Differential Equations for Engineers and Scientists

 byY. Cengel and W. Palm III

ANSWERS TO SELECTED PROBLEMS

(Answers to Section Review problems are in the textbook)

CHAPTER 1

$1-33 z^{\prime \prime}=-g-\frac{F_{\text {air }}}{m}$ with $z(0)=0$ and $z^{\prime}(0)=V(0)=V_{i}$
1-35 $\frac{d T(t)}{d t}=\frac{h A}{m c}\left(T-T_{0}\right)$ with $T(0)=T_{i}$
$1-37 \frac{d M}{d t}=-k M, k>0$
1-41C The slope at the given point is 1.
1-43C This can be possible if $\left(\frac{\partial f}{\partial x}\right)_{y}=0$ or $\frac{d x}{d y}=0$, or both are zero.
1-45C High pressure lines are steeper than the low pressure lines.
1-47 (a) $f(x)=x^{2}-1$ is a continuous function on $(-\infty,+\infty)$
(b) $f(x)=\sqrt{x}$ is defined on $[0,+\infty)$ and continuous in that interval
(c) $f(x)=\frac{x}{\sin 2 x}$ is continuous for all x except for $x=0$
(d) $(x)=\frac{e^{2 x}}{x(x-1)}$ is continuous on $\mathfrak{R}-\{0,1\}$, where \mathfrak{R} denotes set of reel numbers

1-49 $\frac{d T}{d P}=\frac{1}{R}\left[\left(1+a / v^{2}\right)(v-b)\right]=$ constant

1-51 (a) $f(x)=x$ satisfies the given condition

(b) $f(x)=-x^{2}$ satisfies the given condition
(20
(c) No elementary function can satisfy the given condition.
$1-53$
(a) Given: $f_{1}=7 x^{4}-\sin 3 x^{3}+2 e^{-3 x}$

Solution: $\frac{\partial f_{1}}{\partial x}=\frac{d f_{1}}{d x}=28 x^{3}-9 x^{2} \cos 3 x^{3}-6 e^{-3 x}$
(b) Given: $f_{2}=7 x^{4}-\sin 3 x^{3} t+t^{2} e^{-3 x}$

Solution: $\frac{\partial f_{2}}{\partial x}=28 x^{3}-9 x^{2} t \cos 3 x^{3}-3 t^{2} e^{-3 x}$
(c) Given: $f_{3}=7 t^{4}-\sin 3 t^{3} x+t^{2} e^{-3 t}$

Solution: $\frac{\partial f_{3}}{\partial x}=28 x^{3}-\sin 3 t^{3}$
1-55 (a) Given: $f=\ln \left(x^{2}+1\right)$
Solution: $\frac{d f}{d x}=\frac{2 x}{x^{2}+1}$
(b) Given: $f=x^{4} \cos (2 x)$

Solution: $\frac{d f}{d x}=4 x^{3} \cos (2 x)-2 x^{4} \sin (2 x)$
c) Given: $f=\frac{5 x}{2 x^{3} \sin (x)}=\frac{5}{2 x^{2} \sin (x)}$

Solution: $\frac{d f}{d x}=-\frac{5}{x^{3} \sin (x)}-\frac{5 \cos (x)}{2 x^{2} \sin ^{2}(x)}=-\frac{5}{2} \frac{2 \sin (x)+x \cos (x)}{x^{3} \sin ^{2}(x)}$
d) Given: $f=\ln \left(e^{2 x}\right)$

Solution: $\frac{d f}{d x}=2$
1-57 (a) Given: $f(x)=x^{2 t}+\sin (2 \omega t)+3 t^{2} x$
Solution: $\quad I=\frac{1}{2 t+1}\left[-1+2 \sin (2 \omega t)+24 t^{3}+12 t^{2}+4 t \sin (2 \omega t)+3^{2 t+1}\right]$
(b) Given: $f=y^{\prime \prime}(x)+3 e^{-2 t x}+\cosh (2 \omega x)$

Solution: $I=y^{\prime}-\frac{3 e^{-2 t x}}{2 t}+\frac{\sinh (2 \omega x)}{\omega}+C$
1-59 (a) Given: $f(x)=3 x^{4}+x e^{2 x}+\cosh (3 x)$
Solution: $I=\frac{3}{5} x^{5}+\frac{e^{2 x}}{4}(2 x-1)+\frac{\sinh (3 x)}{3}+C$
(b) Given: $f(x)=\frac{a}{x}+4 \sin (3 x) \cos (3 x)-\sinh (2 x)$

Solution: $I=a \ln (2)+\frac{1}{3}[\cos (12)-\cos (24)]-\frac{1}{2}[\cosh (4)-\cosh (8)]$
(c) Given: $f=y^{\prime \prime}(x)+t^{3} \sin (2 \omega x)+e^{-2 t x}$

Solution: $I=\left[y^{\prime}(8)-y^{\prime}(x)\right]+\frac{t^{3}}{2 \omega}[\cos (16 \omega)-\cos (2 \omega x)]+\frac{1}{2 t}\left[e^{-16 t}-e^{-2 t x}\right]$
(d) Given: $f=4 y(x) y^{\prime}(x)+x y^{\prime \prime}(x)+\frac{b e^{-3 t}}{x^{2}}$

Solution: $I=2 y^{\prime}(x)^{2}+x y^{\prime}(x)-y(x)-\frac{b e^{-3 t}}{x}+C$

1-63
(a) $y^{\prime \prime}+2 y^{\prime}=\sin (x)+1 \quad$ (Linear, constant coefficient)
(b) $y^{\prime \prime \prime}+\sin (x) e^{-2 x} y^{\prime}=0 \quad$ (Linear, variable coefficient)
(c) $y^{\prime \prime \prime}+\sin (2 x) y^{\prime \prime}+x^{4} y=0 \quad$ (Linear, variable coefficient)
(d) $y^{\prime \prime}+3 y^{\prime}-y=\frac{\sin (3 x)}{x}$
(Linear, constant coefficient)
(e) $y^{\prime \prime}+e^{2 x} e^{-y}=0 \quad$ (Nonlinear, variable coefficient)

1-69 y_{1} and y_{2} are the solutions of the differential equation.
1-71 y_{1} and y_{2} are the solutions of the differential equation.
1-73 y_{1}, y_{2} and y_{3} are the solutions of the differential equation.
1-75 y_{1}, y_{2} and y_{3} are the solutions of the differential equation.
1-77 $z^{\prime \prime}=0$ with $z^{\prime}(0)=-V_{0}$ and $z\left(t_{0}\right)=0$ (Upward direction is positive)
1-79 (a) $y=C_{1} x+C_{2}$, where C_{1} and C_{2} are arbitrary constants
(b) $y^{\prime \prime}+4 y e^{-3 x}=0$ cannot be solved by direct integration
(c) $y=\frac{e^{-4 x}}{8}(2 x+1)+C_{1} x+C_{2}$, where C_{1} and C_{2} are arbitrary constants.
(d) $y^{\prime \prime}-x y=0$ cannot be solved by direct integration
(e) The unknown function $y(x)$ cannot be found in terms of elementary functions.

1-81 (a) $y=\frac{a x^{2}}{2}+C$, where C is an arbitrary constant.
(b) $y^{\prime \prime \prime}+4 y \sinh (2 x)=0$ cannot be solved by direct
(c) $y=\frac{b x^{2}}{2} \ln (a x)-\frac{3 b x^{2}}{4}+C_{1} x+C_{2}$, where C_{1} and C_{2} are arbitrary constants
(d) $y^{\prime}-e^{y} \cos (x)=0$ cannot be solved by direct integration
(e) The unknown function $y(x)$ cannot be found in terms of elementary functions.

1-83C The ginput function gives the result $x=0.5379 \mathrm{rad}$.
1-87 The result is 0.4304077247 .

$1-89$

(a) The answer is $\frac{1}{2 t+1}\left[-1+4 \sin \omega t \cos \omega t+24 t^{3}+12 t^{2}+8 t \sin \omega t \cos \omega t+3\left(9^{t}\right)\right]$ if $t \neq-1 / 2$, and $\ln 3-2 \sin \omega+3$ If $t=-1 / 2$.
(b) The answer is $y^{\prime}-\frac{3 e^{-2 t x}}{2 t}+\frac{\sinh 2 \omega x}{\omega}+C$

1-91
(a) The answer is $\frac{3}{5} x^{5}+\frac{e^{2 x}}{4}(2 x-1)+\frac{\mathrm{e}^{3 x}}{6}-\frac{1}{6 e^{3 x}}$ or $\frac{3}{5} x^{5}+\frac{e^{2 x}}{4}(2 x-1)+\frac{\sinh (3 x)}{3}$
(b) The answer is $a \ln (2)+\frac{1}{3}[\cos (12)-\cos (24)]-\frac{1}{2}[\cosh 4-\cosh 8]$

Another form returned is $a \ln (2)+\frac{1}{3}[\cos (12)-\cos (24)]+(\cosh 2)^{2}-(\cosh 4)^{2}$
(c) The answer is $y^{\prime}(8)-y^{\prime}(x)-\frac{t^{3}}{2 \omega}[\cos (16 \omega)-\cos (2 \omega x)]-\frac{1}{2 t}\left[e^{-16 t}-e^{-2 t x}\right]$
(d) The answer is $2 y^{\prime}(x)^{2}+x y^{\prime}(x)-y(x)-\frac{b e^{-3 t}}{x}$ or $\frac{[4 y(x)-1]^{2}}{8}+x y^{\prime}(x)-y(x)-\frac{b e^{-3 t}}{x}$

1-93

(a) $y=C_{1} x^{2}+C_{2} x+C_{3}$
(b) $C_{1} e^{\sqrt[3]{5} x}+C_{2} e^{-\sqrt[3]{5} x / 2} \cos (\sqrt[3]{5} x / 2)+C_{3} e^{-\sqrt[3]{5} x / 2} \sin (\sqrt[3]{5} x / 2)$
(c) $y=\frac{5}{24} x^{4}+C_{1} x^{2}+C_{2} x+C_{3}$
(d) $y^{\prime \prime}= \pm \sqrt{C_{1}-4 e^{-2 x}}$,

1-95 (a) $m_{1}=i$ and $m_{1}=-i$.
(b) $m_{1,2}=-1$.
(c) $m_{1}=1$ and $m_{1}=-1$.

1-97 (a) $m_{1}=-1$ and $m_{1}=-4$.
(b) $m_{1,2}=-3$.
(c) $m_{1,2}=-\frac{1}{2}(1 \pm i \sqrt{11})$.
$1-99 \quad$ (a) $m_{1,2}=-5$.
(b) $m_{1,2}=-\frac{5}{2}(1 \pm i \sqrt{3})$.
(c) $m_{1,2}=-5(1 \pm i \sqrt{2})$

1-101 (a) $r_{1,2}=\frac{1}{2}(1 \pm i \sqrt{3})$.
(b) $r_{1,2}= \pm \sqrt{2}$.

1-103 (a) $r_{1,2}=2 \pm i \sqrt{2}$.
(b) $r_{1,2}=-2$.
$\mathbf{1 - 1 0 5} V_{0}=2.5 \mathrm{~m} / \mathrm{s}$.
1-107 $T(r)=T(R)+\frac{g_{0}}{4 k} R^{2}-\frac{g_{0}}{4 k} r^{2} \rightarrow T(r)=T(R)+\frac{g_{0}}{4 k}\left(R^{2}-r^{2}\right)$ and $T(0)=210{ }^{\circ} \mathrm{C}$
1-109 $T(x)=T(L)+\frac{g_{0}}{p k}(x-L)+\frac{g_{0}}{p^{2} k}\left(e^{p L}-e^{p x}\right)$ and $T(0)=323^{\circ} \mathrm{C}$.
1-111 (a) $C(t)=\frac{1}{\sqrt{y(t)}}=\frac{C(0)}{\sqrt{1+2 k C(0) t}}$ and (b) $C(t)=\frac{C(0)}{\sqrt{1+2 k C(0) t}}$

CHAPTER 2

2-37
(a) $y^{\prime}+e^{x} y=2 \sqrt{x} \rightarrow$ linear
(b) $y^{\prime} y^{2}+\cos (y)=x \rightarrow$ nonlinear

2-39
(a) $y y^{\prime}+x y=x \rightarrow$ nonlinear
(b) $y^{\prime 2}-y^{2}=x^{2} \rightarrow$ nonlinear

2-41 (a) $y=\frac{1}{3} x^{2}+C \sqrt{x}$, (b) $y=\left(1-\frac{1}{x}\right) e^{x}+\frac{C}{x}$
2-43 (a) $y=\frac{x}{9}\left(3 x-4+C_{1} e^{-3 x}\right)$ where $C_{1}=9 C$, (b) $y=2(x \tanh (x)-1+C \operatorname{sech}(x))$

2-45

(a) $y=\frac{1}{20 x^{2}}\left[-10 x^{2} \cos (2 x)+5 \cos (2 x)+10 x \cos (2 x)-4 x^{5}+C_{1}\right]$ where $C_{1}=20 C$.
(b) $y=\frac{e^{2 x}}{4 x^{2}}(2 x-1)+\frac{c}{x^{2}}$

2-47 (a) $y=-e^{-x}+2 e^{2 x-2}+e^{2 x-1}$, (b) $y=-x+5 \sqrt{\frac{x^{2}-1}{3}}$
2-49 (a) $y=\frac{1}{x}(4 \ln (x)+3)$, (b) $y=\frac{1}{30} \frac{5 x^{6}-24 x^{5}-32}{x-4}$
$2-51 x=1-e^{\frac{1-y}{y}}$
2-53 $C y_{1}(x)$ is also a solution of $y^{\prime}+P(x) y=0$, no matter what value of C is.
2-55 $C y_{1}(x)$ cannot be a solution of the given $D E$.
$2-59 t=6$ hours
2-63 (a) At steady state, $y=24 / 3=8$. (b) 5.04 is 63% of 8 , so it will take one time constant, or 8 , to reach 5.04. (c) 7.84 is 98% of 8 , so it will take four time constants, or 32 , to reach 7.84 .
$2-65 T(2)=13.3^{\circ} \mathrm{C}$.
$\mathbf{2 - 6 7} t \approx 4.8 \mathrm{~min}$
2-69 $E / E_{0}=0.243$ or 24.3%. Therefore we conclude that the fraction of the light that will reach the bottom of the pond is $1-0.243=0.757=75.7 \%$.

2-71 The amount of salt after 30 minutes will be 10 kg , and it will never drop to 1 kg .
2-73 $\frac{d V}{d t}+\frac{k}{m} V=g\left(1-\frac{\rho_{w}}{\rho_{b}}\right)$, The solution is $V(t)=\frac{m g}{k}\left(1-\frac{\rho_{w}}{\rho_{b}}\right)\left(1-e^{-\frac{k}{m} t}\right)$, The terminal velocity is $V_{t}=\frac{m g}{k}\left(1-\frac{\rho_{w}}{\rho_{b}}\right)$

2-75 $A(8$ years $)=\$ 25,260.22$
$2-77 i=13.86 \%$ per year.

2-79

a) Theorem 2-2 guarantees both existence and uniqueness of a solution in a neighborhood of any x.
b) The given differential equation $y^{\prime}=x y /\left(x^{2}-1\right)$ must have a unique solution near any point in the $x y$-plane where $x \neq-1$ or $x \neq 1$.

2-81

a) Theorem 2-2 guarantees nothing in some neighborhood of $x=0$.
b) The Theorem 2-2 guarantees both existence and uniqueness in some neighborhood of $x=1$. 2-83
a) Theorem 2-2 guarantees both existence and uniqueness in some neighborhood of $x=0$.
b) Theorem 2-2 guarantees both existence and uniqueness in some neighborhood of $x=1$.

2-87 (a) $y(x)= \pm \sin (2 \sqrt{x}+C)$, (b) $y(x)=\mathrm{e}^{a x-\frac{b x^{2}}{2}+C}$
2-89 (a) $\ln \left(\frac{1+\sin (y)}{\cos (y)}\right)=\sin (x)-x \cos (x)+C$, (b) $-(1+y) e^{-y}=e^{x+1}$
2-91
(a) $e^{3(y-x)}(3 y-3 x-1)=18 x+C$, where $C=9 C_{1}$.
(b) $\sqrt{x+2 y-3}-\frac{1}{2} \ln (2 \sqrt{x+2 y-3}+1)=x+C$

2-93 (a) $y(x)=\frac{\tan \left(x^{2}\right)}{2}$, (b) $y(x)=\tanh \left(\frac{x-1}{x}\right)$
2-95 (a) $y(x)=e^{x^{3}-8}$, (b) $\cos (y)+y \sin (y)=\sin (x)-x \cos (x)$
2-97 (a) $y(x)=e^{\frac{3 x^{4}}{2}+C}$, (b) $y(x)=-\frac{e^{K-b x}-c}{b}$
2-99 $y(t)=\left(H^{5 / 2}-\frac{5}{2} \frac{r^{2} \sqrt{2 g}}{(R / H)^{2}} t\right)^{2 / 5}$, The time required for the tank to be empty can be evaluated by setting $y(T)=0$ which yields $T=\frac{1}{5} \sqrt{2 H / g}\left(\frac{R}{r}\right)^{2}$

2-101 $\left(\frac{N}{N_{0}}\right)^{A}\left(\frac{a-b N}{a-b N_{0}}\right)^{B}\left(\frac{1-c N_{0}}{1-c N}\right)^{C}=\mathrm{e}^{-t}$, where $A=\frac{1}{a^{\prime}} B=\frac{b}{a^{2} c-a b^{\prime}}$, and $C=\frac{c}{a c-b}$
Equilibrium points are $N=\frac{a}{b}, N=\frac{1}{c}$ and $N=0$.
2-103 (a) $v^{\prime}=\frac{T-m g}{m}-\frac{0.027 v^{2}}{m}=A-B v^{2}, v=C \tanh B C t$, where $C=\sqrt{A / B}$
(b) $v(4)=200.9 \mathrm{~m} / \mathrm{s}$

2-105 (a) $x y=K$, (b) $y(x-k)=C$
2-109 (a) $\frac{d y}{d x}=\frac{x^{2}-y^{2}}{x y}$ is homogeneous, (b) $\frac{d y}{d x}=\frac{x^{3}-2 x y^{2}}{x^{2}+y}$ is not homogeneous.
2-111 (a) $\frac{d y}{d x}=\frac{x^{4}-3 x^{2} y^{2}+y^{4}}{x y^{3}-4 y^{4}}$ is homogeneous, (b) $\frac{d y}{d x}=x^{3}-y^{3}$ is not homogeneous.

