$

5-141 y(x) = C1 AiryAi $(2^{2/3} x) + C2$ AiryBi $(2^{2/3} x)$

The series solution found in Problem 5-86 is

$$y(x) = C_0 \left(1 + \frac{2}{3}x^3 + \frac{4}{45}x^6 + \frac{2}{405}x^9 + \cdots \right) + C_1 \left(x + \frac{1}{3}x^4 + \frac{2}{63}x^7 + \frac{4}{2835}x^{10} + \cdots \right)$$

5-143
$$y(x) = _CI \text{ WhittakerM} \left(2 \text{ I}, \frac{1}{2}, 4 \text{ I} (x + 2) \right)$$

$$+ _C2 \text{ WhittakerW} \left(2 \text{ I}, \frac{1}{2}, 4 \text{ I} (x + 2) \right)$$

The series solution found in Problem 5-88 is

$$y(x) = C_0 \left(1 - \frac{1}{3}x^2 + \frac{1}{12}x^4 - \frac{1}{40}x^5 + \dots \right) + C_1 \left(x - \frac{1}{6}x^4 + \frac{1}{20}x^5 - \frac{1}{60}x^6 + \dots \right)$$

5-145

$$y(x) = _CI (x^{2} - 1) \text{ hypergeom} \left(\left[\frac{1}{4} \sqrt{5} + \frac{3}{4}, \frac{3}{4} - \frac{1}{4} \sqrt{5} \right], \\ \left[\frac{1}{2} \right], x^{2} \right) + _C2 (x^{3} - x) \text{ hypergeom} \left(\left[\frac{5}{4} - \frac{1}{4} \sqrt{5}, \frac{5}{4} + \frac{1}{4} \sqrt{5} \right], \left[\frac{3}{2} \right], x^{2} \right)$$

The general series solution found in Problem 5-90 is

$$y(x) = C_0 \left(1 - \frac{1}{2}x^2 - \frac{1}{24}x^4 - \frac{11}{720}x^6 - \cdots \right) + C_1 \left(x - \frac{1}{6}x^3 - \frac{1}{25}x^5 - \frac{19}{1008}x^7 - \cdots \right)$$

The assumed power series solution suggests that $y(0) = y_0 = C_0$ and $y'(0) = y'_0 = C_1$. Therefore the solution of the given initial-value problem can be acquired by simply plugging in $C_0 = 0$ and $C_1 = 0$ in the general solution. Then the solution of the initial-value problem is y(x) = 0.

5-147 $y(x) = \sqrt{2} \sin(\sqrt{2} \arcsin(x)) + 2\cos(\sqrt{2} \arcsin(x))$ The general series solution found in Problem 5-92 is

$$y(x) = C_0 \left(1 - x^2 - \frac{1}{6}x^4 - \frac{7}{90}x^6 - \cdots \right) + C_1 \left(x - \frac{1}{6}x^3 - \frac{7}{120}x^5 - \frac{23}{720}x^7 - \cdots \right)$$

The assumed power series solution suggests that $y(0) = y_0 = C_0$ and $y'(0) = y'_0 = C_1$. Therefore the solution of the given initial-value problem can be acquired by simply plugging in $C_0 = 2$ and $C_1 = 2$ in the general solution. Then the solution of the initial-value problem is obtained to be $y(x) = 2 + 2x - 2x^2 - \frac{1}{3}x^3 - \frac{1}{3}x^4 - \frac{14}{120}x^5 - \frac{7}{45}x^6 - \frac{23}{360}x^7 - \cdots$

5-149

(a)
$$y(x) = _CI e^{-\frac{1}{4}x^2} x \operatorname{BesselI}\left(\frac{1}{2}\sqrt{3}, \frac{1}{4}x^2\right) + _C2 e^{-\frac{1}{4}x^2} x \operatorname{BesselK}\left(\frac{1}{2}\sqrt{3}, \frac{1}{4}x^2\right)$$

The solution found in Problem 5-115(a) is

$$y(x) = C_1 x^{1+\sqrt{3}} \left(1 - \frac{1}{4} x^2 + \frac{1}{32} \frac{3+\sqrt{3}}{2+\sqrt{3}} x^4 + \cdots \right) + C_2 x^{1-\sqrt{3}} \left(1 - \frac{1}{4} x^2 + \frac{1}{32} \frac{-3+\sqrt{3}}{-2+\sqrt{3}} x^4 + \cdots \right)$$

(b) $y(x) = C_1 x + C_2 x \arctan\left(\frac{1}{\sqrt{x^2-1}}\right)$ or using MuPAD $\left\{ C_{66} x + C_{67} x \arctan\left(\sqrt{x^2-1}\right) \right\}$

The solutions found from Maple and MuPAD differ, but they are both correct solutions. The solution found in Problem 5-115(b) is

$$y(x) = C_1 x + C_2 \left(x \ln x + \frac{1}{4} x^3 + \frac{3}{32} x^5 + \frac{5}{96} x^7 + \frac{35}{1024} x^9 + \cdots \right)$$

5-151

(a)
$$y(x) = _CI x^{\frac{5}{4} + \frac{1}{4}\sqrt{33}} + _C2 x^{\frac{5}{4} - \frac{1}{4}\sqrt{33}}$$

(b) $y(x) = DESol\left(\left\{\frac{d^2}{dx^2} _Y(x) - \frac{4\left(\frac{d}{dx} _Y(x)\right)}{x^2 - 4} + \frac{3_Y(x)}{x^2\left(x^2 - 4\right)}\right\}, \left\{_Y(x)\}\right)$

Maple is unable to solve this problem. The solution found in Problem 5-117(b) is

$$\begin{aligned} y(x) &= C_1 x^{\frac{3}{2}} \Big[1 - \frac{1}{2}x + \frac{23}{128}x^2 - \frac{281}{3840}x^3 + \frac{7397}{245760}x^4 - \frac{222991}{17203200}x^5 + \cdots \Big] \\ &+ \frac{7C_2}{32}x^{\frac{3}{2}} \Big[1 - \frac{1}{2}x + \frac{23}{128}x^2 - \frac{281}{3840}x^3 + \frac{7397}{245760}x^4 - \frac{222991}{17203200}x^5 + \cdots \Big] \ln x \\ &+ C_2 x^{\frac{1}{2}} \Big[1 - \frac{1}{2}x + \frac{1}{12}x^3 - \frac{1385}{49152}x^4 + \frac{76739}{7372800}x^5 + \cdots \Big] \end{aligned}$$

5-153 (a) $y(x) = \frac{CI}{x^2} + \frac{-C2 \ln(x)}{x^2}$, The solution found in Problem 5-119(a) is $y(x) = \frac{C_1}{x^2} + \frac{C_2 \ln x}{x^2}$ (b) $y(x) = _CI x^{4/3} + \frac{-C2}{x}$, The solution found in Problem 5-119(b) is $y(x) = C_1 x^{4/3} + C_2 x^{-1}$

6-21 (a) $x_1'=x_2$ $x_2'=x_3$ $x_3' = -2x_1^2 x_2 - 2x_1 + te^{-3t}$ (b) $x'_1 = x_2$ $x_2' = x_3$ $x'_3 = -5x_2 + kx_1$ 6-23 (a) $x'_1 = x_2$ $x'_{2} = x_{3}$ $x_3' = x_4$ $x_4' = 5x_2 - \cos x_1 + t + 1$ **(b)** $x'_{1} = x_{2}$ $x'_{2} = x_{3}$ $x_3'=x_4$ $x'_4 = 0$ 6-25 (a) $x_1' = x_2$ $x_2' = -e^x x_2 + 2x_1 + 6$

(b) $x'_1 = x_2$ $x'_2 = x_3$ $x'_3 = 2x_2 - x_1 + t^3 \cos 2t$

6-27
$x_1' = x_2$
$x'_{2} = x_{3}$
$x_3' = x_1 x_4$
$x'_4 = x_5$
$x_5' = \frac{2t}{(t-1)^3} x_1 x_5 - \frac{1}{(t-1)^3} x_5 + \frac{e^{-t}}{(t-1)^3}$

6-29 $x'_1 = x_2$ $x'_2 = x_3$ $x'_3 = x_1 + x_5 + x_1x_4 - x_4x_6 - 1 - 3t$ $x'_4 = x_5$ $x'_5 = t^2x_4 - x_1x_6$ $x'_6 = x_7$ $x'_7 = x_1x_4 - x_4x_6 - 1$

6-31 The system is nonlinear due to term 2txy', nonhomogeneous due to $e^{-t} - 1$, and has variable coefficients due to term 2txy'.

6-33 The system is nonlinear due to terms xz, xy and yz, nonhomogeneous due to -1, and has variable coefficients due to term t^2y .

6-35 The system is linear, nonhomogeneous due to terms e^t and 3, and has constant coefficients.

6-37 The system is linear, nonhomogeneous due to 1, and has variable coefficients due to terms tx and $t^2(x - z)$.

$$m_1 \frac{d^2 x_1}{dt^2} + k_1 x_1 + k_2 (x_1 - x_2) = 0$$
$$m_2 \frac{d^2 x_2}{dt^2} + k_3 (x_2 - x_3) - k_2 (x_1 - x_2) = 0$$
$$m_3 \frac{d^2 x_3}{dt^2} - k_3 (x_2 - x_3) = F(t)$$

6-41

$$R\frac{dI_1}{dt} + \frac{1}{C}(I_1 - I_2) = 0$$
$$L\frac{d^2I_2}{dt^2} - \frac{1}{C}(I_1 - I_2) = 0$$

6-43

$$L\frac{d^{2}I_{1}}{dt^{2}} - L\frac{d^{2}I_{2}}{dt^{2}} + R_{1}\frac{dI_{1}}{dt} = \frac{dE(t)}{dt}$$
$$-L\frac{d^{2}I_{1}}{dt^{2}} + L\frac{d^{2}I_{2}}{dt^{2}} + R_{2}\frac{dI_{2}}{dt} + R_{4}\frac{dI_{2}}{dt} - R_{4}\frac{dI_{3}}{dt} = 0$$
$$-R_{4}\frac{dI_{2}}{dt} + R_{3}\frac{dI_{3}}{dt} + R_{4}\frac{dI_{3}}{dt} + \frac{1}{C}I_{3} = 0$$

6-45

$$\frac{dx_1}{dt} = \frac{1}{20}(x_2 - 2x_1) + 2.5$$
$$\frac{dx_2}{dt} = \frac{1}{10}(x_1 - x_2)$$

6-47 (a)

$$\begin{aligned} x(t) &= C_1 e^{\left(\frac{5}{2} + \frac{\sqrt{13}}{2}\right)t} + C_2 e^{\left(\frac{5}{2} - \frac{\sqrt{13}}{2}\right)t} \\ y(t) &= \frac{C_1}{2} \left(-3 - \sqrt{13}\right) e^{\left(\frac{5}{2} + \frac{\sqrt{13}}{2}\right)t} + \frac{C_2}{2} \left(-3 + \sqrt{13}\right) e^{\left(\frac{5}{2} - \frac{\sqrt{13}}{2}\right)t} \end{aligned}$$

(b)

$$x(t) = C_1 e^{\left(\frac{5}{2} + \frac{\sqrt{13}}{2}\right)t} + C_2 e^{\left(\frac{5}{2} - \frac{\sqrt{13}}{2}\right)t} + \frac{4}{3}t + \frac{5}{9} + (t-3)e^t$$
$$y(t) = \frac{C_1}{2} \left(-3 - \sqrt{13}\right) e^{\left(\frac{5}{2} + \frac{\sqrt{13}}{2}\right)t} + \frac{C_2}{2} \left(-3 + \sqrt{13}\right) e^{\left(\frac{5}{2} - \frac{\sqrt{13}}{2}\right)t} + \frac{1}{3}t + \frac{2}{9} - e^t$$

6-49 (a)

$$x(t) = C_1 e^{2t} \sin 2t + C_2 e^{2t} \cos 2t$$
$$y(t) = \frac{1}{2} C_1 e^{2t} \cos 2t - \frac{1}{2} C_2 e^{2t} \sin 2t$$

$$x(t) = C_1 e^{2t} \sin 2t + C_2 e^{2t} \cos 2t - \left(t^2 + \frac{6}{5}t - \frac{22}{25}\right) e^{3t}$$
$$y(t) = \frac{1}{2} C_1 e^{2t} \cos 2t - \frac{1}{2} C_2 e^{2t} \sin 2t + \left(t^2 - \frac{4}{5}t - \frac{2}{25}\right) e^{3t}$$

6-51 (a)

$$\begin{aligned} x(t) &= C_1 e^{\sqrt{5}t} + C_2 e^{-\sqrt{5}t} \\ y(t) &= C_1 \Big(-2 + \sqrt{5}\Big) e^{\sqrt{5}t} + C_2 \Big(-2 - \sqrt{5}\Big) e^{-\sqrt{5}t} \end{aligned}$$

(b)

$$\begin{aligned} x(t) &= C_1 e^{\sqrt{5}t} + C_2 e^{-\sqrt{5}t} - \frac{3}{5}t^2 - \frac{16}{25} \\ y(t) &= C_1 (-2 + \sqrt{5}) e^{\sqrt{5}t} + C_2 (-2 - \sqrt{5}) e^{-\sqrt{5}t} + \frac{6}{5}t^2 - \frac{6}{5}t + \frac{7}{25} \end{aligned}$$

6-53 (a)

$$\begin{aligned} x(t) &= C_1 e^{-2\sqrt{3}t} + C_2 e^{2\sqrt{3}t} \\ y(t) &= C_1 \left(2 + \sqrt{3}\right) e^{-2\sqrt{3}t} + C_2 \left(2 - \sqrt{3}\right) e^{2\sqrt{3}t} \end{aligned}$$

(b)

$$\begin{aligned} x(t) &= C_1 e^{-2\sqrt{3}t} + C_2 e^{2\sqrt{3}t} - \frac{1}{3}t^2 - t + \frac{17}{18} \\ y(t) &= C_1 (2 + \sqrt{3})e^{-2\sqrt{3}t} + C_2 (2 - \sqrt{3})e^{2\sqrt{3}t} - \frac{1}{6}t^2 - \frac{5}{3}t + \frac{8}{9} \end{aligned}$$

6-55 (a)

$$\begin{aligned} x(t) &= C_1 e^t \sin \sqrt{5} t + C_2 e^t \cos \sqrt{5} t \\ y(t) &= -\frac{C_1}{\sqrt{5}} e^t \cos \sqrt{5} t + \frac{C_2}{\sqrt{5}} e^t \sin \sqrt{5} t \end{aligned}$$

(b)

$$x(t) = C_1 e^t \sin \sqrt{5} t + C_2 e^t \cos \sqrt{5} t + 2$$

(b)

$$y(t) = -\frac{C_1}{\sqrt{5}}e^t \cos \sqrt{5} t + \frac{C_2}{\sqrt{5}}e^t \sin \sqrt{5} t + 1$$

6-57 (a)

 $\begin{aligned} x(t) &= C_1 e^{2t} + C_2 e^{-2t} \\ y(t) &= \frac{1}{2} (C_1 e^{2t} - C_2 e^{-2t}) \end{aligned}$

(b)

$$\begin{aligned} x(t) &= C_1 e^{2t} + C_2 e^{-2t} - \frac{4}{3} e^t + 3\\ y(t) &= \frac{1}{2} (C_1 e^{2t} - C_2 e^{-2t}) - \frac{1}{3} e^t - \frac{1}{4} \end{aligned}$$

6-59

(a)

$$\begin{split} x(t) &\cong 33.74695C_1e^{-3.2443t} + e^{2.62215t}[(0.260655C_2 - 0.37348C_3)\cos 1.067t \\ &\quad +(-0.37348C_2 - 0.260655C_3)\sin 0.8297t] \\ y(t) &\cong -6.2443C_1e^{-3.2443t} + e^{2.62215t}[(1.067C_2 - 0.37785C_3)\cos 1.067t \\ &\quad +(-0.37785C_2 - 1.067C_3)\sin 1.067t] \\ z(t) &\cong C_1e^{-3.2443t} + e^{2.62215t}(C_2\sin 1.067t + C_3\cos 1.067t) \end{split}$$

(b) $x(t) \approx 33.74695C_1e^{-3.2443t} + e^{2.62215t}[(0.260655C_2 - 0.37348C_3)\cos 1.067t + (-0.37348C_2 - 0.260655C_3)\sin 0.8297t] + 0.26923077t^2 + 0.3787t + 0.36481$ $y(t) \approx -6.2442C_1e^{-3.2443t} + e^{2.62215t}[(1.067C_1 - 0.27785C_1)\cos 1.067t]$

$$y(t) \approx -6.2443C_1 e^{-3.2443t} + e^{2.62215t} [(1.067C_2 - 0.37785C_3) \cos 1.067t + (-0.37785C_2 - 1.067C_3) \sin 1.067t] - 0.11538t^2 - 0.043923t + 1.0355$$

$$z(t) \cong C_1 e^{-3.2443t} + e^{2.62215t} (C_2 \sin 1.067t + C_3 \cos 1.067t) + \frac{1}{26}t^2 - \frac{54}{169}t - \frac{3333}{4394}t + \frac{3333}{494}t + \frac{333}{494}t + \frac{333}{494$$

6-61 (a)

$$\begin{aligned} x(t) &= C_1 \frac{\sin\left(\frac{\sqrt{71}}{2}\ln t\right)}{\sqrt{t}} + C_2 \frac{\cos\left(\frac{\sqrt{71}}{2}\ln t\right)}{\sqrt{t}} + \frac{5}{3} \\ y(t) &= \frac{C_1}{12} t^2 \left[\frac{\sqrt{71}\cos\left(\frac{\sqrt{71}}{2}\ln t\right)}{\sqrt{t^3}} - \frac{\sin\left(\frac{\sqrt{71}}{2}\ln t\right)}{\sqrt{t^3}} \right] - \frac{C_2}{12} t^2 \left[\frac{\cos\left(\frac{\sqrt{71}}{2}\ln t\right)}{\sqrt{t^3}} - \frac{\sqrt{71}\sin\left(\frac{\sqrt{71}}{2}\ln t\right)}{\sqrt{t^3}} \right] \end{aligned}$$

(b)

$$\begin{aligned} x(t) &= C_1 \frac{\sin\left(\frac{\sqrt{7}}{2}\ln t\right)}{\sqrt{t}} + C_2 \frac{\cos\left(\frac{\sqrt{7}}{2}\ln t\right)}{\sqrt{t}} + 2t - 1\\ y(t) &= -\frac{C_1}{4}t^2 \left[\frac{\sqrt{7}\cos\left(\frac{\sqrt{7}}{2}\ln t\right)}{\sqrt{t^3}} - \frac{\sin\left(\frac{\sqrt{7}}{2}\ln t\right)}{\sqrt{t^3}}\right] + \frac{C_2}{4}t^2 \left[\frac{\cos\left(\frac{\sqrt{7}}{2}\ln t\right)}{\sqrt{t^3}} + \frac{\sqrt{71}\sin\left(\frac{\sqrt{7}}{2}\ln t\right)}{\sqrt{t^3}}\right] + 2t^2 \end{aligned}$$

$$\begin{aligned} x(t) &= \left(\frac{33}{49} - \frac{121\sqrt{2}}{196}\right)e^{(3+\sqrt{2})t} + \left(\frac{33}{49} + \frac{121\sqrt{2}}{196}\right)e^{(3-\sqrt{2})t} - \frac{4}{7}t - \frac{17}{49} \\ y(t) &= -\left(\frac{33}{49} - \frac{121\sqrt{2}}{196}\right)(\sqrt{2} + 1)e^{(3+\sqrt{2})t} + \left(\frac{33}{49} + \frac{121\sqrt{2}}{196}\right)(\sqrt{2} - 1)e^{(3-\sqrt{2})t} - \frac{1}{7}t - \frac{6}{49} \end{aligned}$$

6-65

$$\begin{aligned} x(t) &= \frac{287\sqrt{71}}{639} e^{-\frac{1}{2}t} \sin\frac{\sqrt{71}}{2}t + \frac{17}{9} e^{-\frac{1}{2}t} \cos\frac{\sqrt{71}}{2}t + \frac{1}{9}\\ y(t) &= \frac{517\sqrt{71}}{1278} e^{-\frac{1}{2}t} \sin\frac{\sqrt{71}}{2}t - \frac{59}{18} e^{-\frac{1}{2}t} \cos\frac{\sqrt{71}}{2}t + \frac{5}{18} e^{-\frac{1}{2}t} + \frac{5}{$$

6-67 x(t) = 0 and y(t) = 06-69

$$h_2'' + \frac{5B}{3}h_2' + \frac{1}{3}B^2h_2 = \frac{q_{mi}}{3\rho A}(q_{mi}' + Bq_{mi})$$

6-73

(a)

$$x(t) = C_1 e^{2t} + C_2 e^{-2t}$$
$$y(t) = -C_1 e^{2t} + 3C_2 e^{-2t}$$

(b)

(a)

$$x(t) = C_1 e^{2t} + C_2 e^{-2t} - \frac{1}{4}t^2 + \frac{1}{4}t + \frac{1}{8}$$
$$y(t) = -C_1 e^{2t} + 3C_2 e^{-2t} + \frac{3}{4}t^2 + \frac{3}{4}t - \frac{9}{8}$$
6-75
(a)

$$\begin{aligned} x(t) &= C_1 e^{(2+2\sqrt{6})t} + C_2 e^{(2-2\sqrt{6})t} \\ y(t) &= C_1 (-5+2\sqrt{6}) e^{(2+2\sqrt{6})t} + C_2 (-5-2\sqrt{6}) e^{(2-2\sqrt{6})t} \end{aligned}$$

(b)

$$x(t) = C_1 e^{(2+2\sqrt{6})t} + C_2 e^{(2-2\sqrt{6})t} + \frac{1}{10}$$
$$y(t) = C_1 (-5+2\sqrt{6}) e^{(2+2\sqrt{6})t} + C_2 (-5-2\sqrt{6}) e^{(2-2\sqrt{6})t} + \frac{3}{10}$$