2-113 (a) $y(x)=\frac{x^{2}}{x-C^{\prime}}$ (b) $\ln \left(K \sqrt{x^{2}+y^{2}}\right)=2 \arctan \left(\frac{y}{x}\right)$, where $K=1 / C$.
2-115 (a) $y^{6}+2 x^{3} y^{3}+x^{6}=K y^{3}$, where $K=C^{3}$
(b) $\frac{4 \sqrt{5}}{5} \operatorname{arctanh}\left(\frac{\sqrt{5}}{5}\left(2 \frac{y}{x}+1\right)\right)=\ln \left(\frac{C}{y^{2}+x y-x^{2}}\right)$

2-117 (a) $y(x)=2 x \sin \left(\ln \left(C / x^{10}\right)\right)$, (b) $y(x)=\frac{1}{2 x}\left(x^{2}+K\right)$, where $K=C^{2}$.
2-119 (a) $y=x / \ln (y)$, (b) $y(x)=\frac{2 x}{2-9 x^{1 / 3}}$
2-121 (a) $y(x)=-\frac{2}{3}+x+C(x-1)^{3}$,
(b) $\ln \left(\sqrt{K\left(x^{2}+y^{2}-3(x+y-1)+x y\right)}\right)=\sqrt{3} \arctan \left(\frac{\sqrt{3}}{3}\left(2 \frac{y-1}{x-1}+1\right)\right)$

2-123 (a) $y=(x-4) \ln (C(x-4))-4$, (b) $y=x+C e^{\left(\frac{x-1}{-x+y+1}\right)}-1$
2-127 (a) $3\left(x^{2}+y^{2}\right)+2(x-y)=K$, where $K=2 C$
(b) The differential equation is inexact

2-129 (a) $-e^{y} \cos (x)+2 x=C$, (b) The differential equation is inexact.
2-131 (a) $x^{3}-y^{3}+3(\sin (y)-\cos (x))=K$, (b) The differential equation is inexact.
2-133 (a) $x^{2} e^{y}+y=C$, (b) The differential equation is inexact.
2-135 $\frac{2 x^{3}}{3}+y^{4}-y^{2}+x+y=1$
2-137 $x^{2}-y^{2}+3 y(x+1)-x=0$
2-139 $e^{x}\left(x^{2}-2 x+2\right)-e^{y}\left(y^{2}-2 y+2\right)+x+y=6-10 e^{4}$
2-147 $y=C+\frac{\sin 2 x}{8}+\frac{x\left[2(\sin x)^{2}-1\right]}{4}$
2-149 Maple gives the answer: $y(x)=\mathrm{e}^{\frac{1}{3} \operatorname{LambertW}\left(\frac{1}{3}\left(\mathrm{e}^{-C l}\right)^{3} x^{3}\right)-{ }_{-} C 1}$
2-151 The equation in the first printing is incorrect. It should be $y^{\prime}=2(x-y)^{2}$. The solution is $y(x)=x-\frac{\sqrt{2}}{2} \tanh (\sqrt{2} x)$
2-159 $y(x)=\left\{\begin{aligned} C e^{4 x}, & x<0 \\ -\frac{5}{2}+C e^{4 x}, & x \geq 0\end{aligned}\right.$
2-161 $y(x)=\left\{\begin{aligned}-x+1+C e^{-x}, & x<0 \\ x-1+C e^{-x}, & x \geq 0\end{aligned}\right.$
$\mathbf{2 - 1 6 3} t=2.56$ secs.
$\mathbf{2 - 1 6 5}$ (a) $z_{\text {max }}=101.20 \mathrm{~m}$, (b) $t=5.85$ secs. (c) $V(5.85)=-32.06 \mathrm{~m} / \mathrm{s}$ (downwards).
2-167 $P(t)=\frac{-b+e C e^{-K t}}{-a+f C e^{-K t}}=\frac{-b+e C \mathrm{e}^{-k(a e-b f) t}}{-a+f \mathrm{e}^{-k(a e-b f) t}}$
2-169 $x(t)=\frac{a b\left(e^{k(a-b) t}-1\right)}{a e^{k(a-b) t}-b}$
Taking $a=2 b$ we end up with the $x(t)=\frac{2 b\left(e^{k b t}-1\right)}{2 e^{k b t}-1}$ whose limit is b as $t \rightarrow \infty$.

$$
\begin{aligned}
& \text { 2-171 } x^{2}+3 x y-2 x-2 y^{2}-3 y=C \\
& \text { 2-173 }-\frac{1}{2} e^{x}(\cos (x)-\sin (x))+y^{2} x-3 x-\frac{y^{3}}{3}=C \\
& \text { 2-175 } C_{1}(t)=K_{2}-\frac{K_{1}}{2 k} e^{-2 k t} \\
& \text { 2-177 } y(x)=x+\ln \left(-\frac{e+1}{e^{x}-e^{x+1}-2 e}\right) \\
& \text { 2-179 } y(x)=\frac{1}{8}\left(1-x \ln ^{2}\left(\frac{K}{x^{4}}\right)\right) \\
& \text { 2-181 } y(x)=x \tan (\ln (x)) \\
& \text { 2-183 } \ln \left(\frac{K y^{2}}{y^{2}-x^{2}}\right)=\frac{x^{2}}{y^{2}-x^{2}} \\
& \text { 2-185 } y(x)=\frac{2}{x+2 C} \\
& \text { 2-187 } y(x)=\frac{1}{2} e^{x}+C_{1} e^{-x}+C_{2} x+C_{3} \\
& \text { 2-189 } y(x)=\frac{1}{2} x^{2}+1 \\
& \text { 2-191 } y(x)=\frac{1}{12}\left(x^{4}+6 x^{2}-32 x\right) \\
& \text { 2-193 } y(x)=-\frac{x^{3}}{6}-\frac{x^{2}}{2}+(x+1) \ln (x+1)-1 \\
& \text { 2-195 } y(x)=\ln \left(\frac{2 / e}{2-e} e^{x+\ln (2-e)}-1\right)-x-\ln (2-e) \\
& \text { 2-197 } y(x)=1 . \\
& \text { 2-199 } y(x)=\sqrt[3]{\frac{1}{-1+2 e^{-3 x}}} \\
& \text { 2-201 } \frac{1}{y}=(1+x)\left(\frac{C-a r c s i n}{\sqrt{1-x^{2}}}\right. \\
& \text { 2-203 } y(x)= \pm \sqrt{\frac{a}{-b+a C e^{-2 a x}}} \\
& \text { 2-207 } y(x)=\frac{2}{2 C e^{2 x}-1} \\
& \text { 2-209 } y(x)=\frac{e^{2 x}\left(5+7 C e^{7 x}\right)}{-2+7 C e^{7 x}}
\end{aligned}
$$

CHAPTER 3

3-57 (a) $y^{\prime \prime}-5 y^{\prime}+\cos y=x+1$; Nonlinear, nonhomogeneous, constant coefficients
(b) $y^{\prime \prime}=0$; Linear, homogeneous, constant coefficients
(c) $y^{\prime \prime}+2 x^{2} y^{\prime}+5 y=0$; Linear, homogeneous, variable coefficients
(d) $y^{\prime \prime}+e^{x} y=\frac{1}{x^{\prime}}$; Linear, nonhomogeneous, variable coefficients

3-59 (a) $y^{\prime \prime}+\frac{1}{y}=1$; Nonlinear, nonhomogeneous, constant coefficients
(b) $y^{\prime \prime}+8 y^{\prime}-e^{\ln y}=0$; Noninear, homogeneous, constant coefficients
(c) $y^{\prime \prime}-\sin 2 x y^{\prime}+y=0$; Linear, homogeneous, variable coefficients
(d) $y^{\prime \prime}+y=7$; Linear, nonhomogeneous, constant coefficients

3-61(a) The initial-value problem has a unique solution in the interval $-\infty<x<+\infty$.
(b) The initial-value problem has a unique solution in the interval $-\infty<x<2$.

3-63 (a)The initial-value problem has a unique solution in the interval $-\infty<x<+\infty$.
(b)The initial-value problem has a unique solution in the interval $-2<x<2$.

3-65 (a) $y^{\prime \prime}+2 y^{\prime}+10 y=0$, (b) $4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0$
3-67 (a) $x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=0$, (b) $y^{\prime \prime}+4 y=0$
3-73 (a) y_{1} and y_{2} are linearly dependent, (b) y_{1} and y_{2} are linearly dependent.
3-75 (a) y_{1} and y_{2} are linearly independent, (b) y_{1} and y_{2} are linearly independent.
3-77 (a) y_{1} and y_{2} are linearly independent, (b) y_{1} and y_{2} are linearly independent.
3-79 (a) y_{1} and y_{2} are linearly dependent, (b) y_{1} and y_{2} are linearly dependent.
3-81 y_{1}, y_{2} and y_{3} are linearly dependent.
3-83 y_{1}, y_{2} and y_{3} are linearly independent.
3-85 y_{1}, y_{2} and y_{3} are linearly independent.
3-87 y_{1}, y_{2} and y_{3} are linearly dependent.
3-89 y_{1}, y_{2} and y_{3} are linearly independent.
3-93 (a) $k y_{1}$ is also a solution, (b) $k y_{1}$ is not a solution
(c) $k y_{1}$ is not a solution, (d) $k y_{1}$ is $\boldsymbol{n o t}$ a solution

3-95 (a) $k y_{1}$ is not a solution, (b) $k y_{1}$ is not a solution
(c) $k y_{1}$ is also a solution, (d) $k y_{1}$ is also a solution

3-97 (a) $y_{1}+y_{2}$ is also a solution, (b) $y_{1}+y_{2}$ is not a solution
(c) $y_{1}+y_{2}$ is not a solution, (d) $y_{1}+y_{2}$ is not a solution

3-99 (a) $y_{1}+y_{2}$ is not a solution, (b) $y_{1}+y_{2}$ is also a solution
(c) $y_{1}+y_{2}$ is also a solution, (d) $y_{1}+y_{2}$ is also a solution

3-101 (a) The Wronskian of y_{1} and y_{2} is never zero for $x>0$
(b) The Wronskian of y_{1} and y_{2} is zero
(c) The Wronskian of y_{1} and y_{2} is zero

3-103 (a) The Wronskian of y_{1} and y_{2} is never zero for $x>0$
(b) The Wronskian of y_{1} and y_{2} is zero
(c) The Wronskian of y_{1} and y_{2} is zero

3-105 (a) $y(x)=\frac{C_{1}}{x}+C_{2} \frac{\ln x}{x}$
(b) $y(x)=\frac{2 C_{1}}{x}+C_{2} \frac{\ln x}{x}$
(c) y_{1} and y_{2} does not form a fundamental set of solutions.

3-107 (a) $y(x)=e^{x}\left(C_{1} \sin \sqrt{2} x+C_{2} \cos \sqrt{2} x\right)$
(b) $y\left(=e^{x}\left(C_{1} \sin \sqrt{2} x+C_{2} \cos \sqrt{2} x\right)\right.$
(c) $y(x)=e^{x}\left(C_{1} \cos \sqrt{2} x+C_{2} \sin \sqrt{2} x\right)$

3-111 $y=\left(C_{1}+C_{2} x\right) e^{-x}$
3-113 $y=C_{1} e^{2 x}+C_{2} e^{-2 x}$
3-115 $y=C_{1} \sin 3 x+C_{2} \cos 3 x$
3-117 $y=\frac{C_{1}}{x}+\frac{C_{2} \ln x}{x}$
3-119 $y=C_{1} x+C_{2} e^{2 x}\left(\frac{x}{2}-1\right)$
3-121 $y=C_{1} x^{1 / 3}-\frac{C_{2}}{x^{13 / 3}}$
3-129 (a) $y=C_{1} \cos \lambda x+C_{2} \sin \lambda x$, (b) $y=\left(C_{1}+C_{2} x\right) e^{2 x}$, (c) $y=C_{1} e^{\lambda x}+C_{2} e^{-\lambda x}$
3-131 (a) $y=\left(C_{1}+C_{2} x\right) e^{3 x}$, (b) $y=e^{-3 x / 2}\left(C_{1} \cos \frac{\sqrt{7}}{2} x+C_{2} \sin \frac{\sqrt{7}}{2} x\right)$,
(c) $y=C_{1} e^{(3+\sqrt{13}) x}+C_{2} e^{(3-\sqrt{13}) x}$

3-133 $y=\frac{1}{4}\left(e^{2 x}-e^{-2 x}\right)$
3-134 $y=e^{x-1}+e^{-4(x-1)}$

3-135 $y=-\frac{17}{3} e^{-x}+\frac{2}{3} e^{x / 2}$
3-137 $y=\frac{1}{2} e^{\pi-2 x} \sin 4 x$
3-139 $y(x)=\frac{e^{4 x-4}+4 e^{16-x}}{4 e^{15}+1}$
$\mathbf{3 - 1 4 1} T(x)=-29.6 e^{3.75 x}+129.6 e^{-3.75 x}$
3-143 $T(x)=0.0083 e^{12.613 x}+199.991 e^{-12.613 x}$
3-147 (a) $y=C_{1} \cos x+C_{2} \sin x+e^{x}$, (b) $y=C_{1} \cos x+C_{2} \sin x+e^{x}$
3-149 (a) $y=C_{1} e^{-2 x}+C_{2} x e^{-2 x}+x^{2} e^{-2 x}$, (b) $y=C_{1} e^{-2 x}+\left(C_{2}+1\right) x e^{-2 x}+C_{2} x e^{-2 x}$
3-151 (a) $=C_{1}+C_{2} x+\frac{1}{12} x^{4}-\frac{1}{2} x^{2}$, (b) $y=C_{1}+C_{2} x+\frac{1}{12} x^{4}-\frac{1}{2} x^{2}$
3-153 $y=C_{1} \cos 2 x+C_{2} \sin 2 x+2 x^{2}+x+2 e^{x}$
3-155 $y=C_{1} \cos x+C_{2} \sin x-2 \sin 2 x+2$
3-161 (a) $y=C_{1} e^{2 x}+C_{2} x e^{2 x}-2 e^{3 x}$, (b) $y=C_{1} e^{2 x}+C_{2} x e^{2 x}+x^{2} e^{2 x+3}$
(c) $y=C_{1} e^{2 x}+C_{2} x e^{2 x}+\frac{5}{6} x^{3} e^{2 x}$, (d) $y=C_{1} e^{2 x}+C_{2} x e^{2 x}-\frac{1}{25}(3 \cos 2 x+4 \sin 2 x) e^{x}$

3-163 (a) $y=C_{1}+C_{2} e^{3 x}-\frac{1}{6} x^{2}+\frac{5}{9} x$, (b) $y=C_{1}+C_{2} e^{3 x}+\left(-\frac{1}{2} x+\frac{3}{4}\right) e^{x}$
(c) $y=C_{1}+C_{2} e^{3 x}+\frac{1}{27}\left(7 x-3 x^{2}-3 x^{3}\right)$
(d) $y=C_{1}+C_{2} e^{3 x}+\frac{e^{x}}{200}(10 x \cos 2 x-19 \cos 2 x-8 \sin 2 x-30 x \sin 2 x)$

3-165 (a) $y=C_{1} \cos x+C_{2} \sin x-\frac{x}{2}(2 \cos x+3 \sin x)$
(b) $y=C_{1} \cos x+C_{2} \sin x+x^{2}+3-\frac{1}{2} e^{x}$
(c) $y=C_{1} \cos x+C_{2} \sin x+\frac{1}{2}\left(x^{2}-2 x\right) e^{x}$
(d) $y=C_{1} \cos x+C_{2} \sin x-\frac{1}{40}(3 \cos 3 x+\sin 3 x) e^{2 x}$

3-167 $y=\left(-10 \sin x+\frac{17}{2} \cos x\right) e^{x}+\frac{1}{2} x^{3}+\frac{3}{2} x^{2}+\frac{3}{2} x-\frac{5}{2}$
3-169 $y=-\frac{3}{2} e^{x}+\frac{5}{2} e^{-x}+2 x e^{x}+\frac{1}{2} \sin x-\frac{x}{2} \cos x$
3-171 (a) $y=C_{1} e^{-2 x}+C_{2} e^{2 x}+\frac{1}{64}\left(8 x^{2}-4 x+1\right) e^{2 x}$
(b) $y=C_{1} e^{-2 x}+C_{2} e^{2 x}+\frac{1}{8}\left(2 x^{2}-2 x+1\right)$

3-173 (a) $y=C_{1} e^{2 x} \sin x+C_{2} e^{2 x} \cos x-\frac{1}{8} e^{2 x}(2 \cos 2 x-1) \cos x$
(b) $y=C_{1} e^{2 x} \sin x+C_{2} e^{2 x} \cos x-e^{2 x} \cos x \ln (\sec x+\tan x)$

3-175 (a) $y=C_{1}+C_{2} e^{4 x}-\frac{1}{8} x^{2}-\frac{21}{16} x$
(b) $y=C_{1}+C_{2} e^{4 x}+\frac{1}{2(x-2)}$

3-177 (a) $y=C_{1} e^{x}+C_{2} x e^{x}+e^{2 x}+8$, (b) $y=C_{1} e^{x}+C_{2} x e^{x}+x^{-2} e^{x}$
3-181
(a) $y=C_{1} x^{-1+\sqrt{3}}+C_{2} x^{-1-\sqrt{3}}$,
, (b) $y=C_{1}(x-1)^{-1+\sqrt{3}}+C_{2}(x-1)^{-1-\sqrt{3}}-3$

3-183 (a) $y=C_{1} \frac{1}{x}+C_{2} \frac{\ln x}{x}$, (b) $y=C_{1} \frac{1}{x}+C_{2} \frac{\ln x}{x}+\frac{2}{9} x^{2}$

3-185 (a) $y=x^{2}\left[C_{1} \cos (\sqrt{2} \ln x)+C_{2} \sin (\sqrt{2} \ln x)\right]$
(b) $y=x^{2}\left[C_{1} \cos (\sqrt{2} \ln x)+C_{2} \sin (\sqrt{2} \ln x)\right]-\frac{1}{6} x+\frac{1}{12}$

3-193 $\omega_{0}=31.62 \mathrm{~s}^{-1}, T \approx 0.2 \mathrm{~s}, A=0.316 \mathrm{~m}$
3-195 $x(t)=\frac{200}{981-\omega^{2}}(\cos \omega t-\cos 31.32 t), \omega=\omega_{0}=31.32 \mathrm{~s}^{-1}$ will cause the resonance.
3-197 $v(t)=4 \cos 20 t-4 \cos 30 t, v_{\max }=8 \mathrm{~m} / \mathrm{s}, \Delta t=\frac{\pi}{5} \mathrm{~s}$
3-199 The mass will pass through its static equilibrium position at the time $t=0.182 \mathrm{~s}$, with a velocity of $V(0.182)=-0.0245 \mathrm{~m} / \mathrm{s} \quad$ (upward)
3-201 $x(t)=e^{-20 t}\left(C_{1} \sin \frac{\sqrt{362}}{2} t+C_{2} \cos \frac{\sqrt{362}}{2} t\right)+\frac{F_{0} \cos \left(\omega t-\arctan \left(\frac{c \omega}{k-m \omega^{2}}\right)\right)}{\sqrt{\left(m k-m^{2} \omega^{2}\right)+c^{2} \omega^{2}}}, \quad \omega=0$
3-203 $m x^{\prime \prime}+\left(k_{1}+k_{2}\right) x=k_{1} y$
3-205 $x(0.4643)=0.2080 \mathrm{~m}$
3-207 $m L^{2} \varphi^{\prime \prime}=m g L \sin \varphi-k L_{1}^{2} \varphi-c L_{1}^{2} \varphi^{\prime}$
3-209 $x=\frac{b \omega^{2}}{k-m \omega^{2}}\left(\sin \omega t-\frac{\omega}{\omega_{o}} \sin \omega_{o} t\right)$
3-211 $x(t)=e^{-\zeta \omega_{o} t}\left(\frac{x^{\prime}(0)+\zeta \omega_{o} x(0)}{\omega_{d}} \sin \omega_{d} t+x(0) \cos \omega_{d} t\right)$
3-215 $Q(t)=C_{1} \sin \omega_{0} t+C_{2} \cos \omega_{0} t+\frac{E_{0} / L}{\omega_{0}^{2}-\omega^{2}} \cos \omega t$
The charge of capacitor would be, at least mathematically, unbounded as $t \rightarrow \infty$

3-217

If $R^{2}-4 \frac{L}{C}>0$ then there are two real and distinct roots, m_{1} and m_{2}. Thus the general solution of the differential equation is

$$
I(t)=C_{1} e^{m_{1} t}+C_{2} e^{m_{2} t}
$$

If $R^{2}-4 \frac{L}{C}=0$ then there are two real and equal roots, $m_{1}=m_{2}=m=-\frac{R}{2 L}$. Thus the general solution of the differential equation is

$$
I(t)=\left(C_{1}+C_{2} t\right) e^{m t}
$$

If $R^{2}-4 \frac{L}{C}<0$ then there are two complex and conjugate roots, $m_{1,2}=\alpha \mp i \beta$. Thus the general solution of the differential equation is

$$
I(t)=e^{\alpha t}\left(C_{1} \cos \beta t+C_{2} \sin \beta t\right)
$$

where $\alpha=-\frac{R}{2 L}$ and $\beta=\frac{\sqrt{4 L / C-R^{2}}}{2 L}$

3-219x $x(t)=A e^{-3 t}+B t e^{-3 t}$
3-221 $y(t)=A \sin 2 t+B \cos 2 t$
3-223 $y=-\frac{17}{3} e^{-x}+\frac{2}{3} e^{x / 2}$
3-225 $y=e^{-2 x}\left(\frac{e^{\pi}}{2} \sin 4 x\right)=\frac{1}{2} e^{\pi-2 x} \sin 4 x$
3-227 $y=6 x e^{2-x}$
3-229 $y=e^{-2 x}+C_{2} e^{2 x}+\left(-\frac{3}{5} x^{2}+\frac{36}{25} x-\frac{186}{125}\right) e^{3 x}$
3-230 $y=C_{1} \cos 3 x+C_{2} \sin 3 x+\frac{1}{4} \sin x$
3-231 $y=C_{1} \cos 3 x+C_{2} \sin 3 x+\frac{1}{2} x \cos x+\frac{1}{16} \sin x$
3-233 $y=C_{1}+C_{2} e^{3 x}+\frac{e^{x}}{200}(10 x \cos 2 x-19 \cos 2 x-8 \sin 2 x-30 x \sin 2 x)$
3-235 $y=\frac{3}{4} \cos 4 x+\frac{1}{24} \sin 4 x-\frac{1}{4} \cos 2 x+\frac{1}{12} \sin 2 x$
3-237 Note: the equation is incorrect in the first printing of the textbook. It should be $x^{2} y^{\prime \prime}+y=$ 0 . The solution is $y=x^{1 / 2}\left[C_{1} \cos \left(\frac{\sqrt{3}}{2} \ln x\right)+C_{1} \sin \left(\frac{\sqrt{3}}{2} \ln x\right)\right]$

3-241 $y=C_{1} e^{4 x}+C_{2} e^{-4 x}$
3-243 $y=C_{1}+C_{2} e^{-x}$
3-245 $y=c_{1}+C_{2} x^{-3 / 2}+\frac{1}{14} x^{2}-\frac{1}{3} \ln x$
3-247 $y=C_{1}+C_{2} e^{-2 x}$
3-249 $y=\left(C_{1}+C_{2} x\right) e^{3 x}$

3-251 $y=1-e^{-x}$
3-253 $y=C_{1}+C_{2} e^{4 x}-\frac{1}{8} x^{2}-\frac{5}{16} x$
3-255 $y=C_{1}+C_{2} e^{x}-\frac{1}{3} x^{3}-x^{2}-3 x+\frac{e^{x}}{2}(\sin x+\cos x)$
3-257 $y=C_{1} e^{x}+C_{2} e^{8 x}-\frac{1}{500}\left(50 x^{2}-30 x+19\right) e^{3 x}$
3-259 $y=\cosh x$
3-261 $y=C_{1} x^{2+\sqrt{3}}+C_{2} x^{2-\sqrt{3}}$
3-263 $y=x^{1 / 2}\left[C_{1} \cos \left(\frac{\sqrt{15}}{2} \ln x\right)+C_{2} \sin \left(\frac{\sqrt{15}}{2} \ln x\right)\right]$
3-265 $y(x)=-\frac{47}{128} e^{-4 x}+\frac{1}{12} x^{3}-\frac{1}{16} x^{2}-\frac{15}{32} x+\frac{47}{128}$
$3-267 v(t)=0.39047 \sin 10 t+0.060992 \cos 10 t, T \approx 0.628 \mathrm{~s}$.
$3-269 I_{s t} \cong 0.002435 \cos (60 t)-0.0003985 \sin (60 t), C=1.67$ farad

CHAPTER 4

4-25 (a) $y^{(i v)}-5 y^{\prime}+\cos y=x+1$; Nonlinear, nonhomogeneous, constant coefficients (b) $y^{(i v)}=0$; Linear, homogeneous, constant coefficients
(c) $y^{(i v)}+2 x^{2} y^{\prime}+5 y=0$; Linear, homogeneous, variable coefficients
(d) $y^{(i v)}+e^{x} y=\frac{1}{x}$; Linear, nonhomogeneous, variable coefficients

4-27 (a) $y^{(v)}+\frac{1}{y}=1$; Nonlinear, nonhomogeneous, constant coefficients
(b) $y^{(v)}-8 y^{\prime}-e^{\ln y}=0$; Nonlinear, homogeneous, constant coefficients
(c) $y^{(v)}-\sin 2 x y^{\prime}+y=0$; Linear, homogeneous, variable coefficients
(d) $y^{(v)}+y=7$; Linear, nonhomogeneous, constant coefficients

4-29 (a) The initial-value problem has a unique solution in the interval $-\infty<x<+\infty$.
(b) The initial-value problem has a unique solution in the interval $-\infty<x<2$.

4-31 (a) The initial-value problem has a unique solution in the interval $-\infty<x<+\infty$.
(b) The initial-value problem has a unique solution in the interval $-2<x<2$.

4-35 (a) The Wronskian of these three solution functions is never zero for $x>0$.
(b) The solutions $e^{x}, 2 e^{2+x}$ and -5 are linearly dependent.

4-37 (a) $y_{1}=1, y_{2}=e^{x}$ and $y_{3}=e^{-x}$ do not form a set of fundamental solutions.
(b) $y_{1}=1, y_{2}=\sinh x$ and $y_{3}=\cosh x$ do not form a set of fundamental solutions.

4-39 (a) y_{1}, y_{2} and y_{3} are linearly independent.
(b) y_{1}, y_{2} and y_{3} are linearly independent.

4-43 $y_{3}(x)=\frac{1}{3} \sin 3 x$
4-45 $y_{3}(x)=-\frac{1}{3 x}$
4-53 (a) $y=\left(C_{1}+C_{2} x+C_{3} x^{2}\right) e^{-x}$, (b) Given: $y=C_{1}+C_{2} e^{-3 x}+C_{3} x e^{-3 x}$
4-55 (a) $y=C_{1} e^{-x}+e^{3 x / 2}\left(C_{2} \cos \frac{\sqrt{7}}{2} x+C_{3} \sin \frac{\sqrt{7}}{2} x\right)$,
(b) $y=e^{-x}\left(C_{2} \cos \sqrt{3} x+C_{3} \sin \sqrt{3} x\right)+x e^{-x}\left(C_{3} \cos \sqrt{3} x+C_{4} \sin \sqrt{3} x\right)$

4-57 $y(x)=\frac{1}{3} e^{x}+\frac{2}{3} e^{-x / 2} \cos \frac{\sqrt{3}}{2} x$
4-59 $y(x)=\left(1-x+\frac{x^{2}}{2}\right) e^{x}$

4-61 $x(t)=A e^{-6037 t}+e^{-1982 t}(B \sin 16,500 t+C \cos 16,500 t)$
4-63 $\beta= \pm i \sqrt{2 \alpha}, \pm i \sqrt{\alpha}= \pm i \sqrt{\frac{2 k}{m}}, \pm i \sqrt{\frac{k}{m}}$
4-67 (a) $y(x)=\left(C_{1}+C_{2} x\right) e^{x}+C_{3} e^{-2 x}-\frac{1}{10} e^{3 x}$
(b) $y(x)=\left(C_{1}+C_{2} x\right) e^{x}+C_{3} e^{-2 x}+\frac{2}{9} x e^{3-2 x}$
(c) $y(x)=\left(C_{1}+C_{2} x\right) e^{x}+C_{3} e^{-2 x}+\left(\frac{5}{18} x^{2}+\frac{10}{27} x\right) e^{-2 x}$
(d) $y(x)=\left(C_{1}+C_{2} x\right) e^{x}+C_{3} e^{-2 x}-\left(\frac{3}{52} \cos 2 x+\frac{1}{26} \sin 2 x\right) e^{x}$

4-69 (a) $y(x)=C_{1} e^{-x}+C_{2} e^{x}+C_{3} \cos x+C_{4} \sin x-x+2$
(b) $y(x)=C_{1} e^{-x}+C_{2} e^{x}+C_{3} \cos x+C_{4} \sin x+\frac{1}{8}\left(x^{2}-5 x\right) e^{x}$
(c) $y(x)=C_{1} e^{-x}+C_{2} e^{x}+C_{3} \cos x+C_{4} \sin x-x^{2}+1$
(d) $y=C_{1} e^{-x}+C_{2} e^{x}+C_{3} \cos x+C_{4} \sin x+\left(\frac{3}{80} x-\frac{41}{800}\right) e^{x} \cos 2 x-\left(\frac{1}{80} x+\frac{19}{400}\right) e^{x} \sin 2 x$

4-71 (a) $y(x)=C_{1} e^{-2 x}+e^{x}\left(C_{2} \cos \sqrt{3} x+C_{3} \sin \sqrt{3} x\right)-\frac{1}{65}(22 \cos x-19 \sin x)$
(b) $y(x)=C_{1} e^{-2 x}+e^{x}\left(C_{2} \cos \sqrt{3} x+C_{3} \sin \sqrt{3} x\right)+\frac{1}{8} x^{2}-\frac{1}{9} e^{x}$
(c) $y(x)=C_{1} e^{-2 x}+e^{x}\left(C_{2} \cos \sqrt{3} x+C_{3} \sin \sqrt{3} x\right)+\frac{1}{81}\left(9 x^{2}-6 x-13\right) e^{x}$
(d) $y(x)=C_{1} e^{-2 x}+e^{x}\left(C_{2} \cos \sqrt{3} x+C_{3} \sin \sqrt{3} x\right)-\frac{1}{1525}(9 \cos 3 x+38 \sin 3 x)$

4-73 $x_{p 1}=\alpha^{2}, x_{p 2}(t)=C_{1} \sin 0.618 \alpha t+C_{2} \cos 0.618 \alpha t+C_{3} \sin 1.618 \alpha t+C_{4} \cos 1.618 \alpha t+\alpha^{2}$ $(\alpha=\sqrt{k / m})$

4-77 (a) $y_{p}=\frac{1}{10} \sin 2 x$
(b) $y_{p}=\frac{1}{9} \ln (\sec 2 x+\tan 2 x)+\sin 3 x\left(\frac{2}{9} \cos x-\frac{\sqrt{2}}{18} \operatorname{arctanh}(\sqrt{2} \cos x)\right)$
$+(\cos 3 x)\left(-\frac{2}{9} \sin x+\frac{\sqrt{2}}{18} \operatorname{arctanh}(\sqrt{2} \sin x)\right)$
4-79 (a) $y_{p}=\frac{1}{4} x^{4}-3 x^{2}-x+6$
(b) $y_{p}=\ln |x|-\sin x \int \frac{\sin x}{x} d x-\cos x \int \frac{\cos x}{x} d x$

4-81 (a) $y_{p}=\left(x^{2}-6 x+12\right) e^{x}$
(b) $y_{p}=-x \ln |x|$

4-87 $y(x)=\frac{C_{1}}{x}+\frac{C_{2}}{x^{2}}+C_{3} x^{3}$
4-89 $y(x)=C_{1} x+x\left[C_{2} \cos (\sqrt{2} \ln x)+C_{3} \sin (\sqrt{2} \ln x)\right]$

4-91 $y(x)=C_{1} x^{3}+\frac{C_{2}}{x^{2}}+\frac{C_{3} \ln x}{x^{2}}$

4-93

(a) $-2,-6,-8$
(b) $-5,-2 \pm 5.6465 i$
(c) $-2,-2 \pm 5.3 \times 10^{-5} i$
(d) $-3,-5 \pm 8 i$
(e) $-5 \pm 8 i,-3 \pm 6 i$
(f) $-3,-3,-5 \pm 8 i$
(g) $-3 \pm 5 i,-3 \pm 5 i$

4-95

(a) $y(x)=-\frac{13}{18}-\frac{1}{6} x+{ }_{-} C 1 \mathrm{e}^{3 x}+{ }_{-} C 2 \mathrm{e}^{-x} \cos (x)+{ }_{-} C 3 \mathrm{e}^{-x} \sin (x)$
(b) $y(x)=\frac{1}{26} \mathrm{e}^{3 x}+{ }_{-} C 1 \mathrm{e}^{x}+{ }_{-} C 2 \mathrm{e}^{-\frac{1}{2} x} \cos \left(\frac{1}{2} \sqrt{3} x\right)$

$$
+{ }_{-} C 3 \mathrm{e}^{-\frac{1}{2} x} \sin \left(\frac{1}{2} \sqrt{3} x\right)
$$