6-77 (a)

$$\begin{aligned} x(t) &= C_1 e^{\sqrt{7}t} + C_2 e^{-\sqrt{7}t} \\ y(t) &= \frac{C_1}{2} \left(1 + \sqrt{7} \right) e^{\sqrt{7}t} + \frac{C_2}{2} \left(1 - \sqrt{7} \right) e^{-\sqrt{7}t} \end{aligned}$$

(b)

$$\begin{aligned} x(t) &= C_1 e^{\sqrt{7}t} + C_2 e^{-\sqrt{7}t} + \frac{3}{11} \sin 2t - \frac{6}{11} \cos 2t + \frac{4}{7} \\ y(t) &= \frac{C_1}{2} (1 + \sqrt{7}) e^{\sqrt{7}t} + \frac{C_2}{2} (1 - \sqrt{7}) e^{-\sqrt{7}t} - \frac{9}{11} \sin 2t + \frac{2}{7} \end{aligned}$$

6-79 (a)

$$x(t) = C_1 e^{(4+\sqrt{3})t} + C_2 e^{(4-\sqrt{3})t}$$
$$y(t) = C_1 (2-\sqrt{3}) e^{(4+\sqrt{3})t} + C_2 (2+\sqrt{3}) e^{(4-\sqrt{3})t}$$

(b)

$$x(t) = C_1 e^{(4+\sqrt{3})t} + C_2 e^{(4-\sqrt{3})t} + e^{2t} + \frac{1}{13}$$
$$y(t) = C_1 (2-\sqrt{3}) e^{(4+\sqrt{3})t} + C_2 (2+\sqrt{3}) e^{(4-\sqrt{3})t} + (t+4) e^{2t} + \frac{6}{13}$$

6-81 (a)

$$\begin{aligned} x(t) &= C_1 e^{\left(1 + 4\sqrt{3}\right)t} + C_2 e^{1 - 4\sqrt{3}t} \\ y(t) &= \left(1 + \frac{2\sqrt{3}}{3}\right) C_1 e^{\left(1 + 4\sqrt{3}\right)t} + \left(1 - \frac{2\sqrt{3}}{3}\right) C_2 e^{1 - 4\sqrt{3}t} \end{aligned}$$

(b)

$$x(t) = C_1 e^{(1+4\sqrt{3})t} + C_2 e^{(1-4\sqrt{3})t} - \frac{6}{47}t^2 + \frac{24}{2209}t + \frac{14851}{103823}$$

$$y(t) = \left(1 + \frac{2\sqrt{3}}{3}\right)C_1e^{(1+4\sqrt{3})t} + \left(1 - \frac{2\sqrt{3}}{3}\right)C_2e^{(1-4\sqrt{3})t} - \frac{5}{47}t^2 - \frac{74}{2209}t - \frac{4740}{103823}$$

6-83

$$\begin{aligned} x(t) &= \left(\frac{16}{49} - \frac{75\sqrt{2}}{1916}\right)e^{(3+\sqrt{2})t} + \left(\frac{16}{49} + \frac{75\sqrt{2}}{1916}\right)e^{(3-\sqrt{2})t} + \frac{4}{7}t + \frac{17}{49}\\ y(t) &= \left(\frac{43}{98} + \frac{11\sqrt{2}}{196}\right)e^{(3+\sqrt{2})t} + \left(\frac{43}{98} - \frac{11\sqrt{2}}{196}\right)e^{(3-\sqrt{2})t} + \frac{1}{7}t + \frac{6}{49} \end{aligned}$$

6-85

$$\begin{aligned} x(t) &\cong -0.00244e^{3t} - 2.30616e^{-2t} - \frac{1}{6}t + \frac{19}{36}\\ y(t) &\cong -0.00061e^{3t} + 2.30616e^{-2t} - \frac{1}{6}t - \frac{11}{36} \end{aligned}$$

6-87

$$LI\omega'' + RL\omega' + K_T K_b \omega = -LT'_L - RT_L + K_T V_a$$

6-91

$$\omega = \sqrt{\frac{4 + 2\sqrt{7}}{3}\alpha}, \sqrt{\frac{-4 + 2\sqrt{7}}{3}\alpha}$$
$$\frac{A_1}{A_2} = \frac{3}{2 + 2\sqrt{7}}$$

$$\begin{cases} xI(t) = \frac{55}{3} + \frac{1}{20} e^{-\frac{21}{400}t} \left(-\sin\left(\frac{3}{400}\sqrt{31}t\right) - C2 - 3\cos\left(\frac{3}{400}\sqrt{31}t\right)\sqrt{31}\right) \sqrt{31} - C2 - \cos\left(\frac{3}{400}\sqrt{31}t\right) - C1 \\ + 3\sin\left(\frac{3}{400}\sqrt{31}t\right)\sqrt{31} - C1\right), x2(t) = -\frac{50}{3} \\ + e^{-\frac{21}{400}t} \left(\sin\left(\frac{3}{400}\sqrt{31}t\right) - C2 + \cos\left(\frac{3}{400}\sqrt{31}t\right) - C1\right) \right\}$$

(a) $\begin{cases} x(t) = _CI \ e^{\frac{1}{2} (5 + \sqrt{13}) t} + _C2 \ e^{-\frac{1}{2} (-5 + \sqrt{13}) t}, y(t) = \\ -\frac{3}{2} _CI \ e^{\frac{1}{2} (5 + \sqrt{13}) t} - \frac{1}{2} _CI \ e^{\frac{1}{2} (5 + \sqrt{13}) t} \sqrt{13} \\ -\frac{3}{2} _C2 \ e^{-\frac{1}{2} (-5 + \sqrt{13}) t} + \frac{1}{2} _C2 \ e^{-\frac{1}{2} (-5 + \sqrt{13}) t} \sqrt{13} \end{cases}$

(b)

$$\begin{cases} x(t) = e^{\frac{1}{2}(5+\sqrt{13})t} \\ C2 + e^{-\frac{1}{2}(-5+\sqrt{13})t} \\ C1 + \frac{4}{3}t + te^{t} \\ -3e^{t} + \frac{5}{9}, y(t) = -\frac{3}{2}e^{\frac{1}{2}(5+\sqrt{13})t} \\ C2 \\ -\frac{1}{2}e^{\frac{1}{2}(5+\sqrt{13})t} \\ C2\sqrt{13} - \frac{3}{2}e^{-\frac{1}{2}(-5+\sqrt{13})t} \\ -\frac{1}{2}e^{-\frac{1}{2}(-5+\sqrt{13})t} \\ C1\sqrt{13} + \frac{2}{9} - e^{t} + \frac{1}{3}t \end{cases}$$

6-97

6-95

$$x(t) = \frac{389\sqrt{95}}{32110} e^{3/2t} \sin\left(\frac{1}{2}\sqrt{95}t\right) + \frac{373}{338} e^{3/2t} \cos\left(\frac{1}{2}\sqrt{95}t\right) - \frac{35}{338} - \frac{3}{13}t$$
$$y(t) = \frac{5841\sqrt{95}}{64220} e^{3/2t} \sin\left(\frac{1}{2}\sqrt{95}t\right) - \frac{127}{676} e^{3/2t} \cos\left(\frac{1}{2}\sqrt{95}t\right) + \frac{127}{676} - \frac{1}{26}t$$

6-99

$$x(t) = \frac{1}{9} + e^{-1/2t} \left[\frac{287\sqrt{71}}{639} \sin\left(\frac{1}{2}\sqrt{71}t\right) + \frac{17}{9}\cos\left(\frac{1}{2}\sqrt{71}t\right) \right]$$
$$y(t) = \frac{5}{18} + e^{-1/2t} \left[\frac{517\sqrt{71}}{1278} \sin\left(\frac{1}{2}\sqrt{71}t\right) \sqrt{71} - \frac{59}{18}\cos\left(\frac{1}{2}\sqrt{71}t\right) \right]$$

$$\begin{aligned} x(t) &= C_1 e^{2t} + C_2 e^{\frac{1}{2}(5+\sqrt{29})t} + C_3 e^{\frac{1}{2}(5-\sqrt{29})t} \\ y(t) &= C_1 e^{2t} + \frac{C_2}{6} \left(5 - \sqrt{29}\right) e^{\frac{1}{2}(5+\sqrt{29})t} + \frac{C_3}{6} \left(5 + \sqrt{29}\right) e^{\frac{1}{2}(5-\sqrt{29})t} \\ z(t) &= \frac{C_2}{3} \left(6 - \sqrt{29}\right) e^{\frac{1}{2}(5+\sqrt{29})t} + \frac{C_3}{6} \left(6 + \sqrt{29}\right) e^{\frac{1}{2}(5-\sqrt{29})t} \end{aligned}$$

$$\begin{aligned} x(t) &= -19C_1 e^{-3t} - \frac{1}{3}C_2 e^{\frac{5}{2}t} \sin\frac{\sqrt{103}}{2}t - \frac{1}{3}C_3 e^{\frac{5}{2}t} \cos\frac{\sqrt{103}}{2}t \\ y(t) &= 2C_1 e^{-3t} + \frac{1}{6} \left(C_2 + \sqrt{103}C_3\right) e^{\frac{5}{2}t} \sin\frac{\sqrt{103}}{2}t + \frac{1}{6} \left(C_3 - \sqrt{103}C_2\right) e^{\frac{5}{2}t} \cos\frac{\sqrt{103}}{2}t \\ z(t) &= C_1 e^{-3t} + C_2 e^{\frac{5}{2}t} \sin\frac{\sqrt{103}}{2}t + C_3 e^{\frac{5}{2}t} \cos\frac{\sqrt{103}}{2}t \end{aligned}$$

7-39

(a)
$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 3 & -3 \\ 1 & 8 \end{pmatrix}$$
, (b) $2\mathbf{A} = \begin{pmatrix} 4 & 0 \\ -14 & 10 \end{pmatrix}$
(c) $3\mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 & 3 \\ -29 & 12 \end{pmatrix}$, (d) $-3\mathbf{A}\mathbf{B} = \begin{pmatrix} -6 & 18 \\ -99 & -108 \end{pmatrix}$

7-41

(a)
$$5\mathbf{A} = \begin{pmatrix} 35 & -15 \\ 30 & 60 \end{pmatrix}$$
, (b) $2\mathbf{A} + 3\mathbf{B} = \begin{pmatrix} 47 & -33 \\ 24 & 27 \end{pmatrix}$,
(c) $2\mathbf{A}\mathbf{B} = \begin{pmatrix} 130 & -132 \\ 228 & -84 \end{pmatrix}$, (d) $det\mathbf{A} = 102$

7-43

(a)
$$\mathbf{A} - 4\mathbf{B} = \begin{pmatrix} 16 & -18 & 23 \\ -5 & -12 & 3 \\ 9 & -36 & -2 \end{pmatrix}$$
, (b) $\mathbf{AB} = \begin{pmatrix} -23 & 37 & -17 \\ -6 & 23 & 8 \\ 3 & 6 & 17 \end{pmatrix}$
c) $\mathbf{BA} = \begin{pmatrix} -1 & 6 & -7 \\ 1 & -2 & 12 \\ -24 & 6 & 20 \end{pmatrix}$, (d) $\det \mathbf{B} = -103$