4-97 $y(x)=-1+\mathrm{e}^{2 x}-\mathrm{e}^{2 x} x$
4-99 (a) $2 \mathrm{e}^{3 x}$, (b) 0
4-103 $y(x)=y_{h}+y_{p}=C_{1}+C_{2} e^{x}+C_{3} e^{-x}+e^{2 x}\left(-\frac{1}{10} x+\frac{3}{25}\right) \cos x+\frac{2}{25} e^{2 x} \sin x$
4-105 $y_{p}=\frac{x^{2}}{2} \ln |x|-\frac{3}{4} x^{2}-3 \sin x+x \cos x$
4-107 $y(x)=C_{1} e^{-x}+e^{-x}\left(C_{2} \cos \sqrt{3} x+C_{3} \sin \sqrt{3} x\right)+\frac{1}{4} x^{3}-\frac{9}{8} x^{2}+\frac{9}{4} x-\frac{41}{16}$
4-109 $y=C_{1}+C_{2} x+C_{3} x \ln x-\frac{1}{4 x}-2 \ln x$
4-111 $y=C_{1} e^{x}+C_{2} x e^{x}+C_{3} x^{2} e^{x}$
4-113 $y(x)=C_{1} e^{-x}+e^{x / 2}\left(C_{2} \cos \frac{\sqrt{3}}{2} x+C_{3} \sin \frac{\sqrt{3}}{2} x\right)+\frac{1}{7} e^{3 x}-x$
4-115 $y(x)=C_{1} e^{x}+e^{3 x / 2}\left(C_{2} \cos \frac{\sqrt{21}}{2} x+C_{3} \sin \frac{\sqrt{21}}{2} x\right)+\frac{1}{5} e^{2 x}-\frac{1}{3}$
4-117 $y=e^{x / \sqrt{2}}\left(C_{1} \sin \frac{x}{\sqrt{2}}+C_{2} \cos \frac{x}{\sqrt{2}}\right)+e^{-x / \sqrt{2}}\left(C_{3} \sin \frac{x}{\sqrt{2}}+C_{4} \cos \frac{x}{\sqrt{2}}\right)+\cos x+\frac{x}{2} \sin x$
4-119 $y=e^{\sqrt{2} x}\left(C_{1} \sin \sqrt{2} x+C_{2} \cos \sqrt{2} x\right)+e^{-\sqrt{2} x}\left(C_{3} \sin \sqrt{2} x+C_{4} \cos \sqrt{2} x\right)+\frac{1}{32}(x-1) e^{2 x}-\frac{1}{16}$
4-121 $y(x)=C_{1}+C_{2} \sin 3 x+C_{3} \cos 3 x-\frac{3}{50} x \cos 2 x+\left(\frac{1}{10} x^{2}-\frac{69}{500}\right) \sin 2 x$
4-123 $y(x)=\frac{1}{64}(1-\cosh 2 x \cos 2 x)$
4-125 $y(x)=\frac{C_{1}}{x}+x^{2}\left[C_{1} \cos (\sqrt{2} \ln x)+C_{2} \sin (\sqrt{2} \ln x)\right]$

CHAPTER 5

5-41 (a) $5 x \sum_{n=1}^{\infty}(n+1)^{2} x^{n+3}=20 x^{5}+45 x^{6}+80 x^{7}+5 x \sum_{n=4}^{\infty}(n+1)^{2} x^{n+3}$
(b) $\sum_{n=2}^{\infty} \frac{n+5}{n+3} C_{2 n+1} x^{2 n+1}=\frac{7}{5} C_{5} x^{5}+\frac{4}{3} C_{7} x^{7}+\frac{9}{7} C_{9} x^{9}+\sum_{n=5}^{\infty} \frac{n+5}{n+3} C_{2 n+1} x^{2 n+1}$

5-43 (a) $\sum_{n=4}^{\infty}(n-4)^{2} 2^{n-3} x^{n}$, (b) $\sum_{n=4}^{\infty} C_{n-1} x^{n}$

5-45 (a) $\sum_{n=1}^{\infty}(n+2) x^{n-1}$,
(b) $\sum_{n=3}^{\infty} C_{n+1} x^{n-1}$

5-47 (a) $\sum_{n=5}^{\infty} C_{n-1} x^{n+1}$, (b) $\sum_{n=1}^{\infty}(n+3)^{2} 2^{n+1} x^{n+1}$
$5-4915 C_{0} \frac{1}{x}-\frac{1}{x^{2}}+\sum_{n=0}^{\infty}\left[(n+1)^{2}-5(n-2) C_{n+1}+\frac{n+1}{n+3}\right] x^{n}=0$
5-51 The equality holds for any x value.
5-53 The equality holds for any x value.
5-55 Not correct

$$
\begin{aligned}
& \text { 5-57 (a) } \rho=1 / 3,-1 / 3 \leq x<1 / 3 \text {, (b) } \rho=1 / 2,1 / 2 \leq x<3 / 2 \\
& \text { 5-59 (a) } C_{n+2}=\frac{3 C_{n}}{(n+2)(n+1)}, \quad \text { (b) } C_{n+2}=-\frac{1}{2} \frac{n(n+1) C_{n+1}+(2-n) C_{n}}{(n+2)(n+1)} \\
& \text { 5-61 (a) } C_{n+2}=\frac{-(n+1) C_{n+1}+2 C_{n}}{(n+2)(n+1)}, \text { (b) } C_{n+2}=\frac{n C_{n}}{(n+1)} \\
& \text { 5-63 (a) } y(x)=C_{0}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{24}+\cdots\right)+C_{1}\left(x+\frac{x^{3}}{6}+\frac{x^{5}}{120}+\cdots\right) \\
& \text { (b) } y(x)=C_{0}\left(1+2 x^{2}+\frac{2}{3} x^{4}+\frac{4}{45} x^{6}+\cdots\right)+C_{1}\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}+\cdots\right) \\
& \text { 5-65 } y(x)=C_{0}+C_{1} x+\left(-2 C_{1}+6 C_{0}\right) x^{2}+\left(\frac{14}{3} C_{1}-8 C_{0}\right) x^{3}+\left(-\frac{20}{3} C_{1}+14 C_{0}\right) x^{4} \\
& \quad+\left(\frac{122}{15} C_{1}+16 C_{0}\right) x^{5}+\left(-\frac{364}{45} C_{1}+\frac{244}{14} C_{0}\right) x^{6}+\cdots
\end{aligned}
$$

5-69(a) All points are ordinary points.
(b) Both $x=-2$ and $x=2$ are the regular singular points of the differential equation.

5-71 (a) Both $x=-1$ and $x=1$ are the regular singular points of the differential equation.
(b) All points are ordinary points of the differential equation.
$5-73 \rho=1$.
5-75 $\rho=4$.
$5-77 \rho=1$.
5-79y(x) $=C_{0}\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{11}{720} x^{6}-\cdots\right)+C_{1}\left(x-\frac{1}{6} x^{3}-\frac{1}{24} x^{5}-\frac{19}{1008} x^{7}-\cdots\right)$

Interval of convergence: $-1<x<1$.
5-81 $y(x)=C_{0}\left(\frac{33}{10}-3 x-3 x^{2}+7 x^{3}-\frac{9}{2} x^{4}+\frac{6}{5} x^{5}+\cdots\right)$

$$
+C_{1}\left(-\frac{9}{5}+\frac{7}{2} x-3 x^{2}+2 x^{3}-x^{4}+\frac{3}{10} x^{5}+\cdots\right)
$$

$5-83 y(x)=C_{0}\left(1+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{7}{24} x^{4}+\frac{4}{15} x^{5}+\cdots\right)+C_{1}\left(x+\frac{1}{6} x^{3}+\frac{1}{6} x^{4}+\frac{19}{120} x^{5}+\cdots\right)$
Interval of the convergence: $-1<x<1$.
$5-85 y(x)=C_{0}\left(\frac{7}{60}-\frac{8}{3} x^{2}+\frac{59}{24} x^{3}-\frac{7}{12} x^{4}+\frac{11}{120} x^{5}+\cdots\right)+C_{1}(x-1)$
5-87y(x) $=C_{0}\left(1-\frac{1}{2} x^{2}-\frac{1}{2} x^{3}-\frac{5}{12} x^{4}-\frac{1}{3} x^{5}-\cdots\right)+C_{1}\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{5}-\frac{1}{8} x^{6} \ldots\right)$
Interval of the convergence: $-1<x<1$.
$5-89 y(x)=C_{0}\left(1+\frac{1}{3} x^{3}-\frac{1}{12} x^{4}+\frac{1}{60} x^{5}+\cdots\right)+C_{1}\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{8} x^{4}-\frac{3}{40} x^{5}+\cdots\right)$
Interval of convergence is $(-\infty, \infty)$.
$5-91 y(x)=1+\frac{2}{3} x^{3}+\frac{4}{45} x^{6}+\frac{2}{405} x^{9}+\frac{2}{13365} x^{12}+\cdots$
5-97y(x) $=C_{0}\left(1-3 x^{2}\right)+C_{1}\left(x-\frac{2}{3} x^{3}-\frac{1}{5} x^{5}-\frac{4}{35} x^{7}-\frac{5}{63} x^{9}-\cdots\right),-1<x<1$.
$5-99 P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)$
5-105 (a) $r_{1}=1+\sqrt{3} i \quad$ and $\quad r_{2}=1-\sqrt{3} i$
(b) $r_{1}=1+\sqrt{3} i$ and $r_{2}=1-\sqrt{3} i$

5-107 (a) $r_{1}=\frac{1}{2}+\frac{\sqrt{15}}{2} i \quad$ and $\quad r_{2}=\frac{1}{2}-\frac{\sqrt{15}}{2} i$
(b) $r_{1}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i \quad$ and $\quad r_{2}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$

5-109
(a) $y_{1}(x)=x^{r_{1}} \sum_{n=0}^{\infty} a_{n} x^{n}$ and $y_{2}(x)=x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n}$, where $a_{0} \neq 0$ and $b_{0} \neq 0$. Since $x=0$ is the only singular point for the given differential equation, the series solution converges for all $x>0$.
(b) $y_{1}(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n} \quad$ and $y_{2}(x)=y_{1}(x) \ln x+x^{r} \sum_{n=0}^{\infty} b_{n} x^{n}$, where $a_{0} \neq 0$. It is clear from either $P(x)$ or $Q(x)$ that $x=1$ is another singular point of the given differential equation. Therefore the series will converge for all x such that $0<x<1$.

5-111
(a) $y_{1}(x)=x^{r_{1}} \sum_{n=0}^{\infty} a_{n} x^{n}$ and $y_{2}(x)=C y_{1}(x) \ln x+x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n}$, where $a_{0} \neq 0$ and $b_{0} \neq 0$, whereas the constant C may be zero. The series solution will converge for any $x>0$.
(b) $y_{1}(x)=x^{r_{1}} \sum_{n=0}^{\infty} a_{n} x^{n} \quad$ and $y_{2}(x)=C y_{1}(x) \ln x+x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n}$, where $a_{0} \neq 0$ and $b_{0} \neq 0$, whereas the constant C may be zero. The series solution will converge for any $x>0$.

5-113
(a) $y_{1}(x)=x^{r_{1}} \sum_{n=0}^{\infty} a_{n} x^{n} \quad$ and $\quad y_{2}(x)=x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n}$, where $a_{0} \neq 0$ and $b_{0} \neq 0$. Since $x=0$ is the only singular point for the given differential equation, the series solution converges for all $x>0$.
(b) $y_{1}(x)=x^{r_{1}} \sum_{n=0}^{\infty} a_{n} x^{n}$ and $y_{2}(x)=C y_{1}(x) \ln x+x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n}$, where $a_{0} \neq 0$ and $b_{0} \neq 0$, whereas the constant C may be zero. It is clear from either $P(x)$ or $Q(x)$ that $x=\mp 2$ are two other singular points of the given differential equation. Therefore the series solution will converge for all x such that $0<x<2$.

5-115 (a) $y(x)=C_{1} x^{1+\sqrt{3}}\left(1-\frac{1}{4} x^{2}+\frac{1}{32} \frac{3+\sqrt{3}}{2+\sqrt{3}} x^{4}+\cdots\right)+C_{2} x^{1-\sqrt{3}}\left(1-\frac{1}{4} x^{2}+\frac{1}{32} \frac{-3+\sqrt{3}}{-2+\sqrt{3}} x^{4}+\cdots\right)$
(b) $y(x)=C_{1} x+C_{2}\left(x \ln x+\frac{1}{4} x^{3}+\frac{3}{32} x^{5}+\frac{5}{96} x^{7}+\frac{35}{1024} x^{9}+\cdots\right)$

5-117
(a) $y(x)=C_{1} x^{\frac{5}{4}+\frac{\sqrt{41}}{4}}+C_{2} x^{\frac{5}{4}-\frac{\sqrt{41}}{4}}$
(b) $y(x)=C_{1} x^{\frac{3}{2}}\left[1-\frac{1}{2} x+\frac{23}{128} x^{2}-\frac{281}{3840} x^{3}+\frac{7397}{245760} x^{4}-\frac{222991}{17203200} x^{5}+\cdots\right]$

$$
\begin{aligned}
+\frac{7 C_{2}}{32} x^{\frac{3}{2}}\left[1-\frac{1}{2} x+\frac{23}{128} x^{2}-\frac{281}{3840} x^{3}\right. & \left.+\frac{7397}{245760} x^{4}-\frac{222991}{17203200} x^{5}+\cdots\right] \ln x \\
& +C_{2} x^{\frac{1}{2}}\left[1-\frac{1}{2} x+\frac{1}{12} x^{3}-\frac{1385}{49152} x^{4}+\frac{76739}{7372800} x^{5}+\cdots\right]
\end{aligned}
$$

5-119 (a) $y(x)=\frac{C_{1}}{x^{2}}+\frac{C_{2} \ln x}{x^{2}}$, (b) $y(x)=C_{1} x^{\frac{4}{3}}+C_{2} x^{-1}$
5-125 $J_{2}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2 n+2} n!(n+2)!} x^{2 n+2}=\frac{1}{8} x^{2}-\frac{1}{96} x^{4}+\frac{1}{3072} x^{6}-\frac{1}{184320} x^{8}+\cdots$
5-129
(a) $I=-x J_{0}(x)+\int J_{0}(x) d x+C$, The integral in the result cannot be evaluated in finite form in terms of any of the known Bessel's functions.
(b) $I=-x^{-3} J_{3}(x)+C=-\frac{J_{3}(x)}{x^{3}}+C$

5-131

(a) $y(x)={ }_{-} C 1 \mathrm{e}^{x}+{ }_{-} C 2 \mathrm{e}^{-x}$

The series solution found in Problem 5-63a is

$$
y(x)=C_{0}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{24}+\cdots\right)+C_{1}\left(x+\frac{x^{3}}{6}+\frac{x^{5}}{120}+\cdots\right)
$$

(b) $y(x)={ }_{-} C l \mathrm{e}^{4 x}$

The series solution found in Problem 5-63b is

$$
y(x)=C_{0}\left(1+2 x^{2}+\frac{2}{3} x^{4}+\frac{4}{45} x^{6}+\cdots\right)+C_{1}\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}+\cdots\right)
$$

5-133 $y(x)={ }_{-} C 1 \mathrm{e}^{2 x}+{ }_{-} C 2 \mathrm{e}^{-6 x}$
The series solution found in Problem 5-65 is

$$
\begin{aligned}
y(x)=C_{0} & +C_{1} x+\left(-2 C_{1}+6 C_{0}\right) x^{2}+\left(\frac{14}{3} C_{1}-8 C_{0}\right) x^{3}+\left(-\frac{20}{3} C_{1}+14 C_{0}\right) x^{4} \\
5(x) & =\frac{-C 1 \text { HeunC }\left(0,0,0,-2 \mathrm{I}, \mathrm{I}, \frac{1}{2}-\frac{122}{2} \mathrm{I} x\right) \sqrt{\mathrm{I} x+1}}{\sqrt{x-\mathrm{I}}} \\
& +\frac{1}{\sqrt{x-\mathrm{I}}}\left(-C 2 \operatorname{HeunC}\left(0,0,0,-2 \mathrm{I}, \mathrm{I}, \frac{1}{2}\right.\right. \\
& \left.-\frac{1}{2} \mathrm{I} x\right) \sqrt{\mathrm{I} x+1}\left(-\frac{364}{45} C_{1}+\frac{244}{14} C_{0}\right) x^{6}+\cdots \\
& \left.\left.\int \frac{x-\mathrm{I}}{\left(x^{2}+1\right) \operatorname{HeunC}\left(0,0,0,-2 \mathrm{I}, \mathrm{I}, \frac{1}{2}-\frac{1}{2} \mathrm{I} x\right)^{2}(\mathrm{I} x+1)} \mathrm{d} x\right)\right)
\end{aligned}
$$

The series solution found in Problem 5-80 is

$$
y(x)=C_{0}\left(1+\frac{1}{6} x^{3}-\frac{1}{10} x^{5}+\frac{1}{180} x^{6}+\cdots\right)+C_{1}\left(x-\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{5} x^{5}+\cdots\right)
$$

5-137 $y(x)={ }_{-} C l\left(x^{2}-1\right)$ hypergeom $\left(\left[\frac{3}{4}+\frac{1}{4} \sqrt{17}, \frac{3}{4}-\frac{1}{4} \sqrt{17}\right]\right.$,

$$
\begin{aligned}
& \left.\left[\frac{1}{2}\right], x^{2}\right)+{ }_{-} C 2\left(x^{3}-x\right) \text { hypergeom }\left(\left[\frac{5}{4}-\frac{1}{4} \sqrt{17}, \frac{5}{4}\right.\right. \\
& \left.\left.+\frac{1}{4} \sqrt{17}\right],\left[\frac{3}{2}\right], x^{2}\right)
\end{aligned}
$$

The series solution found in Problem 5-82 is

$$
y(x)=C_{0}\left(1-2 x^{2}+\frac{1}{3} x^{4}+\frac{4}{45} x^{6}+\cdots\right)+C_{1}\left(x-\frac{2}{3} x^{3}-\frac{1}{15} x^{5}-\frac{8}{315} x^{7}+\cdots\right)
$$

5-139 $y(x)={ }_{-} C 1 \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{2} \sqrt{x})+{ }_{C} C 2 \sqrt{x} \operatorname{BesselY}(1$,

$$
2 \sqrt{2} \sqrt{x})
$$

The series solution found in Problem 5-84 is

$$
\begin{aligned}
& y(x)=C_{0}\left(\frac{2}{15}-\frac{8}{3} x+\frac{7}{3} x^{2}-\frac{2}{3} x^{3}+\frac{1}{12} x^{4}-\frac{1}{240} x^{5}+\cdots\right) \\
& \\
& \quad+C_{1}\left(-1+\frac{3}{2} x+\frac{1}{3} x^{2}-\frac{1}{2} x^{3}+\frac{1}{8} x^{4}-\frac{1}{96} x^{5}+\cdots\right)
\end{aligned}
$$

5-141 $y(x)={ }_{-} C l \operatorname{AiryAi}\left(2^{2 / 3} x\right)+{ }_{-} C 2 \operatorname{AiryBi}\left(2^{2 / 3} x\right)$
The series solution found in Problem 5-86 is

$$
y(x)=C_{0}\left(1+\frac{2}{3} x^{3}+\frac{4}{45} x^{6}+\frac{2}{405} x^{9}+\cdots\right)+C_{1}\left(x+\frac{1}{3} x^{4}+\frac{2}{63} x^{7}+\frac{4}{2835} x^{10}+\cdots\right)
$$

5-143 $y(x)={ }_{-} C l$ WhittakerM $\left(2 \mathrm{I}, \frac{1}{2}, 4 \mathrm{I}(x+2)\right)$

$$
\left.+{ }_{-} C 2 \text { WhittakerW(} 2 \mathrm{I}, \frac{1}{2}, 4 \mathrm{I}(x+2)\right)
$$

The series solution found in Problem 5-88 is

$$
y(x)=C_{0}\left(1-\frac{1}{3} x^{2}+\frac{1}{12} x^{4}-\frac{1}{40} x^{5}+\cdots\right)+C_{1}\left(x-\frac{1}{6} x^{4}+\frac{1}{20} x^{5}-\frac{1}{60} x^{6}+\cdots\right)
$$

5-145

$$
\begin{aligned}
& y(x)={ }_{-} C l\left(x^{2}-1\right) \text { hypergeom }\left(\left[\frac{1}{4} \sqrt{5}+\frac{3}{4}, \frac{3}{4}-\frac{1}{4} \sqrt{5}\right],\right. \\
& \left.\quad\left[\frac{1}{2}\right], x^{2}\right)+{ }_{-} C 2\left(x^{3}-x\right) \text { hypergeom }\left(\left[\frac{5}{4}-\frac{1}{4} \sqrt{5}, \frac{5}{4}\right.\right. \\
& \left.\left.\quad+\frac{1}{4} \sqrt{5}\right],\left[\frac{3}{2}\right], x^{2}\right)
\end{aligned}
$$

The general series solution found in Problem 5-90 is

$$
y(x)=C_{0}\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{11}{720} x^{6}-\cdots\right)+C_{1}\left(x-\frac{1}{6} x^{3}-\frac{1}{25} x^{5}-\frac{19}{1008} x^{7}-\cdots\right)
$$

The assumed power series solution suggests that $y(0)=y_{0}=C_{0}$ and $y^{\prime}(0)=y_{0}^{\prime}=C_{1}$. Therefore the solution of the given initial-value problem can be acquired by simply plugging in $C_{0}=0$ and $C_{1}=0$ in the general solution. Then the solution of the initial-value problem is $y(x)=0$.

5-147 $y(x)=\sqrt{2} \sin (\sqrt{2} \arcsin (x))+2 \cos (\sqrt{2} \arcsin (x))$
The general series solution found in Problem 5-92 is

$$
y(x)=C_{0}\left(1-x^{2}-\frac{1}{6} x^{4}-\frac{7}{90} x^{6}-\cdots\right)+C_{1}\left(x-\frac{1}{6} x^{3}-\frac{7}{120} x^{5}-\frac{23}{720} x^{7}-\cdots\right)
$$

The assumed power series solution suggests that $y(0)=y_{0}=C_{0}$ and $y^{\prime}(0)=y_{0}^{\prime}=C_{1}$. Therefore the solution of the given initial-value problem can be acquired by simply plugging in $C_{0}=2$ and $C_{1}=2$ in the general solution. Then the solution of the initial-value problem is obtained to be $y(x)=2+2 x-2 x^{2}-\frac{1}{3} x^{3}-\frac{1}{3} x^{4}-\frac{14}{120} x^{5}-\frac{7}{45} x^{6}-\frac{23}{360} x^{7}-\cdots$

5-149

(a) $y(x)={ }_{-} C 1 \mathrm{e}^{-\frac{1}{4} x^{2}} x \operatorname{BesselI}\left(\frac{1}{2} \sqrt{3}, \frac{1}{4} x^{2}\right)$

$$
+{ }_{-} C 2 \mathrm{e}^{-\frac{1}{4} x^{2}} x \operatorname{BesselK}\left(\frac{1}{2} \sqrt{3}, \frac{1}{4} x^{2}\right)
$$

The solution found in Problem 5-115(a) is

$$
y(x)=C_{1} x^{1+\sqrt{3}}\left(1-\frac{1}{4} x^{2}+\frac{1}{32} \frac{3+\sqrt{3}}{2+\sqrt{3}} x^{4}+\cdots\right)+C_{2} x^{1-\sqrt{3}}\left(1-\frac{1}{4} x^{2}+\frac{1}{32} \frac{-3+\sqrt{3}}{-2+\sqrt{3}} x^{4}+\cdots\right)
$$

(b) $y(x)==_{-} C 1 x+{ }_{-} C 2 x \arctan \left(\frac{1}{\sqrt{x^{2}-1}}\right)$ or using MuPAD $\left\{\mathrm{C} 66 x+\mathrm{C} 67 x \arctan \left(\sqrt{x^{2}-1}\right)\right\}$

The solutions found from Maple and MuPAD differ, but they are both correct solutions. The solution found in Problem 5-115(b) is

$$
y(x)=C_{1} x+C_{2}\left(x \ln x+\frac{1}{4} x^{3}+\frac{3}{32} x^{5}+\frac{5}{96} x^{7}+\frac{35}{1024} x^{9}+\cdots\right)
$$

5-151

(a) $y(x)={ }_{-} C 1 x^{\frac{5}{4}+\frac{1}{4} \sqrt{33}}+{ }_{C} C 2 x^{\frac{5}{4}-\frac{1}{4} \sqrt{33}}$
(b) $y(x)=\operatorname{DESol}\left(\left\{\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}{ }_{-} Y(x)-\frac{4\left(\frac{\mathrm{~d}}{\mathrm{~d} x}-Y(x)\right)}{x^{2}-4}+\frac{3 Y(x)}{x^{2}\left(x^{2}-4\right)}\right\}\right.$,

$$
\left.\left\{_{-} Y(x)\right\}\right\}
$$

Maple is unable to solve this problem. The solution found in Problem 5-117(b) is

$$
\begin{aligned}
& y(x)=C_{1} x^{\frac{3}{2}}\left[1-\frac{1}{2} x+\frac{23}{128} x^{2}-\frac{281}{3840} x^{3}+\frac{7397}{245760} x^{4}-\frac{222991}{17203200} x^{5}+\cdots\right] \\
& +\frac{7 C_{2}}{32} x^{\frac{3}{2}}\left[1-\frac{1}{2} x+\frac{23}{128} x^{2}-\frac{281}{3840} x^{3}+\frac{7397}{245760} x^{4}-\frac{222991}{17203200} x^{5}+\cdots\right] \ln x \\
& \\
& \quad+C_{2} x^{\frac{1}{2}}\left[1-\frac{1}{2} x+\frac{1}{12} x^{3}-\frac{1385}{49152} x^{4}+\frac{76739}{7372800} x^{5}+\cdots\right]
\end{aligned}
$$

5-153

(a) $y(x)=\frac{C 1}{x^{2}}+\frac{C 2 \ln (x)}{x^{2}}$, The solution found in Problem 5-119(a) is $y(x)=\frac{C_{1}}{x^{2}}+\frac{C_{2} \ln x}{x^{2}}$
(b) $y(x)={ }_{-} C 1 x^{4 / 3}+\frac{C 2}{x}$,The solution found in Problem 5-119(b) is $y(x)=C_{1} x^{4 / 3}+C_{2} x^{-1}$

CHAPTER 6

6-21
(a)
$x_{1}^{\prime}=x_{2}$
$x_{2}^{\prime}=x_{3}$
$x_{3}^{\prime}=-2 x_{1}^{2} x_{2}-2 x_{1}+t e^{-3 t}$
(b)
$x_{1}^{\prime}=x_{2}$
$x_{2}^{\prime}=x_{3}$
$x_{3}^{\prime}=-5 x_{2}+k x_{1}$

6-23
(a)
$x_{1}^{\prime}=x_{2}$
$x_{2}^{\prime}=x_{3}$
$x_{3}^{\prime}=x_{4}$
$x_{4}^{\prime}=5 x_{2}-\cos x_{1}+t+1$
(b)
$x_{1}^{\prime}=x_{2}$
$x_{2}^{\prime}=x_{3}$
$x_{3}^{\prime}=x_{4}$
$x_{4}^{\prime}=0$

6-25
(a)
$x_{1}^{\prime}=x_{2}$
$x_{2}^{\prime}=-e^{x} x_{2}+2 x_{1}+6$
(b)
$x_{1}^{\prime}=x_{2}$
$x_{2}^{\prime}=x_{3}$
$x_{3}^{\prime}=2 x_{2}-x_{1}+t^{3} \cos 2 t$

6-27

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =x_{3} \\
x_{3}^{\prime} & =x_{1} x_{4} \\
x_{4}^{\prime} & =x_{5} \\
x_{5}^{\prime} & =\frac{2 t}{(t-1)^{3}} x_{1} x_{5}-\frac{1}{(t-1)^{3}} x_{5}+\frac{e^{-t}}{(t-1)^{3}}
\end{aligned}
$$

6-29
$x_{1}^{\prime}=x_{2}$
$x_{2}^{\prime}=x_{3}$
$x_{3}^{\prime}=x_{1}+x_{5}+x_{1} x_{4}-x_{4} x_{6}-1-3 t$
$x_{4}^{\prime}=x_{5}$
$x_{5}^{\prime}=t^{2} x_{4}-x_{1} x_{6}$
$x_{6}^{\prime}=x_{7}$
$x_{7}^{\prime}=x_{1} x_{4}-x_{4} x_{6}-1$

6-31 The system is nonlinear due to term $2 t x y^{\prime}$, nonhomogeneous due to $e^{-t}-1$, and has variable coefficients due to term $2 t x y^{\prime}$.

6-33 The system is nonlinear due to terms $x z, x y$ and $y z$, nonhomogeneous due to -1 , and has variable coefficients due to term $t^{2} y$.

6-35 The system is linear, nonhomogeneous due to terms e^{t} and 3 , and has constant coefficients.

6-37 The system is linear, nonhomogeneous due to 1 , and has variable coefficients due to terms $t x$ and $t^{2}(x-z)$.

6-39

$$
\begin{aligned}
& m_{1} \frac{d^{2} x_{1}}{d t^{2}}+k_{1} x_{1}+k_{2}\left(x_{1}-x_{2}\right)=0 \\
& m_{2} \frac{d^{2} x_{2}}{d t^{2}}+k_{3}\left(x_{2}-x_{3}\right)-k_{2}\left(x_{1}-x_{2}\right)=0 \\
& m_{3} \frac{d^{2} x_{3}}{d t^{2}}-k_{3}\left(x_{2}-x_{3}\right)=F(t)
\end{aligned}
$$

6-41

$$
\begin{aligned}
& R \frac{d I_{1}}{d t}+\frac{1}{C}\left(I_{1}-I_{2}\right)=0 \\
& L \frac{d^{2} I_{2}}{d t^{2}}-\frac{1}{C}\left(I_{1}-I_{2}\right)=0
\end{aligned}
$$

6-43

$$
\begin{aligned}
L \frac{d^{2} I_{1}}{d t^{2}}-L \frac{d^{2} I_{2}}{d t^{2}}+R_{1} \frac{d I_{1}}{d t} & =\frac{d E(t)}{d t} \\
-L \frac{d^{2} I_{1}}{d t^{2}}+L \frac{d^{2} I_{2}}{d t^{2}}+R_{2} \frac{d I_{2}}{d t}+R_{4} \frac{d I_{2}}{d t}-R_{4} \frac{d I_{3}}{d t} & =0 \\
-R_{4} \frac{d I_{2}}{d t}+R_{3} \frac{d I_{3}}{d t}+R_{4} \frac{d I_{3}}{d t}+\frac{1}{C} I_{3} & =0
\end{aligned}
$$

6-45

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =\frac{1}{20}\left(x_{2}-2 x_{1}\right)+2.5 \\
\frac{d x_{2}}{d t} & =\frac{1}{10}\left(x_{1}-x_{2}\right)
\end{aligned}
$$

6-47
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{\left(\frac{5}{2}+\frac{\sqrt{13}}{2}\right) t}+C_{2} e^{\left(\frac{5}{2}-\frac{\sqrt{13}}{2}\right) t} \\
& y(t)=\frac{C_{1}}{2}(-3-\sqrt{13}) e^{\left(\frac{5}{2}+\frac{\sqrt{13}}{2}\right) t}+\frac{C_{2}}{2}(-3+\sqrt{13}) e^{\left(\frac{5}{2}-\frac{\sqrt{13}}{2}\right) t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x(t)=C_{1} e^{\left(\frac{5}{2}+\frac{\sqrt{13}}{2}\right) t}+C_{2} e^{\left(\frac{5}{2}-\frac{\sqrt{13}}{2}\right) t}+\frac{4}{3} t+\frac{5}{9}+(t-3) e^{t} \\
& y(t)=\frac{C_{1}}{2}(-3-\sqrt{13}) e^{\left(\frac{5}{2}+\frac{\sqrt{13}}{2}\right) t}+\frac{C_{2}}{2}(-3+\sqrt{13}) e^{\left(\frac{5}{2}-\frac{\sqrt{13}}{2}\right) t}+\frac{1}{3} t+\frac{2}{9}-e^{t}
\end{aligned}
$$

6-49
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{2 t} \sin 2 t+C_{2} e^{2 t} \cos 2 t \\
& y(t)=\frac{1}{2} C_{1} e^{2 t} \cos 2 t-\frac{1}{2} C_{2} e^{2 t} \sin 2 t
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x(t)=C_{1} e^{2 t} \sin 2 t+C_{2} e^{2 t} \cos 2 t-\left(t^{2}+\frac{6}{5} t-\frac{22}{25}\right) e^{3 t} \\
& y(t)=\frac{1}{2} C_{1} e^{2 t} \cos 2 t-\frac{1}{2} C_{2} e^{2 t} \sin 2 t+\left(t^{2}-\frac{4}{5} t-\frac{2}{25}\right) e^{3 t}
\end{aligned}
$$

6-51
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{\sqrt{5} t}+C_{2} e^{-\sqrt{5} t} \\
& y(t)=C_{1}(-2+\sqrt{5}) e^{\sqrt{5} t}+C_{2}(-2-\sqrt{5}) e^{-\sqrt{5} t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x(t)=C_{1} e^{\sqrt{5} t}+C_{2} e^{-\sqrt{5} t}-\frac{3}{5} t^{2}-\frac{16}{25} \\
& y(t)=C_{1}(-2+\sqrt{5}) e^{\sqrt{5} t}+C_{2}(-2-\sqrt{5}) e^{-\sqrt{5} t}+\frac{6}{5} t^{2}-\frac{6}{5} t+\frac{7}{25}
\end{aligned}
$$

6-53
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{-2 \sqrt{3} t}+C_{2} e^{2 \sqrt{3} t} \\
& y(t)=C_{1}(2+\sqrt{3}) e^{-2 \sqrt{3} t}+C_{2}(2-\sqrt{3}) e^{2 \sqrt{3} t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x(t)=C_{1} e^{-2 \sqrt{3} t}+C_{2} e^{2 \sqrt{3} t}-\frac{1}{3} t^{2}-t+\frac{17}{18} \\
& y(t)=C_{1}(2+\sqrt{3}) e^{-2 \sqrt{3} t}+C_{2}(2-\sqrt{3}) e^{2 \sqrt{3} t}-\frac{1}{6} t^{2}-\frac{5}{3} t+\frac{8}{9}
\end{aligned}
$$

6-55
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{t} \sin \sqrt{5} t+C_{2} e^{t} \cos \sqrt{5} t \\
& y(t)=-\frac{C_{1}}{\sqrt{5}} e^{t} \cos \sqrt{5} t+\frac{C_{2}}{\sqrt{5}} e^{t} \sin \sqrt{5} t
\end{aligned}
$$

(b)

$$
x(t)=C_{1} e^{t} \sin \sqrt{5} t+C_{2} e^{t} \cos \sqrt{5} t+2
$$

$$
y(t)=-\frac{C_{1}}{\sqrt{5}} e^{t} \cos \sqrt{5} t+\frac{C_{2}}{\sqrt{5}} e^{t} \sin \sqrt{5} t+1
$$

6-57
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{2 t}+C_{2} e^{-2 t} \\
& y(t)=\frac{1}{2}\left(C_{1} e^{2 t}-C_{2} e^{-2 t}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x(t)=C_{1} e^{2 t}+C_{2} e^{-2 t}-\frac{4}{3} e^{t}+3 \\
& y(t)=\frac{1}{2}\left(C_{1} e^{2 t}-C_{2} e^{-2 t}\right)-\frac{1}{3} e^{t}-\frac{1}{4}
\end{aligned}
$$