7-45

(a)
$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 18 & -12 \\ 10 & 13 \end{pmatrix}$$
, $\mathbf{B} + \mathbf{A} = \begin{pmatrix} 18 & -12 \\ 10 & 13 \end{pmatrix}$

b)
$$2(\mathbf{A} + \mathbf{B}) = \begin{pmatrix} 36 & -24 \\ 20 & 26 \end{pmatrix}, \quad 2\mathbf{A} + 2\mathbf{B} = \begin{pmatrix} 36 & -24 \\ 20 & 26 \end{pmatrix}$$

c)
$$AB = \begin{pmatrix} 65 & -66 \\ 114 & -42 \end{pmatrix}$$
, $BA = \begin{pmatrix} 23 & -141 \\ 34 & 0 \end{pmatrix}$

(a)
$$(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \begin{pmatrix} 0 & 8 \\ 11 & 8 \end{pmatrix}, \quad \mathbf{A} + (\mathbf{B} + \mathbf{C}) = \begin{pmatrix} 0 & 8 \\ 11 & 8 \end{pmatrix}$$

b)
$$A(BC) = \begin{pmatrix} 168 & -12 \\ -7 & -71 \end{pmatrix}$$
, $(AB)C = \begin{pmatrix} 168 & -12 \\ -7 & -71 \end{pmatrix}$
c) $A(B+C) = \begin{pmatrix} 56 & 31 \\ 38 & 12 \end{pmatrix}$, $AB + AC = \begin{pmatrix} 56 & 31 \\ 38 & 12 \end{pmatrix}$
7-49

(a)

$$\int_{0}^{t} \mathbf{A} dt = \begin{pmatrix} \ln \frac{1}{1-t} & 1-3\cos 3t \\ \frac{1}{2} - \frac{1}{2}e^{-2t} & \frac{1}{2}t^{2} + t \end{pmatrix}$$

(b)

$$\frac{d\mathbf{A}}{dt} = \begin{pmatrix} \frac{1}{(1-t)^2} & 9\cos 3t \\ -2e^{-2t} & 1 \end{pmatrix}$$

7-51

(a)

$$\mathbf{B} \int_{0}^{1} \mathbf{A} dt = \begin{pmatrix} \frac{11}{3} - e & \frac{7}{2} - \frac{4}{e} + \frac{1}{2}\cos 2\\ -\frac{17}{3} + 7e & \frac{11}{2} - \frac{2}{e} - \frac{7}{2}\cos 2 \end{pmatrix}$$

(b)

$$\int_{0}^{1} (\mathbf{B}\mathbf{A})dt = \begin{pmatrix} \frac{11}{3} - e & \frac{7}{2} - \frac{4}{e} + \frac{1}{2}\cos 2\\ -\frac{17}{3} + 7e & \frac{11}{2} - \frac{2}{e} - \frac{7}{2}\cos 2 \end{pmatrix}$$

(c)

$$\mathbf{B}\frac{d\mathbf{A}}{dt} = \begin{pmatrix} \frac{2}{\sqrt{t}} - e^t & -4e^{-t} - 2\cos 2t \\ \frac{1}{\sqrt{t}} + 7e^t & -2e^{-t} + 14\cos 2t \end{pmatrix}$$

(d)

$$\frac{d}{dt}(\mathbf{BA}) = \begin{pmatrix} \frac{2}{\sqrt{t}} - e^t & -4e^{-t} - 2\cos 2t \\ \frac{1}{\sqrt{t}} + 7e^t & -2e^{-t} + 14\cos 2t \end{pmatrix}$$

7-53
$$m_{1}x_{1}'' = -k_{1}x_{1} + k_{2}(x_{2} - x_{1}) - c_{1}x_{1}' + c_{2}(x_{2}' - x_{1}')$$
$$m_{2}x_{2}'' = f - k_{2}(x_{2} - x_{1}) - c_{2}(x_{2}' - x_{1}')$$
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k_{2} + k_{1}}{m_{1}} & \frac{k_{2}}{m_{1}} & -\frac{c_{1} + c_{2}}{m_{1}} & \frac{c_{2}}{m_{1}} \\ \frac{k_{2}}{m_{2}} & \frac{-k_{2}}{m_{2}} & \frac{c_{2}}{m_{2}} & -\frac{c_{2}}{m_{2}} \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

7-65 (a)

 $\mathbf{A^{-1}} = \begin{pmatrix} \frac{2}{17} & \frac{1}{34} \\ -\frac{1}{17} & \frac{7}{102} \end{pmatrix}$

(b)

$$\mathbf{B}^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{3}{2} \\ -\frac{1}{3} & \frac{1}{3} & -\frac{5}{3} \end{pmatrix}$$

7-67 (a)

$$\mathbf{A^{-1}} = \begin{pmatrix} 1 & 0\\ \frac{2}{5} & \frac{1}{5} \end{pmatrix}$$

(b)

$$\mathbf{B}^{-1} = \begin{pmatrix} \frac{8}{1727} & -\frac{62}{1727} & -\frac{166}{1727} & \frac{89}{1727} \\ \frac{298}{1727} & \frac{281}{1727} & -\frac{139}{1727} & \frac{293}{1727} \\ \frac{122}{1727} & -\frac{82}{1727} & -\frac{59}{1727} & \frac{62}{1727} \\ \frac{273}{3554} & -\frac{43}{3454} & \frac{26}{1727} & \frac{201}{3454} \end{pmatrix}$$

(a)

$$\mathbf{A^{-1}} = \begin{pmatrix} \frac{1}{47} & \frac{9}{47} \\ -\frac{4}{47} & \frac{11}{47} \end{pmatrix}$$

(b)

$$\mathbf{B}^{-1} = \begin{pmatrix} \frac{1}{17} & 0 & \frac{3}{17} \\ -\frac{1}{2} & 1 & 0 \\ -\frac{5}{34} & 0 & \frac{1}{17} \end{pmatrix}$$

7-71 (a)

$$\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{11} & \frac{1}{11} \\ -\frac{8}{33} & \frac{1}{11} \end{pmatrix}$$

(b)

$$\mathbf{B}^{-1} = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} & -\frac{1}{8} \\ \frac{1}{2} & 1 & \frac{1}{4} \\ -\frac{1}{8} & \frac{1}{4} & \frac{1}{16} \end{pmatrix}$$

7-73 (a)

$$\mathbf{A}^{-1} = \begin{pmatrix} -\frac{2}{39} & \frac{7}{39} \\ \frac{5}{39} & \frac{2}{39} \end{pmatrix}$$

(b) The inverse of the square matrix **B** does not exist. This is a singular matrix.

7-75 (This problem is identical with 7-14, and will be removed in the second press run)(a)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

(b)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

(c)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \alpha \begin{pmatrix} -\frac{3}{4} \\ -\frac{1}{8} \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{5}{2} \\ \frac{5}{4} \\ 0 \end{pmatrix}$$

(d)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{9}{7} \\ \frac{5}{7} \\ \frac{16}{7} \end{pmatrix}$$

7-77

(a)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \alpha \begin{pmatrix} \frac{2}{5} \\ -\frac{7}{5} \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{8}{5} \\ \frac{2}{5} \\ \frac{2}{5} \\ 0 \end{pmatrix}$$

(b)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \alpha \begin{pmatrix} \frac{2}{5} \\ \frac{7}{-\frac{5}{5}} \\ 1 \end{pmatrix}$$

(c) The system has no solution.

(d)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$

(a)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \alpha \begin{pmatrix} -\frac{3}{7} \\ \frac{5}{7} \\ 1 \end{pmatrix} + \begin{pmatrix} -\frac{13}{7} \\ \frac{31}{7} \\ 0 \end{pmatrix}$$

(b)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \alpha \begin{pmatrix} -\frac{3}{7} \\ \frac{5}{7} \\ 1 \end{pmatrix}$$

(c)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{9}{5} \\ 3 \\ -\frac{14}{5} \end{pmatrix}$$

(d)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{48}{25} \\ \frac{16}{5} \\ -\frac{63}{25} \end{pmatrix}$$

7-81 The vectors are linearly independent.

7-83 The vectors are linearly independent.

7-85 The vectors are linearly independent.

7-87 The vectors are linearly independent in the given interval.

7-89 The vectors are linearly dependent in $-\infty < t < \infty$.

7-91

(a)
$$\mathbf{v}_1 = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ 1 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} \frac{1}{2} - \frac{1}{2}i \\ 1 \end{pmatrix}$

(b)
$$\mathbf{v}_1 = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} \frac{3}{2} \\ 0 \\ 1 \end{pmatrix} \text{ and } \mathbf{v}_3 = \begin{pmatrix} -\frac{1}{6} \\ -\frac{2}{3} \\ 1 \end{pmatrix}$$

7-93
(a)
$$\mathbf{v}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
(b) $\mathbf{v}_1 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and $\mathbf{v}_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$

(a)
$$\mathbf{v}_1 = \begin{pmatrix} \frac{3}{2}i \\ 1 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} -\frac{3}{2}i \\ 1 \end{pmatrix}$
(b) $\mathbf{v}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ \frac{2}{5} \\ 1 \end{pmatrix}$ and $\mathbf{v}_3 = \begin{pmatrix} -1 \\ -\frac{4}{7} \\ 1 \end{pmatrix}$

7-97

(a)
$$\mathbf{v}_1 = \begin{pmatrix} \frac{\sqrt{6}}{4}i \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -\frac{\sqrt{6}}{4}i \\ 1 \end{pmatrix}$$

(b) $\mathbf{v}_1 = \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -\frac{1}{6} - \frac{\sqrt{11}}{3}i \\ -\frac{1}{3} - \frac{\sqrt{11}}{3}i \\ 1 \end{pmatrix}$ and $\mathbf{v}_3 = \begin{pmatrix} -\frac{1}{6} + \frac{\sqrt{11}}{3}i \\ -\frac{1}{3} + \frac{\sqrt{11}}{3}i \\ 1 \end{pmatrix}$

7-99

(a)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -\frac{7}{3} \\ 1 \end{pmatrix}$$

(b) $\mathbf{v}_1 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} \frac{\sqrt{2}i-2}{-2+3\sqrt{2}i} \\ -\frac{\sqrt{2}i+6}{-2+3\sqrt{2}i} \\ 1 \end{pmatrix} \text{ and } \mathbf{v}_3 = \begin{pmatrix} \frac{\sqrt{2}i+2}{2+3\sqrt{2}i} \\ -\frac{\sqrt{2}i+6}{2+3\sqrt{2}i} \\ 1 \end{pmatrix}$

7-105 \mathbf{x}_1 and \mathbf{x}_2 are not solutions to the given system, and they are linearly independent.

7-107 \mathbf{x}_1 and \mathbf{x}_2 are the solutions to the given system, and they are linearly dependent.

7-109 \mathbf{x}_1 and \mathbf{x}_2 are the solutions to the given system, and they are linearly independent. Thus, the general solution of the given system is $(2) = (-e^{-5t})$

$$\mathbf{x} = C_1 \mathbf{x}_1 + C_2 \mathbf{x}_2 = C_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} e^{-5t} \\ -2e^{-5t} \end{pmatrix}$$

7-111 \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 are not solutions to the given system, and they are linearly dependent. **7-113** \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 are the solutions to the given system, and they are linearly dependent **7-115** The vector \mathbf{x}_p satisfies the given system, and it is a solution.