6-59
(a)

$$
\begin{gathered}
x(t) \cong 33.74695 C_{1} e^{-3.2443 t}+e^{2.62215 t}\left[\left(0.260655 C_{2}-0.37348 C_{3}\right) \cos 1.067 t\right. \\
\left.+\left(-0.37348 C_{2}-0.260655 C_{3}\right) \sin 0.8297 t\right] \\
y(t) \cong-6.2443 C_{1} e^{-3.2443 t}+e^{2.62215 t}\left[\left(1.067 C_{2}-0.37785 C_{3}\right) \cos 1.067 t\right. \\
\left.+\left(-0.37785 C_{2}-1.067 C_{3}\right) \sin 1.067 t\right] \\
z(t) \cong C_{1} e^{-3.2443 t}+e^{2.62215 t}\left(C_{2} \sin 1.067 t+C_{3} \cos 1.067 t\right)
\end{gathered}
$$

(b)

$$
\left.\begin{array}{rl}
x(t) \cong 33.74695 C_{1} e^{-3.2443 t}+e^{2.62215 t}\left[\left(0.260655 C_{2}-0.37348 C_{3}\right) \cos 1.067 t\right. \\
& \left.+\left(-0.37348 C_{2}-0.260655 C_{3}\right) \sin 0.8297 t\right]+0.26923077 t^{2}+0.3787 t+0.36481 \\
y(t) \cong-6.2443 C_{1} e^{-3.2443 t}+e^{2.62215 t}\left[\left(1.067 C_{2}-0.37785 C_{3}\right) \cos 1.067 t\right. \\
& \left.\quad+\left(-0.37785 C_{2}-1.067 C_{3}\right) \sin 1.067 t\right]-0.11538 t^{2}-0.043923 t+1.0355
\end{array}\right] \begin{aligned}
z(t) \cong C_{1} e^{-3.2443 t}+e^{2.62215 t}\left(C_{2} \sin 1.067 t+C_{3} \cos 1.067 t\right)+\frac{1}{26} t^{2}-\frac{54}{169} t-\frac{3333}{4394}
\end{aligned}
$$

6-61
(a)

$$
\begin{aligned}
& x(t)=C_{1} \frac{\sin \left(\frac{\sqrt{71}}{2} \ln t\right)}{\sqrt{t}}+C_{2} \frac{\cos \left(\frac{\sqrt{71}}{2} \ln t\right)}{\sqrt{t}}+\frac{5}{3} \\
& y(t)=\frac{C_{1}}{12} t^{2}\left[\frac{\sqrt{71} \cos \left(\frac{\sqrt{71}}{2} \ln t\right)}{\sqrt{t^{3}}}-\frac{\sin \left(\frac{\sqrt{71}}{2} \ln t\right)}{\sqrt{t^{3}}}\right]-\frac{C_{2}}{12} t^{2}\left[\frac{\cos \left(\frac{\sqrt{71}}{2} \ln t\right)}{\sqrt{t^{3}}}-\frac{\sqrt{71} \sin \left(\frac{\sqrt{71}}{2} \ln t\right)}{\sqrt{t^{3}}}\right]
\end{aligned}
$$

(b)
$x(t)=C_{1} \frac{\sin \left(\frac{\sqrt{7}}{2} \ln t\right)}{\sqrt{t}}+C_{2} \frac{\cos \left(\frac{\sqrt{7}}{2} \ln t\right)}{\sqrt{t}}+2 t-1$
$y(t)=-\frac{C_{1}}{4} t^{2}\left[\frac{\sqrt{7} \cos \left(\frac{\sqrt{7}}{2} \ln t\right)}{\sqrt{t^{3}}}-\frac{\sin \left(\frac{\sqrt{7}}{2} \ln t\right)}{\sqrt{t^{3}}}\right]+\frac{C_{2}}{4} t^{2}\left[\frac{\cos \left(\frac{\sqrt{7}}{2} \ln t\right)}{\sqrt{t^{3}}}+\frac{\sqrt{71} \sin \left(\frac{\sqrt{7}}{2} \ln t\right)}{\sqrt{t^{3}}}\right]+2 t^{2}$

6-63

$$
\begin{aligned}
& x(t)=\left(\frac{33}{49}-\frac{121 \sqrt{2}}{196}\right) e^{(3+\sqrt{2}) t}+\left(\frac{33}{49}+\frac{121 \sqrt{2}}{196}\right) e^{(3-\sqrt{2}) t}-\frac{4}{7} t-\frac{17}{49} \\
& y(t)=-\left(\frac{33}{49}-\frac{121 \sqrt{2}}{196}\right)(\sqrt{2}+1) e^{(3+\sqrt{2}) t}+\left(\frac{33}{49}+\frac{121 \sqrt{2}}{196}\right)(\sqrt{2}-1) e^{(3-\sqrt{2}) t}-\frac{1}{7} t-\frac{6}{49}
\end{aligned}
$$

6-65

$x(t)=\frac{287 \sqrt{71}}{639} e^{-\frac{1}{2} t} \sin \frac{\sqrt{71}}{2} t+\frac{17}{9} e^{-\frac{1}{2} t} \cos \frac{\sqrt{71}}{2} t+\frac{1}{9}$
$y(t)=\frac{517 \sqrt{71}}{1278} e^{-\frac{1}{2} t} \sin \frac{\sqrt{71}}{2} t-\frac{59}{18} e^{-\frac{1}{2} t} \cos \frac{\sqrt{71}}{2} t+\frac{5}{18}$
6-67 $x(t)=0$ and $y(t)=0$
6-69

$$
h_{2}^{\prime \prime}+\frac{5 B}{3} h_{2}^{\prime}+\frac{1}{3} B^{2} h_{2}=\frac{q_{m i}}{3 \rho A}\left(q_{m i}^{\prime}+B q_{m i}\right)
$$

6-73
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{2 t}+C_{2} e^{-2 t} \\
& y(t)=-C_{1} e^{2 t}+3 C_{2} e^{-2 t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x(t)=C_{1} e^{2 t}+C_{2} e^{-2 t}-\frac{1}{4} t^{2}+\frac{1}{4} t+\frac{1}{8} \\
& y(t)=-C_{1} e^{2 t}+3 C_{2} e^{-2 t}+\frac{3}{4} t^{2}+\frac{3}{4} t-\frac{9}{8}
\end{aligned}
$$

6-75
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{(2+2 \sqrt{6}) t}+C_{2} e^{(2-2 \sqrt{6}) t} \\
& y(t)=C_{1}(-5+2 \sqrt{6}) e^{(2+2 \sqrt{6}) t}+C_{2}(-5-2 \sqrt{6}) e^{(2-2 \sqrt{6}) t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x(t)=C_{1} e^{(2+2 \sqrt{6}) t}+C_{2} e^{(2-2 \sqrt{6}) t}+\frac{1}{10} \\
& y(t)=C_{1}(-5+2 \sqrt{6}) e^{(2+2 \sqrt{6}) t}+C_{2}(-5-2 \sqrt{6}) e^{(2-2 \sqrt{6}) t}+\frac{3}{10}
\end{aligned}
$$

6-77
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{\sqrt{7} t}+C_{2} e^{-\sqrt{7} t} \\
& y(t)=\frac{C_{1}}{2}(1+\sqrt{7}) e^{\sqrt{7} t}+\frac{C_{2}}{2}(1-\sqrt{7}) e^{-\sqrt{7} t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x(t)=C_{1} e^{\sqrt{7} t}+C_{2} e^{-\sqrt{7} t}+\frac{3}{11} \sin 2 t-\frac{6}{11} \cos 2 t+\frac{4}{7} \\
& y(t)=\frac{C_{1}}{2}(1+\sqrt{7}) e^{\sqrt{7} t}+\frac{C_{2}}{2}(1-\sqrt{7}) e^{-\sqrt{7} t}-\frac{9}{11} \sin 2 t+\frac{2}{7}
\end{aligned}
$$

6-79
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{(4+\sqrt{3}) t}+C_{2} e^{(4-\sqrt{3}) t} \\
& y(t)=C_{1}(2-\sqrt{3}) e^{(4+\sqrt{3}) t}+C_{2}(2+\sqrt{3}) e^{(4-\sqrt{3}) t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x(t)=C_{1} e^{(4+\sqrt{3}) t}+C_{2} e^{(4-\sqrt{3}) t}+e^{2 t}+\frac{1}{13} \\
& y(t)=C_{1}(2-\sqrt{3}) e^{(4+\sqrt{3}) t}+C_{2}(2+\sqrt{3}) e^{(4-\sqrt{3}) t}+(t+4) e^{2 t}+\frac{6}{13}
\end{aligned}
$$

6-81
(a)

$$
\begin{aligned}
& x(t)=C_{1} e^{(1+4 \sqrt{3}) t}+C_{2} e^{1-4 \sqrt{3} t} \\
& y(t)=\left(1+\frac{2 \sqrt{3}}{3}\right) C_{1} e^{(1+4 \sqrt{3}) t}+\left(1-\frac{2 \sqrt{3}}{3}\right) C_{2} e^{1-4 \sqrt{3} t}
\end{aligned}
$$

(b)
$x(t)=C_{1} e^{(1+4 \sqrt{3}) t}+C_{2} e^{(1-4 \sqrt{3}) t}-\frac{6}{47} t^{2}+\frac{24}{2209} t+\frac{14851}{103823}$

$$
y(t)=\left(1+\frac{2 \sqrt{3}}{3}\right) C_{1} e^{(1+4 \sqrt{3}) t}+\left(1-\frac{2 \sqrt{3}}{3}\right) C_{2} e^{(1-4 \sqrt{3}) t}-\frac{5}{47} t^{2}-\frac{74}{2209} t-\frac{4740}{103823}
$$

6-83

$$
\begin{aligned}
& x(t)=\left(\frac{16}{49}-\frac{75 \sqrt{2}}{1916}\right) e^{(3+\sqrt{2}) t}+\left(\frac{16}{49}+\frac{75 \sqrt{2}}{1916}\right) e^{(3-\sqrt{2}) t}+\frac{4}{7} t+\frac{17}{49} \\
& y(t)=\left(\frac{43}{98}+\frac{11 \sqrt{2}}{196}\right) e^{(3+\sqrt{2}) t}+\left(\frac{43}{98}-\frac{11 \sqrt{2}}{196}\right) e^{(3-\sqrt{2}) t}+\frac{1}{7} t+\frac{6}{49}
\end{aligned}
$$

6-85

$$
\begin{aligned}
& x(t) \cong-0.00244 e^{3 t}-2.30616 e^{-2 t}-\frac{1}{6} t+\frac{19}{36} \\
& y(t) \cong-0.00061 e^{3 t}+2.30616 e^{-2 t}-\frac{1}{6} t-\frac{11}{36}
\end{aligned}
$$

6-87

$$
L I \omega^{\prime \prime}+R L \omega^{\prime}+K_{T} K_{b} \omega=-L T_{L}^{\prime}-R T_{L}+K_{T} V_{a}
$$

6-91

$$
\begin{gathered}
\omega=\sqrt{\frac{4+2 \sqrt{7}}{3}} \alpha, \sqrt{\frac{-4+2 \sqrt{7}}{3} \alpha} \\
\frac{A_{1}}{A_{2}}=\frac{3}{2+2 \sqrt{7}}
\end{gathered}
$$

6-93

$$
\begin{aligned}
& \left\{x l(t)=\frac{55}{3}+\frac{1}{20} \mathrm{e}^{-\frac{21}{400} t}\left(-\sin \left(\frac{3}{400} \sqrt{31} t\right)_{-} C 2\right.\right. \\
& \quad-3 \cos \left(\frac{3}{400} \sqrt{31} t\right) \sqrt{31}{ }_{-} C 2-\cos \left(\frac{3}{400} \sqrt{31} t\right)_{-} C 1 \\
& \left.\quad+3 \sin \left(\frac{3}{400} \sqrt{31} t\right) \sqrt{31}{ }_{-} C 1\right)_{, x 2(t)=-\frac{50}{3}} \\
& \left.\quad+\mathrm{e}^{-\frac{21}{400} t}\left(\sin \left(\frac{3}{400} \sqrt{31} t\right)_{-} C 2+\cos \left(\frac{3}{400} \sqrt{31} t\right)_{-} C 1\right)\right\}
\end{aligned}
$$

6-95

(a)

$$
\begin{aligned}
& \left\{x(t)={ }_{-} C 1 \mathrm{e}^{\frac{1}{2}(5+\sqrt{13}) t_{0}}+{ }_{-} C 2 \mathrm{e}^{-\frac{1}{2}(-5+\sqrt{13}) t}, y(t)=\right. \\
& \quad-\frac{3}{2}{ }_{-} C l \mathrm{e}^{\frac{1}{2}(5+\sqrt{13}) t_{t}}-\frac{1}{2}{ }_{-} C 1 \mathrm{e}^{\frac{1}{2}(5+\sqrt{13}) t} \sqrt{13} \\
& \left.\quad-\frac{3}{2}{ }_{-} C 2 \mathrm{e}^{-\frac{1}{2}(-5+\sqrt{13}) t_{t}}+\frac{1}{2}{ }_{-} C 2 \mathrm{e}^{-\frac{1}{2}(-5+\sqrt{13}) t} \sqrt{13}\right\}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\{x(t) & =\mathrm{e}^{\frac{1}{2}(5+\sqrt{13}) t}{ }_{-} C 2+\mathrm{e}^{-\frac{1}{2}(-5+\sqrt{13}) t}{ }_{-} C 1+\frac{4}{3} t+t \mathrm{e}^{t} \\
& -3 \mathrm{e}^{t}+\frac{5}{9}, y(t)=-\frac{3}{2} \mathrm{e}^{\frac{1}{2}(5+\sqrt{13}) t}{ }_{-} C 2 \\
& -\frac{1}{2} \mathrm{e}^{\frac{1}{2}(5+\sqrt{13}) t}{ }_{-} C 2 \sqrt{13}-\frac{3}{2} \mathrm{e}^{-\frac{1}{2}(-5+\sqrt{13}) t}{ }_{-} C 1 \\
& \left.+\frac{1}{2} \mathrm{e}^{-\frac{1}{2}(-5+\sqrt{13})_{t}}{ }_{-} C 1 \sqrt{13}+\frac{2}{9}-\mathrm{e}^{t}+\frac{1}{3} t\right\}
\end{aligned}
$$

6-97

$$
\begin{aligned}
& x(t)=\frac{389 \sqrt{95}}{32110} \mathrm{e}^{3 / 2 t} \sin \left(\frac{1}{2} \sqrt{95} t\right)+\frac{373}{338} \mathrm{e}^{3 / 2 t} \cos \left(\frac{1}{2} \sqrt{95} t\right)-\frac{35}{338}-\frac{3}{13} t \\
& y(t)=\frac{5841 \sqrt{95}}{64220} \mathrm{e}^{3 / 2 t} \sin \left(\frac{1}{2} \sqrt{95} t\right)-\frac{127}{676} \mathrm{e}^{3 / 2 t} \cos \left(\frac{1}{2} \sqrt{95} t\right)+\frac{127}{676}-\frac{1}{26} t
\end{aligned}
$$

6-99

$$
\begin{aligned}
& x(t)=\frac{1}{9}+\mathrm{e}^{-1 / 2 t}\left[\frac{287 \sqrt{71}}{639} \sin \left(\frac{1}{2} \sqrt{71} t\right)+\frac{17}{9} \cos \left(\frac{1}{2} \sqrt{71} t\right)\right] \\
& y(t)=\frac{5}{18}+\mathrm{e}^{-1 / 2 t}\left[\frac{517 \sqrt{71}}{1278} \sin \left(\frac{1}{2} \sqrt{71} t\right) \sqrt{71}-\frac{59}{18} \cos \left(\frac{1}{2} \sqrt{71} t\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=C_{1} e^{2 t}+C_{2} e^{\frac{1}{2}(5+\sqrt{29}) t}+C_{3} e^{\frac{1}{2}(5-\sqrt{29}) t} \\
& y(t)=C_{1} e^{2 t}+\frac{C_{2}}{6}(5-\sqrt{29}) e^{\frac{1}{2}(5+\sqrt{29}) t}+\frac{C_{3}}{6}(5+\sqrt{29}) e^{\frac{1}{2}(5-\sqrt{29}) t} \\
& z(t)=\frac{C_{2}}{3}(6-\sqrt{29}) e^{\frac{1}{2}(5+\sqrt{29}) t}+\frac{C_{3}}{6}(6+\sqrt{29}) e^{\frac{1}{2}(5-\sqrt{29}) t}
\end{aligned}
$$

6-103

$$
\begin{aligned}
& x(t)=-19 C_{1} e^{-3 t}-\frac{1}{3} C_{2} e^{\frac{5}{2} t} \sin \frac{\sqrt{103}}{2} t-\frac{1}{3} C_{3} e^{\frac{5}{2} t} \cos \frac{\sqrt{103}}{2} t \\
& y(t)=2 C_{1} e^{-3 t}+\frac{1}{6}\left(C_{2}+\sqrt{103} C_{3}\right) e^{\frac{5}{2} t} \sin \frac{\sqrt{103}}{2} t+\frac{1}{6}\left(C_{3}-\sqrt{103} C_{2}\right) e^{\frac{5}{2} t} \cos \frac{\sqrt{103}}{2} t \\
& z(t)=C_{1} e^{-3 t}+C_{2} e^{\frac{5}{2} t} \sin \frac{\sqrt{103}}{2} t+C_{3} e^{\frac{5}{2} t} \cos \frac{\sqrt{103}}{2} t
\end{aligned}
$$

CHAPTER 7

7-39
(a) $\mathbf{A}+\mathbf{B}=\left(\begin{array}{cc}3 & -3 \\ 1 & 8\end{array}\right)$, (b) $2 \mathbf{A}=\left(\begin{array}{cc}4 & 0 \\ -14 & 10\end{array}\right)$
(c) $3 \mathbf{A}-\mathbf{B}=\left(\begin{array}{cc}5 & 3 \\ -29 & 12\end{array}\right)$, (d) $-3 \mathbf{A B}=\left(\begin{array}{cc}-6 & 18 \\ -99 & -108\end{array}\right)$

7-41
(a) $5 \mathbf{A}=\left(\begin{array}{cc}35 & -15 \\ 30 & 60\end{array}\right)$, (b) $2 \mathbf{A}+3 \mathbf{B}=\left(\begin{array}{cc}47 & -33 \\ 24 & 27\end{array}\right)$,
(c) $2 \mathbf{A B}=\left(\begin{array}{cc}130 & -132 \\ 228 & -84\end{array}\right)$, (d) $\operatorname{det} \mathbf{A}=102$

7-43
(a) $\mathbf{A}-4 \mathbf{B}=\left(\begin{array}{ccc}16 & -18 & 23 \\ -5 & -12 & 3 \\ 9 & -36 & -2\end{array}\right)$, (b) $\mathbf{A B}=\left(\begin{array}{ccc}-23 & 37 & -17 \\ -6 & 23 & 8 \\ 3 & 6 & 17\end{array}\right)$
c) $\mathbf{B A}=\left(\begin{array}{ccc}-1 & 6 & -7 \\ 1 & -2 & 12 \\ -24 & 6 & 20\end{array}\right)$, (d) $\operatorname{det} \mathbf{B}=-103$

7-45
(a) $\mathbf{A}+\mathbf{B}=\left(\begin{array}{cc}18 & -12 \\ 10 & 13\end{array}\right), \quad \mathbf{B}+\mathbf{A}=\left(\begin{array}{cc}18 & -12 \\ 10 & 13\end{array}\right)$
b) $2(\mathbf{A}+\mathbf{B})=\left(\begin{array}{cc}36 & -24 \\ 20 & 26\end{array}\right), \quad 2 \mathbf{A}+2 \mathbf{B}=\left(\begin{array}{cc}36 & -24 \\ 20 & 26\end{array}\right)$
c) $\mathbf{A B}=\left(\begin{array}{cc}65 & -66 \\ 114 & -42\end{array}\right), \quad \mathbf{B A}=\left(\begin{array}{cc}23 & -141 \\ 34 & 0\end{array}\right)$

7-47
(a) $(\mathbf{A}+\mathbf{B})+\mathbf{C}=\left(\begin{array}{cc}0 & 8 \\ 11 & 8\end{array}\right), \quad \mathbf{A}+(\mathbf{B}+\mathbf{C})=\left(\begin{array}{cc}0 & 8 \\ 11 & 8\end{array}\right)$
b) $\mathbf{A}(\mathbf{B C})=\left(\begin{array}{cc}168 & -12 \\ -7 & -71\end{array}\right), \quad(\mathbf{A B}) \mathbf{C}=\left(\begin{array}{cc}168 & -12 \\ -7 & -71\end{array}\right)$
c) $\mathbf{A}(\mathbf{B}+\mathbf{C})=\left(\begin{array}{ll}56 & 31 \\ 38 & 12\end{array}\right), \quad \mathbf{A B}+\mathbf{A C}=\left(\begin{array}{ll}56 & 31 \\ 38 & 12\end{array}\right)$

7-49
(a)

$$
\int_{0}^{t} \mathbf{A} d t=\left(\begin{array}{cc}
\ln \frac{1}{1-t} & 1-3 \cos 3 t \\
\frac{1}{2}-\frac{1}{2} e^{-2 t} & \frac{1}{2} t^{2}+t
\end{array}\right)
$$

(b)

$$
\frac{d \mathbf{A}}{d t}=\left(\begin{array}{cc}
\frac{1}{(1-t)^{2}} & 9 \cos 3 t \\
-2 e^{-2 t} & 1
\end{array}\right)
$$

7-51

(a)

$$
\mathbf{B} \int_{0}^{1} \mathbf{A} d t=\left(\begin{array}{cc}
\frac{11}{3}-e & \frac{7}{2}-\frac{4}{e}+\frac{1}{2} \cos 2 \\
-\frac{17}{3}+7 e & \frac{11}{2}-\frac{2}{e}-\frac{7}{2} \cos 2
\end{array}\right)
$$

(b)

$$
\int_{0}^{1}(\mathbf{B A}) d t=\left(\begin{array}{cc}
\frac{11}{3}-e & \frac{7}{2}-\frac{4}{e}+\frac{1}{2} \cos 2 \\
-\frac{17}{3}+7 e & \frac{11}{2}-\frac{2}{e}-\frac{7}{2} \cos 2
\end{array}\right)
$$

(c)

$$
\mathbf{B} \frac{d \mathbf{A}}{d t}=\left(\begin{array}{ll}
\frac{2}{\sqrt{t}}-e^{t} & -4 e^{-t}-2 \cos 2 t \\
\frac{1}{\sqrt{t}}+7 e^{t} & -2 e^{-t}+14 \cos 2 t
\end{array}\right)
$$

(d)

$$
\frac{d}{d t}(\mathbf{B A})=\left(\begin{array}{ll}
\frac{2}{\sqrt{t}}-e^{t} & -4 e^{-t}-2 \cos 2 t \\
\frac{1}{\sqrt{t}}+7 e^{t} & -2 e^{-t}+14 \cos 2 t
\end{array}\right)
$$

7-53 $\quad m_{1} x_{1}^{\prime \prime}=-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right)-c_{1} x_{1}^{\prime}+c_{2}\left(x_{2}^{\prime}-x_{1}^{\prime}\right)$

$$
m_{2} x_{2}^{\prime \prime}=f-k_{2}\left(x_{2}-x_{1}\right)-c_{2}\left(x_{2}^{\prime}-x_{1}^{\prime}\right)
$$

$$
\mathbf{A}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{k_{2}+k_{1}}{m_{1}} & \frac{k_{2}}{m_{1}} & -\frac{c_{1}+c_{2}}{m_{1}} & \frac{c_{2}}{m_{1}} \\
\frac{k_{2}}{m_{2}} & \frac{-k_{2}}{m_{2}} & \frac{c_{2}}{m_{2}} & -\frac{c_{2}}{m_{2}}
\end{array}\right)
$$

$$
\mathbf{B}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

7-65
(a)

$$
\mathbf{A}^{-\mathbf{1}}=\left(\begin{array}{cc}
\frac{2}{17} & \frac{1}{34} \\
-\frac{1}{17} & \frac{7}{102}
\end{array}\right)
$$

(b)

$$
\mathbf{B}^{\mathbf{- 1}}=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{3}{2} \\
-\frac{1}{3} & \frac{1}{3} & -\frac{5}{3}
\end{array}\right)
$$

7-67
(a)

$$
\mathbf{A}^{-1}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{1}{5} & \frac{1}{5}
\end{array}\right)
$$

(b)

$$
\mathbf{B}^{\mathbf{- 1}}=\left(\begin{array}{cccc}
\frac{8}{1727} & -\frac{62}{1727} & -\frac{166}{1727} & \frac{89}{1727} \\
\frac{298}{1727} & \frac{281}{1727} & -\frac{139}{1727} & \frac{293}{1727} \\
\frac{122}{1727} & -\frac{82}{1727} & -\frac{59}{1727} & \frac{62}{1727} \\
-\frac{273}{3554} & -\frac{43}{3454} & \frac{26}{1727} & \frac{201}{3454}
\end{array}\right)
$$

7-69
(a)

$$
\mathbf{A}^{-\mathbf{1}}=\left(\begin{array}{cc}
\frac{1}{47} & \frac{9}{47} \\
-\frac{4}{47} & \frac{11}{47}
\end{array}\right)
$$

(b)

$$
\mathbf{B}^{-\mathbf{1}}=\left(\begin{array}{ccc}
\frac{1}{17} & 0 & \frac{3}{17} \\
-\frac{1}{2} & 1 & 0 \\
-\frac{5}{34} & 0 & \frac{1}{17}
\end{array}\right)
$$

7-71
(a)

$$
\mathbf{A}^{-\mathbf{1}}=\left(\begin{array}{cc}
\frac{1}{11} & \frac{1}{11} \\
-\frac{8}{33} & \frac{1}{11}
\end{array}\right)
$$

(b)

$$
\mathbf{B}^{-\mathbf{1}}=\left(\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2} & -\frac{1}{8} \\
\frac{1}{2} & 1 & \frac{1}{4} \\
-\frac{1}{8} & \frac{1}{4} & \frac{1}{16}
\end{array}\right)
$$

7-73
(a)

$$
\mathbf{A}^{-\mathbf{1}}=\left(\begin{array}{cc}
-\frac{2}{39} & \frac{7}{39} \\
\frac{5}{39} & \frac{2}{39}
\end{array}\right)
$$

(b) The inverse of the square matrix \mathbf{B} does not exist. This is a singular matrix.

7-75 (This problem is identical with 7-14, and will be removed in the second press run)
(a)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

(b)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

(c)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\alpha\left(\begin{array}{c}
-\frac{3}{4} \\
-\frac{1}{8} \\
1
\end{array}\right)+\left(\begin{array}{l}
\frac{5}{2} \\
\frac{5}{4} \\
0
\end{array}\right)
$$

(d)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{9}{7} \\
\frac{5}{7} \\
\frac{16}{7}
\end{array}\right)
$$

7-77
(a)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\alpha\left(\begin{array}{c}
\frac{2}{5} \\
-\frac{7}{5} \\
1
\end{array}\right)+\left(\begin{array}{l}
\frac{8}{5} \\
\frac{2}{5} \\
0
\end{array}\right)
$$

(b)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\alpha\left(\begin{array}{c}
\frac{2}{5} \\
-\frac{7}{5} \\
1
\end{array}\right)
$$

(c) The system has no solution.
(d)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right)
$$

7-79
(a)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\alpha\left(\begin{array}{c}
-\frac{3}{7} \\
\frac{5}{7} \\
1
\end{array}\right)+\left(\begin{array}{c}
-\frac{13}{7} \\
\frac{31}{7} \\
0
\end{array}\right)
$$

(b)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\alpha\left(\begin{array}{c}
-\frac{3}{7} \\
\frac{5}{7} \\
1
\end{array}\right)
$$

(c)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-\frac{9}{5} \\
3 \\
-\frac{14}{5}
\end{array}\right)
$$

(d)

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-\frac{48}{25} \\
\frac{16}{5} \\
-\frac{63}{25}
\end{array}\right)
$$

7-81 The vectors are linearly independent.
7-83 The vectors are linearly independent.
7-85 The vectors are linearly independent.
7-87 The vectors are linearly independent in the given interval.
7-89 The vectors are linearly dependent in $-\infty<t<\infty$.
7-91
(a) $\mathbf{v}_{1}=\binom{\frac{1}{2}+\frac{1}{2} i}{1}$ and $\mathbf{v}_{2}=\binom{\frac{1}{2}-\frac{1}{2} i}{1}$
(b) $\mathbf{v}_{1}=\left(\begin{array}{c}-\frac{1}{2} \\ 1 \\ 0\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}\frac{3}{2} \\ 0 \\ 1\end{array}\right)$ and $\mathbf{v}_{3}=\left(\begin{array}{c}-\frac{1}{6} \\ -\frac{2}{3} \\ 1\end{array}\right)$
(a) $\mathbf{v}_{1}=\binom{0}{1}$ and $\mathbf{v}_{2}=\binom{2}{1}$
(b) $\mathbf{v}_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right) \mathbf{v}_{3}=\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $\mathbf{v}_{4}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ 1\end{array}\right)$

7-95
(a) $\mathbf{v}_{1}=\binom{\frac{3}{2} i}{1}$ and $\mathbf{v}_{2}=\binom{-\frac{3}{2} i}{1}$
(b) $\mathbf{v}_{1}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}1 \\ \frac{2}{5} \\ 1\end{array}\right)$ and $\mathbf{v}_{3}=\left(\begin{array}{c}-1 \\ -\frac{4}{7} \\ 1\end{array}\right)$

7-97
(a) $\mathbf{v}_{1}=\binom{\frac{\sqrt{6}}{4} i}{1}, \mathbf{v}_{2}=\binom{-\frac{\sqrt{6}}{4} i}{1}$
(b) $\mathbf{v}_{1}=\left(\begin{array}{c}-4 \\ -2 \\ 1\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}-\frac{1}{6}-\frac{\sqrt{11}}{3} i \\ -\frac{1}{3}-\frac{\sqrt{11}}{3} i \\ 1\end{array}\right)$ and $\mathbf{v}_{3}=\left(\begin{array}{c}-\frac{1}{6}+\frac{\sqrt{11}}{3} i \\ -\frac{1}{3}+\frac{\sqrt{11}}{3} i \\ 1\end{array}\right)$

7-99
(a) $\mathbf{v}_{1}=\binom{1}{1}, \mathbf{v}_{2}=\binom{-\frac{7}{3}}{1}$
(b) $\mathbf{v}_{1}=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}\frac{\sqrt{2} i-2}{-2+3 \sqrt{2} i} \\ -\frac{\sqrt{2} i+6}{-2+3 \sqrt{2} i} \\ 1\end{array}\right)$ and $\mathbf{v}_{3}=\left(\begin{array}{c}\frac{\sqrt{2} i+2}{2+3 \sqrt{2} i} \\ \frac{-\sqrt{2} i+6}{2+3 \sqrt{2} i} \\ 1\end{array}\right)$

7-105 x_{1} and x_{2} are not solutions to the given system, and they are linearly independent.
7-107 \mathbf{x}_{1} and \mathbf{x}_{2} are the solutions to the given system, and they are linearly dependent.
7-109 x_{1} and x_{2} are the solutions to the given system, and they are linearly independent. Thus, the general solution of the given system is

$$
\mathbf{x}=C_{1} \mathbf{x}_{1}+C_{2} \mathbf{x}_{2}=C_{1}\binom{2}{1}+C_{2}\binom{e^{-5 t}}{-2 e^{-5 t}}
$$

7-111 $\mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3} are not solutions to the given system, and they are linearly dependent.
7-113 \mathbf{x}_{1}, x_{2} and \mathbf{x}_{3} are the solutions to the given system, and they are linearly dependent
7-115 The vector \mathbf{x}_{p} satisfies the given system, and it is a solution.
7-117 The vector \mathbf{x}_{p} does not satisfy the given system, and it is not a particular solution.
7-119 The vector \mathbf{x}_{p} does not satisfy the given system.

$$
\begin{aligned}
& \mathbf{7 - 1 2 5} \mathbf{x}=C_{1} \mathbf{x}_{1}+C_{2} \mathbf{x}_{2}=C_{1}\binom{\frac{1}{4}}{1} e^{-3 t}+C_{2}\binom{-1}{1} e^{2 t} \\
& \mathbf{7 - 1 2 7} \mathbf{x}=C_{1} \mathbf{x}_{1}+C_{2} \mathbf{x}_{2}=C_{1}\binom{\frac{1}{-5+2 \sqrt{6}}}{1} e^{(2+2 \sqrt{6}) t}+C_{2}\binom{-\frac{1}{5+2 \sqrt{6}}}{1} e^{(2-2 \sqrt{6}) t} \\
& \mathbf{7 - 1 2 9} \mathbf{x}=C_{1} \mathbf{x}_{1}+C_{2} \mathbf{v}_{2}=C_{1}\binom{\frac{1}{2}}{1} e^{3 t}+C_{2}\binom{-1}{1} e^{-3 t} \\
& \mathbf{7 - 1 3 1} \mathbf{x}=C_{1} \mathbf{x}_{1}+C_{2} \mathbf{v}_{2}=C_{1}\binom{1}{1} e^{3 t}+C_{2}\binom{1+t}{t} e^{3 t} \\
& \mathbf{7 - 1 3 3} \mathbf{x}=C_{1} \mathbf{x}_{1}+C_{2} \mathbf{x}_{2}=C_{1}\binom{1}{1} e^{9 t}+C_{2}\binom{-3}{1} e^{t}
\end{aligned}
$$

$$
\mathbf{7 - 1 3 5} \mathbf{x}=C_{1} \mathbf{x}_{1}+C_{2} \mathbf{x}_{2}+C_{3} \mathbf{x}_{3}=C_{1}\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) e^{3 t}+C_{2}\left(\begin{array}{c}
\frac{2}{5} \cos t-\frac{6}{5} \sin t \\
\frac{2}{5} \cos t-\frac{1}{5} \sin t \\
\cos t
\end{array}\right)+C_{3}\left(\begin{array}{c}
\frac{6}{5} \cos t+\frac{2}{5} \sin t \\
\frac{1}{5} \cos t+\frac{2}{5} \sin t \\
\sin t
\end{array}\right)
$$

$$
7-137 \mathrm{x}=\binom{e^{t}}{e^{t}}
$$

$$
7-139 \mathbf{x}=\binom{x_{1}}{x_{2}}=\frac{2}{7 e^{3}}\binom{6}{1} e^{3 t}+\frac{12}{7 e^{-4}}\binom{-1}{1} e^{-4 t}
$$

$$
7-147 \mathbf{x}=C_{1}\binom{-1}{1} e^{2 t}+C_{2}\binom{\frac{1}{4}}{1} e^{-3 t}+\binom{\frac{1}{2}}{0} \cos 3 t+\binom{\frac{1}{6}}{-\frac{1}{3}} \sin 3 t
$$

$$
\text { 7-149 } \mathbf{x}=C_{1}\binom{\frac{1}{-3+2 \sqrt{2}}}{1} e^{2 \sqrt{2} t}+C_{2}\binom{-\frac{1}{3+2 \sqrt{2}}}{1} e^{-2 \sqrt{2} t}+\binom{-\frac{8}{7}}{\frac{2}{7}} t e^{t}+\binom{-\frac{23}{49}}{-\frac{10}{49}} e^{t}
$$