7-117 The vector \mathbf{x}_p does **not** satisfy the given system, and it is not a particular solution.

7-119 The vector \mathbf{x}_p does **not** satisfy the given system.

7-125
$$\mathbf{x} = C_1 \mathbf{x}_1 + C_2 \mathbf{x}_2 = C_1 \left(\frac{1}{4}\right) e^{-3t} + C_2 \left(\frac{-1}{1}\right) e^{2t}$$

7-127 $\mathbf{x} = C_1 \mathbf{x}_1 + C_2 \mathbf{x}_2 = C_1 \left(\frac{1}{-5+2\sqrt{6}}\right) e^{(2+2\sqrt{6})t} + C_2 \left(-\frac{1}{5+2\sqrt{6}}\right) e^{(2-2\sqrt{6})t}$
7-129 $\mathbf{x} = C_1 \mathbf{x}_1 + C_2 \mathbf{v}_2 = C_1 \left(\frac{1}{2}\right) e^{3t} + C_2 \left(\frac{-1}{1}\right) e^{-3t}$
7-131 $\mathbf{x} = C_1 \mathbf{x}_1 + C_2 \mathbf{v}_2 = C_1 \left(\frac{1}{1}\right) e^{3t} + C_2 \left(\frac{1+t}{t}\right) e^{3t}$
7-133 $\mathbf{x} = C_1 \mathbf{x}_1 + C_2 \mathbf{x}_2 = C_1 \left(\frac{1}{1}\right) e^{9t} + C_2 \left(\frac{-3}{1}\right) e^t$
7-135 $\mathbf{x} = C_1 \mathbf{x}_1 + C_2 \mathbf{x}_2 + C_3 \mathbf{x}_3 = C_1 \left(\frac{2}{-1}\right) e^{3t} + C_2 \left(\frac{2}{5} \cos t - \frac{6}{5} \sin t\right) + C_3 \left(\frac{6}{5} \cos t + \frac{2}{5} \sin t\right) \sin t$

7-137 x = $\begin{pmatrix} e^t \\ e^t \end{pmatrix}$ 7-139 x = $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{2}{7e^3} \begin{pmatrix} 6 \\ 1 \end{pmatrix} e^{3t} + \frac{12}{7e^{-4}} \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-4t}$

$$7-147 \mathbf{x} = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} \frac{1}{4} \\ 1 \end{pmatrix} e^{-3t} + \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} \cos 3t + \begin{pmatrix} \frac{1}{6} \\ -\frac{1}{3} \end{pmatrix} \sin 3t$$

$$7-149 \mathbf{x} = C_1 \begin{pmatrix} \frac{1}{-3+2\sqrt{2}} \\ 1 \end{pmatrix} e^{2\sqrt{2}t} + C_2 \begin{pmatrix} -\frac{1}{3+2\sqrt{2}} \\ 1 \end{pmatrix} e^{-2\sqrt{2}t} + \begin{pmatrix} -\frac{8}{7} \\ \frac{2}{7} \end{pmatrix} te^t + \begin{pmatrix} -\frac{23}{49} \\ -\frac{10}{49} \end{pmatrix} e^t$$

$$7-151 \mathbf{x} = C_1 \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix} e^{5t} + C_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{-2t} + \begin{pmatrix} -\frac{1}{5} \\ -\frac{3}{5} \end{pmatrix} t + \begin{pmatrix} \frac{24}{25} \\ -\frac{31}{50} \end{pmatrix}$$

$$7-153 \mathbf{x} = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t} + C_2 \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} e^{3t} + \begin{pmatrix} \frac{1}{75} \\ \frac{26}{75} \end{pmatrix} \cos 3t + \begin{pmatrix} -\frac{7}{75} \\ -\frac{32}{75} \end{pmatrix} \sin 3t$$

$$7-155 \mathbf{x} = C_1 \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} e^{8t} + C_2 \begin{pmatrix} -6 \\ 1 \end{pmatrix} e^{-5t} + \begin{pmatrix} \frac{27}{20} \\ -\frac{1}{10} \end{pmatrix}$$

$$\mathbf{x} = C_1 \begin{pmatrix} 1\\0\\1 \end{pmatrix} e^t + C_2 \begin{pmatrix} \frac{6}{5}\cos t - \frac{3}{5}\sin t\\\frac{1}{5}\cos t + \frac{2}{5}\sin t\\\cos t \end{pmatrix} e^t + C_3 \begin{pmatrix} \frac{3}{5}\cos t + \frac{6}{5}\sin t\\-\frac{2}{5}\cos t + \frac{1}{5}\sin t\\\sin t \end{pmatrix} e^t + \frac{1}{2} \begin{pmatrix} 1\\1\\9 \end{pmatrix} t + \begin{pmatrix} \frac{11}{9}\\\frac{2}{2}\\\frac{29}{2} \end{pmatrix}$$

7-159

$$x_1(t) = -\frac{2}{5}e^{5t} - e^t + te^t + \frac{12}{5}$$
$$x_2(t) = \frac{6}{5}e^{5t} - 2e^t + te^t + \frac{9}{5}$$

7-161

$$x_{1}(t) = \frac{16}{7}e^{3(t-1)} - \frac{235}{112}e^{-4(t-1)} - \frac{5}{4}t + \frac{17}{16}$$
$$x_{2}(t) = \frac{8}{21}e^{3(t-1)} + \frac{235}{112}e^{-4(t-1)} + \frac{1}{4}t + \frac{35}{48}$$

7-163

$$x_1(t) = 2e^{-t} + 2\sin t + 2\cos t - 4$$
$$x_2(t) = -4e^{-t} - 2\sin t + 4$$

7-165

(a)
$$\mathbf{A}^3 = \begin{bmatrix} 63 & 62 \\ 62 & 63 \end{bmatrix}$$
 (b) $\mathbf{A}^{-1}\mathbf{I} = \mathbf{A}^{-1} = (6\mathbf{I} - \mathbf{A})/5$ $\mathbf{A}^{-1} = \frac{1}{5}\begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$

7-167 Only the second mode is controllable.

7-169 The truncated series solution gives $\boldsymbol{\varphi}(0.1) = \begin{pmatrix} 0.9 & 0.107 \\ -0.3 & 0.51 \end{pmatrix}$

whereas from the example $\boldsymbol{\varphi}(0.1) = \begin{pmatrix} 0.9002 & 0.0707 \\ -0.0707 & 0.4651 \end{pmatrix}$

(a)
$$\varphi(\mathbf{t}) = \begin{pmatrix} \frac{e^{2t}+1}{2e^{4t}} & 3\frac{e^{2t}-1}{2e^{4t}} \\ \frac{e^{2t}-1}{6e^{4t}} & \frac{e^{2t}+1}{2e^{4t}} \end{pmatrix}$$
, (b) $\varphi(\mathbf{t}) = \begin{pmatrix} e^t & te^t \\ 0 & e^t \end{pmatrix}$,
(c) $\varphi(\mathbf{t}) = \begin{pmatrix} e^{3t} & 0 \\ 0 & e^{3t} \end{pmatrix}$, (d) $\varphi(\mathbf{t}) = \begin{pmatrix} e^{-t} \left(\cos 3t + \frac{1}{3}\sin 3t\right) & \frac{1}{3}e^{-t}\sin 3t \\ -\frac{10}{3}e^{-t}\sin 3t & e^{-t} \left(\cos 3t - \frac{1}{3}\sin 3t\right) \end{pmatrix}$

7-173

(a)
$$\mathbf{A} = \begin{bmatrix} -5 & 3 \\ 0 & -4 \end{bmatrix}$$
 $\mathbf{B} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$ $\mathbf{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\mathbf{D} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
(b) $\mathbf{A} = \begin{bmatrix} -5 & 3 \\ 1 & -4 \end{bmatrix}$ $\mathbf{B} = \begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix}$ $\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ $\mathbf{D} = \begin{bmatrix} 0 & 0 \end{bmatrix}$

7-181

$$x_{1}(t) = \frac{20\sqrt{2}}{21}\sin\frac{\sqrt{2}}{2}t - \frac{5\sqrt{2}}{6}\sin\sqrt{2}t + \frac{5}{14}\sin 2t$$
$$x_{2}(t) = \frac{40\sqrt{2}}{21}\sin\frac{\sqrt{2}}{2}t + \frac{5\sqrt{2}}{6}\sin\sqrt{2}t - \frac{25}{14}\sin 2t$$

7-183

$$\mathbf{x} = C_1 \begin{pmatrix} -e^{3t} \cos 3t - 3e^{3t} \sin 3t \\ e^{3t} \cos 3t \end{pmatrix} + C_2 \begin{pmatrix} 3e^{3t} \cos 3t - e^{3t} \sin 3t \\ e^{3t} \sin 3t \end{pmatrix} + \begin{pmatrix} -\frac{2}{9} \\ \frac{1}{18} \end{pmatrix} t^3 + \begin{pmatrix} -\frac{11}{18} \\ -\frac{1}{18} \end{pmatrix} t^2 + \begin{pmatrix} -\frac{1}{3} \\ \frac{1}{18} \end{pmatrix} t + \begin{pmatrix} -\frac{457}{162} \\ -\frac{43}{81} \end{pmatrix}$$
7-185

7-185

$$\mathbf{x} = C_1 \left(\frac{1}{5} e^t \cos 2t - \frac{2}{5} e^t \sin 2t}{e^t \cos 2t} \right) + C_2 \left(\frac{2}{5} e^t \cos 2t + \frac{1}{5} e^t \sin 2t}{e^t \sin 2t} \right) + \left(\frac{11}{10} - \frac{11}{5} - \frac{11}{5} \right) \sin t + \left(-\frac{7}{10} - \frac{5}{5} - \frac{11}{5} \right) \cos t$$

$$x_1(t) = -\frac{2}{5}e^{-5t} + \frac{9}{20}e^{-8t} + \frac{4}{5}e^{-3t} + \frac{3}{20}$$
$$x_2(t) = -\frac{2}{5}e^{-5t} - \frac{9}{40}e^{-8t} + \frac{8}{5}e^{-3t} + \frac{1}{40}$$

7-189

$$x_1(t) = -C_1 e^{4t} \sin 3t + C_2 e^{4t} \cos 3t$$
$$x_2(t) = C_1 e^{4t} \cos 3t + C_2 e^{4t} \sin 3t$$

7-191
$$\mathbf{x} = C_1 \begin{pmatrix} -e^{2t} \sin 3t \\ e^{2t} \cos 3t \end{pmatrix} + C_2 \begin{pmatrix} e^{2t} \cos 3t \\ e^{2t} \sin 3t \end{pmatrix}$$

7-193

$$\mathbf{x} = C_1 \left(-\frac{1}{2} e^{8t} (\cos t + \sin t) \\ e^{8t} \cos t \right) + C_2 \left(\frac{1}{2} e^{8t} (\cos t - \sin t) \\ e^{8t} \sin t \right) + \left(\frac{\left(t - \frac{1}{2} \right) e^{8t} (\sin t + \cos t) }{(-2t+1)e^{8t} (\sin t + \cos t)} \right)$$

7-195
$$\mathbf{x} = C_1 \mathbf{x}_1 + C_2 \mathbf{x}_2 = C_1 \left(\frac{-2}{1} \right) e^t + C_2 \left(\frac{-2t + \frac{1}{2}}{t} \right) e^t$$

Note that the initial conditions specified for the given system of two linear homogeneous differential equations with constant coefficients are both equal to zero. Therefore this initial-value problem has only the trivial solutions $x_1(t) = x_2(t) = 0$.

$$7-197 \mathbf{x} = C_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{-5t} + \begin{pmatrix} \left(-\frac{2}{3}t + \frac{5}{18} \right)e^t + \frac{4}{5}t - \frac{84}{25} \\ \left(-\frac{1}{6}t + \frac{1}{9} \right)e^t + \frac{3}{5}t - \frac{58}{25} \end{pmatrix}$$

$$7-199 \mathbf{x} = C_1 \begin{pmatrix} -\frac{6}{7} \\ -\frac{9}{7} \\ 1 \end{pmatrix} e^{5t} + C_2 \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} e^{-3t} + C_3 \begin{pmatrix} -2 \\ -\frac{5}{2} \\ 1 \end{pmatrix} e^{4t} + \begin{pmatrix} -\frac{14}{15}t + \frac{1477}{900} \\ -\frac{29}{60} + \frac{637}{3600} \\ \frac{11}{30}t - \frac{1513}{1800} \end{pmatrix}$$

7-201

$$x_1(t) = \frac{45}{16}e^{-4t} - \frac{7}{4}t - \frac{13}{16}$$
$$x_2(t) = \frac{75}{16}e^{-4t} - \frac{1}{4}t + \frac{5}{16}$$

CHAPTER 8

8-17 (a)
$$\frac{a}{s^{2}+a^{2}}$$
, (b) $\frac{5}{s^{2}} - \frac{3}{s}$, (c) $\frac{1}{(s-1)^{2}}$
8-19 (a) $\frac{1}{e}(\frac{1}{s+2})$ (b) $\frac{1}{2}(\frac{s}{s^{2}+4} + \frac{1}{s})$ (c) $\frac{1}{s^{2}}(1-2e^{-s}+e^{-\frac{35}{2}})$
8-27 (a) exponential order, (b) exponential order
(c) not exponential order, (d) not exponential order
8-37 (a) $\frac{6(s^{4}-6s^{2}+1)}{(s^{2}+1)^{4}}$ (b) $\frac{16}{5^{6}} - \frac{3e}{s-2}$ (c) $\frac{1}{s^{2}-3s}$
8-39 (a) $24\frac{s-3}{((s-3)^{2}+4)^{2}}$ (b) $\frac{3(s^{2}+s^{2})}{(s^{2}-k^{2})^{2}}$ (c) $\frac{\sqrt{\pi}}{2}\frac{2s+3}{s^{5/2}}$
8-41 (a) $\frac{20(3s^{2}+4)}{(s^{2}-4)^{3}}$ (b) $\frac{12}{(s+3)^{4}}$ (c) $\frac{2e^{-2(s-5)}[3k^{2}-(s-5)^{2}]}{((s-5)^{2}+k^{2}]^{3}}$
8-49 (a) $\frac{1}{s^{2}}(1-e^{2s})$ (b) $e^{-s} + \frac{2}{s}(e^{-2s}-e^{-4s})+e^{-5s}$
8-51 (a) $\frac{2}{s^{2}+4}(1+e^{-\frac{\pi}{2}s})$ (b) $-\frac{1}{s^{2}}(2e^{-2s}+e^{-4s})+e^{-6s}$
8-53 (a) $\frac{s}{s^{2}+4}(1-e^{-\pi s})$ (b) $\frac{1}{s}(e^{-2s}+e^{-s}-1)$
8-55 (a) $\frac{e^{-3s}}{s^{3}}(9s^{2}+6s+2)$ (b) $5e^{-s}+\frac{5s+2}{s}e^{-2s}$
8-57 $\frac{1}{s^{2}+1}$ coth πs
8-59 $\frac{2}{s(1+e^{-\pi s})}$
8-65 (a) $Y(s) = \frac{(s^{2}-2)y(0)+sy'(0)+y''(0)}{(s^{2}+2s+5)}$ (b) $Y(s) = \frac{(s-2)^{2}y'(0)+s(s-2)^{2}y(0)+3}{s^{2}(s-2)^{2}}}$
8-67 (a) $Y(s) = \frac{(s^{2}-6s+13)^{2}y'(0)+s(s^{2}-6s+13)^{2}y(0)-12}{(s^{2}+5)(s^{2}-6s+13)^{2}}$ (b) $Y(s) = \frac{s(-2)y(0)+(e+3)s-6}{s(s+3)(s-2)}$
8-71 (a) $u(t-3) \sin(t-3)$ (b) $e^{-3t} - \frac{1}{2}e^{3t}t^{2}(t+1)$ (c) $3(1-e^{-t/9})$
8-73 (a) cosh t + 3 sinh t (b) $2\cos\frac{\sqrt{3}}{2}t$ (c) $\frac{1}{120}u(t-2)(t-2)^{5}$
8-75 (a) $\frac{2}{3}u(t-2) \sinh(3t-6)$ (b) $e^{-t}(2\cos t+\sin t)$ (c) cos $t-2\sin t$
8-81 (a) $-1-t+3e^{t}$ (b) $-\frac{1}{16}+\frac{t}{8}+\frac{1}{16}e^{-2t}\cos 2t+\frac{1}{2}e^{-2t}\sin 2t$
8-83 (a) $-1-5t-\frac{1}{2}t^{2}+\cosh t+5\sinh t$ (b) $t-\frac{4}{\sqrt{7}}e^{-\frac{1}{4}}\sin\frac{\sqrt{7}}{4}t$
8-85 (a) $\frac{2}{s}+\frac{11}{10}e^{-5t}-\frac{1}{2}e^{-t}$ (b) $-\frac{3}{4}-t+e^{t}-\frac{1}{4}e^{-4t}$

$$8-91 (a) 8 \cosh t - 4t^{2} - 8 (b) \left[-\frac{1}{4}e^{-4t} \right]_{t=0}^{t=t} = -\frac{1}{4}e^{-4t} + \frac{1}{4} = \frac{1}{4} (\sinh 4t - \cosh 4t + 1)$$

$$8-93 (a) \left(\frac{3}{4}t - \frac{3}{16}\right)e^{-t} + \frac{3}{16}e^{-5t} (b) \frac{1}{18} (3 \sinh 3t + \cosh 3t) - \frac{1}{2} (\sinh t + \cosh t) + \frac{4}{9}$$

$$8-95 (a) -\frac{1}{4} + \frac{1}{8} (\cosh 2t + \cos 2t) (b) \frac{2}{5} - \frac{2}{5}e^{-t} \cos 2t - \frac{1}{5}e^{-t} \sin 2t$$

$$8-97 (a) -\frac{3}{4} - \frac{1}{2}t - \frac{1}{2}t^{2} + \frac{2}{3}e^{t} + \frac{1}{12}e^{-2t} (b) \frac{3}{8} (1 - \cos 2t)$$

$$8-101 y(t) = \frac{1}{10} (3 \cos t + \sin t - 13e^{-3t})$$

$$8-103 y(t) = \frac{1000}{19} \left(-e^{-t/50} + e^{-t/1000} \right) = \frac{2000}{19}e^{-\frac{21}{1000}t} \sinh \frac{19}{2000}t$$

$$8-105 x(t) = 2\sqrt{5}e^{-3t/2} \sinh \frac{\sqrt{5}}{2}t$$

$$8-107 x(t) = \frac{1}{2}e^{-t} (\cos t - \sin t - 4) + \frac{3}{2}$$

$$8-109$$

$$y(t) = \frac{6}{\sqrt{115}}e^{-5t} \sin \sqrt{115}t + \frac{1}{140}u(t - 1)$$

$$-\frac{1}{140}u(t - 1)e^{-5(t-1)} \left(\cos[\sqrt{115}(t - 1)] + \frac{5}{\sqrt{115}} \sin[\sqrt{115}(t - 1)] \right)$$

$$8-111 y(t) = 0.37654e^{-3t/2} \cosh \frac{\sqrt{17}}{2}t + 0.273973e^{-3t/2} \sinh \frac{\sqrt{17}}{2}t$$

$$8-113 y(t) = 5 \sinh t$$

$$8-115 y(t) = \frac{2}{58}e^{t/2} \cos \frac{\sqrt{15}}{2}t + \frac{111}{48\sqrt{15}} \sin \frac{\sqrt{15}}{2}t - \frac{1}{3}e^{-t} - \frac{3}{4}t + \frac{1}{2}t^{2} + \frac{29}{16}$$

$$8-117 y(t) = \frac{1}{4}e^{-8(t-\pi)} + \frac{e^{\pi}}{656}e^{-8(t-\pi)} + \frac{5}{82}e^{t} \cos t + \frac{2}{41}e^{t} \sin t + \frac{5}{4} - \frac{e^{\pi}}{16}$$

$$8-121 \frac{Y(s)}{t(s)} = \frac{1}{s^{2+3s+1}}$$

)

8-123

$$x(t) = -\frac{4}{13}e^{-2t} + \frac{1}{26}e^{t}(8\cos 2t + 27\sin 2t)$$
$$y(t) = -\frac{10}{13}e^{-2t} + \frac{1}{26}e^{t}(46\cos 2t - 43\sin 2t)$$

8-125

$$x(t) = \frac{1}{4}e^{-t} + \frac{1}{2}\sin t - \frac{5}{4}e^{-\frac{1}{2}t}\cos\frac{\sqrt{7}}{2}t + \frac{1}{4\sqrt{7}}e^{-\frac{1}{2}t}\sin\frac{\sqrt{7}}{2}t$$

$$y(t) = \frac{1}{2} + \frac{1}{2}e^{-t} + \sin t - e^{-\frac{1}{2}t}\cos\frac{\sqrt{7}}{2}t - \frac{2}{\sqrt{7}}e^{-\frac{1}{2}t}\sin\frac{\sqrt{7}}{2}t$$

$$\begin{aligned} x(t) &= -\frac{1}{2}\sin t + \frac{85}{44}e^{\frac{1}{2}t}\cos\frac{\sqrt{7}}{2} - \frac{127}{44\sqrt{7}}e^{\frac{1}{2}t}\sin\frac{\sqrt{7}}{2} - \frac{7}{4}e^{t} - \frac{2}{11}e^{-4t}\\ y(t) &= \frac{1}{2}\cos t + \frac{1}{2}\sin t - \frac{8}{11}e^{\frac{1}{2}t}\cos\frac{\sqrt{7}}{2} + \frac{61}{11\sqrt{7}}e^{\frac{1}{2}t}\sin\frac{\sqrt{7}}{2} + \frac{5}{22}e^{-4t}\\ z(t) &= -\frac{1}{2}\sin t + \frac{53}{44}e^{\frac{1}{2}t}\cos\frac{\sqrt{7}}{2} + \frac{117}{44\sqrt{7}}e^{\frac{1}{2}t}\sin\frac{\sqrt{7}}{2} + \frac{7}{4}e^{t} + \frac{1}{22}e^{-4t} \end{aligned}$$

8-129 $\frac{x_2(s)}{c(s)} = \frac{4s}{s^2 - 2s - 12}$ 8-131 $\frac{1}{6}e^{-2t} - \frac{1}{6}e^{-4t}$ 8-133 e^{-2t} 8-135 $\mathbf{x}(t) = \mathbf{\phi}(t)\mathbf{x}(0) + \mathbf{A}^{-1}[\mathbf{\phi}(t) - \mathbf{I}]\mathbf{B}\mathbf{p}$ 8-137 (a) $\frac{1}{45e^{5t}} - \frac{1}{18e^{2t}} + \frac{1}{30}$ (b) $\frac{1}{65} - \frac{\left(\cos(3t) + \frac{2\sin(3t)}{3}\right)}{65e^{2t}}$ (c) $\frac{7}{24e^{3t}} - \frac{13}{40e^{5t}} + \frac{1}{30}$ (d) $\frac{2}{3e^{2t}} - \frac{7}{6e^{3t}} + \frac{13}{30e^{5t}} + \frac{1}{15}$ 8-139 (a) $\frac{1}{9e^{2t}} - \frac{1}{9e^{5t}}$ (b) $-\frac{4}{169} + \frac{1}{13}t + \frac{1}{507}(12\cos(3t) - 5\sin(3t))e^{-2t}$

(c)
$$\frac{13}{40}e^{-5t} + \frac{1}{6}t + \frac{29}{180} - \frac{35}{72}e^{-3t}$$
 (d) $-\frac{13}{30}e^{-5t} + \frac{7}{45} - \frac{5}{3}e^{-2t} + \frac{35}{18}e^{-3t} + \frac{1}{3}t$

8-147
$$F(s) = \frac{C}{Ds^2} - \frac{C}{Ds^2}e^{-Ds} - \frac{C}{s}e^{-Ds}$$

8-149 $x(t) = \frac{2}{15}t^5 - \frac{2}{3}t^4 + 3t^3 - 9t^2 + 19t - 19 + 19e^{-t}$

8-151
$$x(t) = \frac{1}{6}(e^{-2t} - e^{-5t})$$

8-153 $x(t) = \frac{2v_1}{11}\sqrt{\frac{10m}{k}}\sin\sqrt{\frac{k}{10m}}t$

8-155 (a) $p_0 = 30 \times 10^3$ Pa $\tau = -0.2 / \ln 0.5 = 0.289$

(b)
$$x(t) = -0.643\cos 10t + 0.2225\sin 10t + 0.643e^{-3.46t}$$

8-157
$$\ddot{x} = \frac{a}{b^2 + \omega_n^2} \left(-b\omega_n \sin \omega_n t - \omega_n^2 \cos \omega_n t + \omega_n^2 e^{bt} \right)$$

8-159
$$x(t) = -\frac{F_0}{kT}t + \frac{F_0}{k} + \frac{F_0}{kT\omega_n}\sin\omega_n t - \frac{F_0}{k}\cos\omega_n t$$

8-161
$$y(x) = \frac{AL^2}{24} \left(3x - \frac{L}{2} \right) = \frac{f_0 L^2}{24EI} \left(3x - \frac{L}{2} \right)$$
 where $x \ge \frac{L}{2}$

CHAPTER 9

9-29

Strip method, N=1: $\frac{e}{2}$, 35.19%, Strip method, N=2: $\frac{1}{8}(e^{\frac{1}{2}} + 3e^{\frac{3}{2}})$, 10.04% Trapezoidal rule, N=1: $\frac{e^2}{2}$, 76.16%, Trapezoidal rule, N=2: $\frac{1}{4}e(e + 1)$, 20.48%

9-31

Trapezoidal rule, N=1: $-\frac{\pi}{2}(e^{\pi}+1)$, 276.55%, **Trapezoidal rule, N=2:** $-\frac{\pi}{4}(1+e^{\pi})$, 88.27%. **Simpson's rule, N=1** $-\frac{\pi}{6}(1+e^{\pi})$, 25.52%, **Simpson's rule, N=2:** -10.2288, 1.57%.

9-33

Strip method, N=1: 6, 18.18%, **Strip method, N=2:** 7, 4.54%.

Simpson's rule, N=1 and 2: $\frac{22}{2}$, 0.00%,

9-35

Strip method, N=1: 8*e*⁻⁴, 70.69%, **Strip method**, N=2: 0.7365, 47.30%.

Trapezoidal rule, N=1: $8e^{-16}$, $\cong 100\%$, **Trapezoidal rule, N=2:** 0.073263, 85.35\%.

Simpson's rule, N=1: 0.097683, 80.46%, Simpson's rule, N=2: 0.51542, 3.08%.

9-37 Exact results and all numerical methods result in 0. Relative error 0.00%.

9-39

Strip Method for N=10: *EXACT* := 2.09726402:*NUMERICAL* := 2.08846084;*RELERROR* := 0.4197457: Strip Method for N=100: *EXACT* := 2.09726402:*NUMERICAL* := 2.09717583;*RELERROR* := 0.0042052; Trapezoidal Rule for N=10: *EXACT* := 2.09726402:*NUMERICAL* := 2.11488449;*RELERROR* := 0.8401647. Trapezoidal Rule for N=100: *EXACT* := 2.09726402:*NUMERICAL* := 2.09744041(*RELERROR* := 0.0084105) 9-41 Trapezoidal Rule for N=10:*EXACT* := 107.298331;*NUMERICAL* := 102.965004;*RELERROR* := 4.0385782. Trapezoidal Rule for N=100: *EXACT* := 107.298331;*NUMERICAL* := 107.254214;*RELERROR* := 0.0411159(Strip Method for N=10:*EXACT* := 107.298331;*NUMERICAL* := 109.435382;*RELERROR* := 1.991691; Strip Method for N=100:*EXACT* := 107.298331;*NUMERICAL* := 107.320386;*RELERROR* := 0.0205551 Simpson's Rule for N=100:*EXACT* := 107.298331;*NUMERICAL* := 107.278590;*RELERROR* := 0.0183984(Simpson's Rule for N=100:*EXACT* := 107.298331;*NUMERICAL* := 107.278590;*RELERROR* := 0.0183984(Simpson's Rule for N=100:*EXACT* := 107.298331;*NUMERICAL* := 107.278590;*RELERROR* := 0.0183984(

Strip Method for N=10: *EXACT* := 7.33333333.*NUMERICAL* := 7.32000000(*RELERROR* := 0.181818177).

Strip Method for N=100: *EXACT* := 7.33333333. *NUMERICAL* := 7.33320000(*RELERROR* := 0.00181817727)

Simpson's Rule for N=10 and N=100: *EXACT* := 7.33333333.*NUMERICAL* := 7.33333333. *RELERROR* := 0.

9-45

Strip Method for N=10: EXACT := 0.499999943' NUMERICAL := 0.506861656' RELERROR := 1.3723427

Strip Method for N=100: *EXACT* := 0.499999943' *NUMERICAL* := 0.500066629'.*RELERROR* := 0.0133374'.

Trapezoidal Rule for N=10: *EXACT* := 0.499999943' *NUMERICAL* := 0.486444617(*RELERROR* := 2.7110655(

Trapezoidal Rule for N=100: *EXACT* := 0.499999943' *NUMERICAL* := 0.499866588' *RELERROR* := 0.0266710²

Simpson's Rule for N=10: *EXACT* := 0.499999943' *NUMERICAL* := 0.500055976' *RELERROR* := 0.0112066214:

Simpson's Rule for N=100: *EXACT* := 0.499999943' *NUMERICAL* := 0.499999949(*RELERROR* := 0.0000011)

9-53

Trapezoidal Rule

- **a) One step:** 3.066, 0.14%.
- **b) Two steps:** 3.295, 0.30%.

Simpson's Rule

- a) One step: 3.062, 0.00%.
- **b)** Two steps: 3.285, 0.00%.

9-55

Strip Method

- **a) One step:** -0.922, 0.00%.
- **b) Two steps:** -0.849, 0.00%.

Simpson's Rule

- a) **One step:** -0.922, 0.00%.
- b) **Two steps:** -0.849, 0.00%.

Strip Method

- a) **One step:** 1.019, 0.03%.
- b) **Two steps:** 1.0717, 0.04%.

Trapezoidal Rule

- a) **One step:** 1.0182, 0.05%.
- b) **Two steps:** 1.070, 0.08%.

Simpson's Rule

- a) **One step:** 1.0188, 0.00%.
- b) **Two steps:** 1.071, 0.00%.

9-59

Strip Method

After 10 steps with h=0.2: $y_{10} = 1$, 0.00%.

After 20 steps with h=0.1: $y_{20} = 1$, 0.00%.

Trapezoidal Rule

After 10 steps with h=0.2: $y_{10} = 1$, 0.00%.

After 20 steps with h=0.1: $y_{20} = 1$, 0.00%.

9-61

Trapezoidal Rule

After 10 steps with h=0.2: $y_{10} = 25.9950, 0.74\%$.

After 20 steps with h=0.1: *y*₂₀ = 25.8540, 0.17%.

Simpson's Rule

After 10 steps with h=0.2: $y_{10} = 25.8040, 0.00\%$.

After 20 steps with h=0.1: *y*₂₀ = 25.8540, of 0.00%.

Strip Method

After 10 steps with h=0.2: $y_{10} = -0.3882, 0.03\%$.

After 20 steps with h=0.1: $y_{20} \cong -0.3881, 0.00\%$.

Simpson's Rule

After 10 steps with h=0.2: $y_{10} = -0.3881, 0.02\%$

After 20 steps with h=0.1: $y_{20} \cong -0.3881$, 0.00%

9-65

Strip Method

After 10 steps with h=0.2: $y_{10} = 2.4634, 0.04\%$.

After 20 steps with h=0.1: $y_{20} \cong 2.4639$, 0.01%.

Trapezoidal Rule

After 10 steps with h=0.2: $y_{10} = 2.4655, 0.06\%$

After 20 steps with h=0.1: $y_{20} \cong 2.4644, 0.06\%$.

Simpson's Rule

After 10 steps with h=0.2: *y*₁₀ = 2.4641, 0.00%

After 20 steps with h=0.1: $y_{20} \cong 2.4641$, 0.00%.

9-71 After one step: 2, 26.42%. After two steps: 4, 45.87%.

9-73 After one step: 3, 2.43%. After two steps: 3.216, 15.86%.

9-75 After one step: 1, 0.00%. After two steps: 0, 0.00%.

9-77 After one step: 4.01176, 0.06%. After two steps: 4.02861, 0.13%.

9-79

After 10 steps with h=0.2: $y_{10} = 5.37762, 48.29\%$.

After 20 steps with h=0.1: $y_{20} \cong 7.26788, 30.11\%$.

9-81 There is a typographical error in this problem. The change is yellowed below and will be corrected in the second printing. Given: $y' = \frac{3e^x y}{y}$, y(0) = -2

After 10 steps with h=0.2: $y_{10} = -25,529.4, \approx 100\%$

After 20 steps with h=0.1: $y_{20} \cong -432,193.00,99.90\%$.

After 10 steps with h=0.2: *y*₁₀ = 6.19174, 16.20%.

After 20 steps with h=0.1: $y_{20} \cong 6.72749, 8.95\%$.

9-85 After 10 and 20 steps with h=0.2 and h=0.1: $y_{10} = 0, 0.00\%$.

9-87 There is a typographical error in this problem. The change is yellowed below and will be corrected in the second printing. **Given:** $y' = -xe^y$, y(0) = 1

After 10 steps with h=0.2: $y_{10} = -0.86427, 0.26\%$.

After 20 steps with h=0.1: $y_{20} \cong -0.86246, 0.05\%$.

9-89

After 10 steps with h=0.2: $y_{10} = 1.13745, 3.53\%$.

After 20 steps with h=0.1: $y_{20} \cong 1.11745, 1.71\%$.

9-91 There is a typographical error in this problem. The change is yellowed below and will be corrected in the second printing. Given: $y' = \frac{4xy}{x^2+y^2}$, y(1) = 2

After 10 steps with h=0.2: *y*₁₀ = 5.34311, 0.15%.

After 20 steps with h=0.1: $y_{20} \cong 5.34731, 0.07\%$.

9-93

After 10 steps with h=0.2: *y*₁₀ = 15.71430, 7.56%.

After 20 steps with h=0.1: $y_{20} \cong 16.33660, 3.90\%$.

9-105 There is a typographical error in this problem. The change is yellowed below and will be corrected in the second printing. Given: $y' = x^2 e^y$, y(2) = -2

After one step: : $LDE_1 = GDE_1 = -1.01\%$

After two steps: $LDE_2 = -1.70\%$, $GDE_2 = -2.96\%$

9-107

After one step: $LDE_1 = GDE_1 = 100\%$

After two steps: $LDE_2 = 67.70\%$, $GDE_2 = 72.97\%$

(a)	N = 10, h = 0	. 2			
x	Y numerical	YY	y _{exact}	<i>LDE</i> (%)	GDE (%)
2.00000	-0.77784 -0	.77878	-0.77915	0.04788	0.16917
(b)	N=20, h=0	.1			
(b) <i>x</i>	N = 20, h = 0 $y_{numerical}$. 1 <i>YY</i>	y _{exact}	<i>LDE</i> (%)	GDE (%)

9-111 There is a typographical error in this problem. The change is yellowed below and will be corrected in the second printing. Given: $y' = x^2 e^y$, y(0) = -2

(a)	N = 10, h = 0.2				
x	Y numerical	YY	y _{exact}	<i>LDE</i> (%)	GDE (%)
2.00000	-1.64591	-1.57570	-1.55232	-1.50652	-6.02925

(b)	N = 20, h = 0.1				
x	Y numerical	YY	<i>Y</i> exact	LDE(%) $GDE(%)$	
2.00000	-1.60254	-1.55903	-1.55232	-0.43239 -3.23517	

9-113

(a)	N = 10, h = 0.2					
x	Ynumerical	YY	y _{exact}	<i>LDE</i> (%)	GDE (%)	
2.00000	2.47969	2.68943	2.81201	4.35908	11.81790	

(b)	N = 20, h = 0.1					
x	Ynumerical	YY	y _{exact}	<i>LDE</i> (%)	GDE (%)	
2.00000	2.64773	2.77967	2.81201	1.15010	5.84214	

9-115 $h = \frac{0.1}{200}$

9-117 $h = \frac{0.1}{200}$

9-119
$$h = \frac{0.1}{3000}$$

9-125 After one step: 4.81667, 0.00%. After two steps: 4.65463, 0.00%.

9-127 After one step: 1.49600, 0.83%. After two steps: 2.37930, 3.48%.

9-129 After one step: 22.6400, 6.09%. After two steps: 58.3569, 14.44%.

9-131 After one step: -1.93713, 0.01%. After two steps: -1.84212, 0.03%.

9-133 After one step: 2.00954, 0.01%. After two steps: 2.03741, 0.01%.

After 10 steps with h=0.2: $y_{10} = 2481.28, 57.26\%$.

After 20 steps with h=0.1: $y_{20} \cong 4224.97$, 27.23%.

9-137

After 10 steps with h=0.2: *y*₁₀ = 118.198, 7.36%

After 20 steps with h=0.1: $y_{20} \cong 124.804$, 2.19%.

9-139

After 10 steps with h=0.2: $y_{10} \cong 17.60930, 0.95\%$

After 10 steps with h=0.2: $y_{10} \cong 17.73240, 0.26\%$

9-141

After 10 steps with h=0.2: $y_{10} = 5.44462, 0.00\%$.

After 20 steps with h=0.1: $y_{20} \cong 5.44451, 0.00\%$.

9-143

After 10 steps with h=0.2: $y_{10} = 1.88171, 0.91\%$.

After 20 steps with h=0.1: $y_{20} \cong 1.86873$, 0.22%.

9-145

After 10 steps with h=0.2: $y_{10} = 58.74190$, 1.28%. After 20 steps with h=0.1: $y_{20} \cong 59.29590$, 0.34%.

9-147

After 10 steps with h=0.2: $y_{10} = 0.33501, 0.50\%$.

After 20 steps with h=0.1: $y_{20} \cong 0.33373, 0.12\%$.

9-153 After one step: 4.82, 0.07%. After two steps: 4.65985, 0.11%.

9-155 After one step: 1.48, 1.89%. After two steps: 2.30695, 6.41%.

9-157 After one step: 22, 8.75%. After two steps: 55.0176, 19.34%.

After 10 steps with h=0.2: $y_{10} = 1857.48, 68.01\%$.

After 20 steps with h=0.1: $y_{20} \cong 3761.1$, 35.22%.

9-161

After 10 steps with h=0.2: $y_{10} = 118.197, 7.37\%$

After 20 steps with h=0.1: $y_{20} \cong 124.804$, 2.19%.

9-163

After 10 steps with h=0.2: $y_{10} \cong 17.60930, 0.95\%$

After 20 steps with h=0.1: $y_{20} \cong 17.73260, 0.26\%$.

9-171 After one step: 4.81650, 0.00%. After two steps: 4.65465, 0.00%.

9-173 After one step: 1.50846, 0.00%. After two steps: 2.46400, 0.04%.

9-175 After one step: 24.05560, 0.22%. After two steps: 67.75830, 0.66%.

9-177 After one step: -1.93739, 0.00%. After two steps: -1.84260, 0.00%.

9-179 After one step: 2.00969, 0.00%. After two steps: 2.03767, 0.00%.

9-181

After 10 steps with h=0.2: $y_{10} = 5445.76, 6.21\%$.

After 20 steps with h=0.1: $y_{20} \cong 5764.32, 0.72\%$

9-183

After 10 steps with h=0.2: $y_{10} = 127.52100, 0.06\%$ After 20 steps with h=0.1: $y_{20} \cong 124.804, 2.19\%$

9-185

After 10 steps with h=0.2: $y_{10} \cong 17.60930, 0.95\%$.

After 20 steps with h=0.1: $y_{20} \cong 17.73240$, 0.26%.

9-187

After 10 steps with h=0.2: $y_{10} = 5.44432, 0.00\%$. After 20 steps with h=0.1: $y_{20} \approx 5.44447, 0.00\%$

After 10 steps with h=0.2: $y_{10} = 1.86469, 0.00\%$.

After 20 steps with h=0.1: $y_{20} \cong 1.86466, 0.00\%$

9-191

After 10 steps with h=0.2: $y_{10} = 59.0020, 0.00\%$.

After 20 steps with h=0.1: $y_{20} \cong 59.50130, 0.00\%$.

9-193

After 10 steps with h=0.2: $y_{10} = 0.33334, 0.00\%$.

After 20 steps with h=0.1: $y_{20} \cong 0.33373, 0.12\%$.

9-205 After one step: 5.633270, 0.00%. After two steps: 5.928240, 0.00%.

9-207 After one step: -0.313114, 1.28%. After two steps: -0.103270, 3.94%.

9-209 After one step: -20.38632, 6.52%. After two steps: -86.83465, 13.69%.

9-211 After one step: -1.468573, 0.01%. After two steps: -1.003938, 0.39%.

9-213 After one step: 2.143301, 0.00%. After two steps: 2.218951, 0.00%.

9-215

After 10 steps with h=0.2: *y*₁₀ = 3084.421, 46.88%.

After 20 steps with h=0.1: $y_{20} \cong 5228.891, 9.94\%$.

9-217

After 10 steps with h=0.2: $y_{10} = 127.1810, 0.32\%$.

After 20 steps with h=0.1: $y_{20} \cong 127.5772, 0.01\%$.

9-218

After 10 steps with h=0.2: $y_{10} = 7.388599, 0.01\%$.

After 20 steps with h=0.1: $y_{20} \cong 7.389046, 0.00\%$.

9-219

After 10 steps with h=0.2: $y_{10} \cong 17.77719, 0.00\%$.

After 20 steps with h=0.1: $y_{20} \cong 17.77811$, 0.00%.

9-221

After 10 steps with h=0.2: $y_{10} = 5.443662, 0.01\%$.

After 20 steps with h=0.1: $y_{20} \cong 5.444487, 0.00\%$.

9-223

After 10 steps with h=0.2: $y_{10} = 1.86468, 0.00\%$.

After 20 steps with h=0.1: $y_{20} \cong 1.86466, 0.00\%$.

9-225

After 10 steps with h=0.2: $y_{10} = 59.0020, 0.00\%$.

After 20 steps with h=0.1: $y_{20} \cong 59.5018, 0.00\%$.

9-227

After 10 steps with h=0.2: $y_{10} = 0.333191, 0.04\%$.

After 20 steps with h=0.1: $y_{20} \cong 0.333326, 0.12\%$.

9-231 After one step: $y_1 = 0.6$, $z_1 = 0.6$: After two steps: $y_2 = 0.436254$, $z_2 = 1.16749$.

9-233 After one step: $y_1 = 0.20$: After two steps: $y_2 = 0.32$

9-235

After one step: $y_1 = 0.38520$, $z_1 = 1.49267$,

After two steps: $y_1 = 0.761160$, , $z_1 = 1.14579$

9-237 After one step: $y_1 = 0.2734$: After two steps: $y_2 = 0.66803$.

9-239

For N=10 and h=0.2: *y_Euler*₁₀ := 2.164155, *z_Euler*₁₀ := 2.133926

For N=20 and h=0.1: *y_Euler*₂₀ := 2.380172, *z_Euler*₂₀ := 2.322527

9-241.

For N=10 and h=0.2: *y_Euler*₁₀ := 6.833296, *z_Euler*₁₀ := 17.39652 For N=20 and h=0.1: *y_Euler*₂₀ := 7.975256, *z_Euler*₂₀ := 20.14064

9-243 For N=10 and h=0.2: $y_{10} = 3.389388$, For N=20 and h=0.1 $y_{20} = 3.311436$ **9-245**

For N=10 and h=0.2: *y_RungeKutta* 10 := 8.17620-, *z_RungeKutta* 10 := 2.83962-

For N=20 and h=0.1: *y_RungeKutta* ₂₀ := 8.17707, *z_RungeKutta* ₂₀ := 2.839957

9-247 For N=10 and h=0.2: $y_{10} = 4.666445$, For N=20 and h=0.1: $y_{20} = 4.666412$

9-287 (a) *t* = 521 minutes