$\mathbf{7 - 1 5 1} \mathbf{x}=C_{1}\binom{\frac{1}{3}}{1} e^{5 t}+C_{2}\binom{-2}{1} e^{-2 t}+\binom{-\frac{1}{5}}{-\frac{3}{5}} t+\binom{\frac{24}{25}}{-\frac{31}{50}}$
$\mathbf{7 - 1 5 3} \mathbf{x}=C_{1}\binom{1}{1} e^{4 t}+C_{2}\binom{\frac{1}{2}}{1} e^{3 t}+\binom{\frac{1}{75}}{\frac{26}{75}} \cos 3 t+\binom{-\frac{7}{75}}{-\frac{32}{75}} \sin 3 t$
7-155 $x=C_{1}\binom{\frac{1}{2}}{1} e^{8 t}+C_{2}\binom{-6}{1} e^{-5 t}+\binom{\frac{27}{20}}{-\frac{1}{10}}$
7-157
$\mathbf{x}=C_{1}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) e^{t}+C_{2}\left(\begin{array}{c}\frac{6}{5} \cos t-\frac{3}{5} \sin t \\ \frac{1}{5} \cos t+\frac{2}{5} \sin t \\ \cos t\end{array}\right) e^{t}+C_{3}\left(\begin{array}{c}\frac{3}{5} \cos t+\frac{6}{5} \sin t \\ -\frac{2}{5} \cos t+\frac{1}{5} \sin t \\ \sin t\end{array}\right) e^{t}+\frac{1}{2}\left(\begin{array}{c}1 \\ 1 \\ 9\end{array}\right) t+\left(\begin{array}{c}11 \\ \frac{9}{2} \\ \frac{29}{2}\end{array}\right)$
7-159

$$
\begin{aligned}
& x_{1}(t)=-\frac{2}{5} e^{5 t}-e^{t}+t e^{t}+\frac{12}{5} \\
& x_{2}(t)=\frac{6}{5} e^{5 t}-2 e^{t}+t e^{t}+\frac{9}{5}
\end{aligned}
$$

7-161

$$
\begin{aligned}
& x_{1}(t)=\frac{16}{7} e^{3(t-1)}-\frac{235}{112} e^{-4(t-1)}-\frac{5}{4} t+\frac{17}{16} \\
& x_{2}(t)=\frac{8}{21} e^{3(t-1)}+\frac{235}{112} e^{-4(t-1)}+\frac{1}{4} t+\frac{35}{48}
\end{aligned}
$$

7-163

$$
\begin{aligned}
& x_{1}(t)=2 e^{-t}+2 \sin t+2 \cos t-4 \\
& x_{2}(t)=-4 e^{-t}-2 \sin t+4
\end{aligned}
$$

7-165

(a) $\mathbf{A}^{3}=\left[\begin{array}{ll}63 & 62 \\ 62 & 63\end{array}\right] \quad$ (b) $\quad \mathbf{A}^{-1} \mathbf{I}=\mathbf{A}^{-1}=(6 \mathbf{I}-\mathbf{A}) / 5 \quad \quad \mathbf{A}^{-1}=\frac{1}{5}\left[\begin{array}{cc}3 & -2 \\ -2 & 3\end{array}\right]$

7-167 Only the second mode is controllable.
7-169 The truncated series solution gives $\boldsymbol{\varphi}(0.1)=\left(\begin{array}{cc}0.9 & 0.107 \\ -0.3 & 0.51\end{array}\right)$
whereas from the example $\boldsymbol{\varphi}(0.1)=\left(\begin{array}{cc}0.9002 & 0.0707 \\ -0.0707 & 0.4651\end{array}\right)$
(a) $\boldsymbol{\varphi}(\mathbf{t})=\left(\begin{array}{cc}\frac{e^{2 t}+1}{2 e^{4 t}} & 3 \frac{e^{2 t}-1}{2 e^{2 t}} \\ \frac{e^{2 t}-1}{6 e^{4 t}} & \frac{e^{2 t}+1}{2 e^{4 t}}\end{array}\right)$, (b) $\boldsymbol{\varphi}(\mathbf{t})=\left(\begin{array}{cc}e^{t} & t e^{t} \\ 0 & e^{t}\end{array}\right)$,
(c) $\boldsymbol{\varphi}(\mathbf{t})=\left(\begin{array}{cc}e^{3 t} & 0 \\ 0 & e^{3 t}\end{array}\right)$, (d) $\boldsymbol{\varphi}(\mathbf{t})=\left(\begin{array}{cc}e^{-t}\left(\cos 3 t+\frac{1}{3} \sin 3 t\right) & \frac{1}{3} e^{-t} \sin 3 t \\ -\frac{10}{3} e^{-t} \sin 3 t & e^{-t}\left(\cos 3 t-\frac{1}{3} \sin 3 t\right)\end{array}\right)$

7-173
(a) $\quad \mathbf{A}=\left[\begin{array}{cc}-5 & 3 \\ 0 & -4\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{l}0 \\ 5\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad \mathbf{D}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
(b) $\mathbf{A}=\left[\begin{array}{cc}-5 & 3 \\ 1 & -4\end{array}\right]$
$\mathbf{B}=\left[\begin{array}{ll}4 & 0 \\ 0 & 5\end{array}\right]$
$\mathbf{C}=\left[\begin{array}{ll}1 & 0\end{array}\right]$
$\mathbf{D}=\left[\begin{array}{ll}0 & 0\end{array}\right]$

7-181

$$
\begin{aligned}
& x_{1}(t)=\frac{20 \sqrt{2}}{21} \sin \frac{\sqrt{2}}{2} t-\frac{5 \sqrt{2}}{6} \sin \sqrt{2} t+\frac{5}{14} \sin 2 t \\
& x_{2}(t)=\frac{40 \sqrt{2}}{21} \sin \frac{\sqrt{2}}{2} t+\frac{5 \sqrt{2}}{6} \sin \sqrt{2} t-\frac{25}{14} \sin 2 t
\end{aligned}
$$

7-183
$\mathbf{x}=C_{1}\binom{-e^{3 t} \cos 3 t-3 e^{3 t} \sin 3 t}{e^{3 t} \cos 3 t}+C_{2}\binom{3 e^{3 t} \cos 3 t-e^{3 t} \sin 3 t}{e^{3 t} \sin 3 t}$

$$
+\binom{-\frac{2}{9}}{\frac{1}{18}} t^{3}+\binom{-\frac{11}{18}}{-\frac{1}{18}} t^{2}+\binom{-\frac{1}{3}}{\frac{1}{18}} t+\binom{-\frac{457}{162}}{-\frac{43}{81}}
$$

7-185

$$
\begin{aligned}
\mathbf{x}=C_{1}\binom{\frac{1}{5} e^{t} \cos 2 t-\frac{2}{5} e^{t} \sin 2 t}{e^{t} \cos 2 t}+C_{2}\binom{\frac{2}{5} e^{t} \cos 2 t+\frac{1}{5} e^{t} \sin 2 t}{e^{t} \sin 2 t} & \\
& +\binom{\frac{11}{10}}{-\frac{5}{2}} \sin t+\binom{-\frac{7}{10}}{-\frac{5}{2}} \cos t
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}(t)=-\frac{2}{5} e^{-5 t}+\frac{9}{20} e^{-8 t}+\frac{4}{5} e^{-3 t}+\frac{3}{20} \\
& x_{2}(t)=-\frac{2}{5} e^{-5 t}-\frac{9}{40} e^{-8 t}+\frac{8}{5} e^{-3 t}+\frac{1}{40}
\end{aligned}
$$

7-189

$$
\begin{aligned}
& x_{1}(t)=-C_{1} e^{4 t} \sin 3 t+C_{2} e^{4 t} \cos 3 t \\
& x_{2}(t)=C_{1} e^{4 t} \cos 3 t+C_{2} e^{4 t} \sin 3 t
\end{aligned}
$$

$\mathbf{7 - 1 9 1} \mathbf{x}=C_{1}\binom{-e^{2 t} \sin 3 t}{e^{2 t} \cos 3 t}+C_{2}\binom{e^{2 t} \cos 3 t}{e^{2 t} \sin 3 t}$

7-193

$$
\mathbf{x}=C_{1}\binom{-\frac{1}{2} e^{8 t}(\cos t+\sin t)}{e^{8 t} \cos t}+C_{2}\binom{\frac{1}{2} e^{8 t}(\cos t-\sin t)}{e^{8 t} \sin t}+\binom{\left(t-\frac{1}{2}\right) e^{8 t}(\sin t+\cos t)}{(-2 t+1) e^{8 t}(\sin t+\cos t)}
$$

7-195 $\mathbf{x}=C_{1} \mathbf{x}_{1}+C_{2} \mathbf{x}_{2}=C_{1}\binom{-2}{1} e^{t}+C_{2}\binom{-2 t+\frac{1}{2}}{t} e^{t}$
Note that the initial conditions specified for the given system of two linear homogeneous differential equations with constant coefficients are both equal to zero. Therefore this initial-value problem has only the trivial solutions $x_{1}(t)=x_{2}(t)=0$.
$\mathbf{7 - 1 9 7} \mathbf{x}=C_{1}\binom{2}{1} e^{-t}+C_{2}\binom{-2}{1} e^{-5 t}+\binom{\left(-\frac{2}{3} t+\frac{5}{18}\right) e^{t}+\frac{4}{5} t-\frac{84}{25}}{\left(-\frac{1}{6} t+\frac{1}{9}\right) e^{t}+\frac{3}{5} t-\frac{58}{25}}$
$\mathbf{7 - 1 9 9} \mathbf{x}=C_{1}\left(\begin{array}{c}-\frac{6}{7} \\ -\frac{9}{7} \\ 1\end{array}\right) e^{5 t}+C_{2}\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right) e^{-3 t}+C_{3}\left(\begin{array}{c}-2 \\ -\frac{5}{2} \\ 1\end{array}\right) e^{4 t}+\left(\begin{array}{c}-\frac{14}{15} t+\frac{1477}{900} \\ -\frac{29}{60}+\frac{637}{3600} \\ \frac{11}{30} t-\frac{1153}{1800}\end{array}\right)$
7-201

$$
\begin{aligned}
& x_{1}(t)=\frac{45}{16} e^{-4 t}-\frac{7}{4} t-\frac{13}{16} \\
& x_{2}(t)=\frac{75}{16} e^{-4 t}-\frac{1}{4} t+\frac{5}{16}
\end{aligned}
$$

CHAPTER 8

8-17
(a) $\frac{a}{s^{2}+a^{2}}$,
(b) $\frac{5}{s^{2}}-\frac{3}{s^{\prime}}$
(c) $\frac{1}{(s-1)^{2}}$

8-19
(a) $\frac{1}{e}\left(\frac{1}{s+2}\right)$
(b) $\frac{1}{2}\left(\frac{s}{s^{2}+4}+\frac{1}{s}\right)$
(c) $\frac{1}{s^{2}}\left(1-2 e^{-s}+e^{-\frac{3 s}{2}}\right)$

8-27 (a) exponential order, (b) exponential order
(c) not exponential order, (d) not exponential order
8-37
(a) $\frac{6\left(s^{4}-6 s^{2}+1\right)}{\left(s^{2}+1\right)^{4}}$
(b) $\frac{10}{s^{6}}-\frac{3 e}{s-2}$
(c) $\frac{1}{s^{2}-3 s}$

8-39 (a) $24 \frac{s-3}{\left[(s-3)^{2}+4\right]^{2}}$
(b) $\frac{3\left(s^{2}+k^{2}\right)}{\left(s^{2}-k^{2}\right)^{2}}$ (c) $\frac{\sqrt{\pi}}{4} \frac{2 s+3}{s^{5 / 2}}$

8-41 (a) $\frac{20\left(3 s^{2}+4\right)}{\left(s^{2}-4\right)^{3}}$
(b) $\frac{12}{(s+3)^{4}}$ (c) $\frac{2 e^{-2}(s-5)\left[3 k^{2}-(s-5)^{2}\right]}{\left[(s-5)^{2}+k^{2}\right]^{3}}$

8-49 (a) $\frac{1}{s^{2}}\left(1-e^{2 s}\right)$ (b) $e^{-s}+\frac{2}{s}\left(e^{-2 s}-e^{-4 s}\right)+e^{-5 s}$
8-51 (a) $\frac{2}{s^{2}+4}\left(1+e^{-\frac{\pi}{2} s}\right)$ (b) $-\frac{1}{s^{2}}\left(2 e^{-2 s}+e^{-4 s}\right)+e^{-6 s}$
8-53 (a) $\frac{s}{s^{2}+4}\left(1-e^{-\pi s}\right)$ (b) $\frac{1}{s}\left(e^{-2 s}+e^{-s}-1\right)$
8-55 (a) $\frac{e^{-3 s}}{s^{3}}\left(9 s^{2}+6 s+2\right)$ (b) $5 e^{-s}+\frac{5 s+2}{s} e^{-2 s}$
8-57 $\frac{1}{s^{2}+1} \operatorname{coth} \pi s$
8-59 $\frac{2}{s\left(1+e^{-5 s}\right)}$
8-61 $\frac{2}{\left(s^{2}+4\right)\left(1-e^{-\pi s / 2}\right)}$
8-65 (a) $Y(s)=\frac{\left(s^{2}-2\right) y(0)+s y^{\prime}(0)+y^{\prime \prime}(0)}{s^{3}-2 s+5} \quad$ (b) $Y(s)=\frac{(s-2)^{2} y^{\prime}(0)+s(s-2)^{2} y(0)+3}{s^{2}(s-2)^{2}}$
8-67 (a) $Y(s)=\frac{\left(s^{2}-6 s+13\right)^{2} y^{\prime}(0)+s\left(s^{2}-6 s+13\right)^{2} y(0)-12}{\left(s^{2}+5\right)\left(s^{2}-6 s+13\right)^{2}}$ (b) $Y(s)=\frac{s(s-2) y(0)+(e+3) s-6}{s(s+3)(s-2)}$
8-71 (a) $u(t-3) \sin (t-3)$ (b) $e^{-3 t}-\frac{1}{2} e^{3 t} t^{2}(t+1)$ (c) $3\left(1-e^{-t / 9}\right)$
8-73 (a) $\cosh t+3 \sinh t$ (b) $2 \cos \frac{\sqrt{3}}{2} t \quad$ (c) $\frac{1}{120} u(t-2)(t-2)^{5}$
8-75 (a) $\frac{2}{3} u(t-2) \sinh (3 t-6)$ (b) $e^{-t}(2 \cos t+\sin t)$ (c) $\cos t-2 \sin t$
$\mathbf{8 - 8 1}$ (a) $-1-t+3 e^{t}$ (b) $-\frac{1}{16}+\frac{t}{8}+\frac{1}{16} e^{-2 t} \cos 2 t+\frac{1}{2} e^{-2 t} \sin 2 t$
8-83 (a) $-1-5 t-\frac{1}{2} t^{2}+\cosh t+5 \sinh t$ (b) $t-\frac{4}{\sqrt{7}} e^{-\frac{t}{4}} \sin \frac{\sqrt{7}}{4} t$
$8-85$ (a) $\frac{2}{5}+\frac{11}{10} e^{-5 t}-\frac{1}{2} e^{-t}$ (b) $-\frac{3}{4}-t+e^{t}-\frac{1}{4} e^{-4 t}$

8 8-91 (a) $8 \cosh t-4 t^{2}-8$ (b) $\left[-\frac{1}{4} e^{-4 \tau}\right]_{\tau=0}^{\tau=t}=-\frac{1}{4} e^{-4 t}+\frac{1}{4}=\frac{1}{4}(\sinh 4 t-\cosh 4 t+1)$
8-93 (a) $\left(\frac{3}{4} t-\frac{3}{16}\right) e^{-t}+\frac{3}{16} e^{-5 t}$
(b) $\frac{1}{18}(3 \sinh 3 t+\cosh 3 t)-\frac{1}{2}(\sinh t+\cosh t)+\frac{4}{9}$

8-95 (a) $-\frac{1}{4}+\frac{1}{8}(\cosh 2 t+\cos 2 t)$ (b) $\frac{2}{5}-\frac{2}{5} e^{-t} \cos 2 t-\frac{1}{5} e^{-t} \sin 2 t$
8-97 (a) $-\frac{3}{4}-\frac{1}{2} t-\frac{1}{2} t^{2}+\frac{2}{3} e^{t}+\frac{1}{12} e^{-2 t}$ (b) $\frac{3}{8}(1-\cos 2 t)$
8-101 $y(t)=\frac{1}{10}\left(3 \cos t+\sin t-13 e^{-3 t}\right)$
8-103 $y(t)=\frac{1000}{19}\left(-e^{-t / 50}+e^{-t / 1000}\right)=\frac{2000}{19} e^{-\frac{21}{1000} t} \sinh \frac{19}{2000} t$
8-105 $x(t)=2 \sqrt{5} e^{-3 t / 2} \sinh \frac{\sqrt{5}}{2} t$
8-107 $x(t)=\frac{1}{2} e^{-t}(\cos t-\sin t-4)+\frac{3}{2}$
8-109
$y(t)=\frac{6}{\sqrt{115}} e^{-5 t} \sin \sqrt{115} t+\frac{1}{140} u(t-1)$

$$
-\frac{1}{140} u(t-1) e^{-5(t-1)}\left(\cos [\sqrt{115}(t-1)]+\frac{5}{\sqrt{115}} \sin [\sqrt{115}(t-1)]\right)
$$

$\mathbf{8 - 1 1 1} y(t)=0.37654 e^{-3 t / 2} \cosh \frac{\sqrt{17}}{2} t+0.273973 e^{-3 t / 2} \sinh \frac{\sqrt{17}}{2} t$
8-113 $y(t)=5 \sinh t$
8-115 $y(t)=\frac{25}{48} e^{t / 2} \cos \frac{\sqrt{15}}{2} t+\frac{111}{48 \sqrt{15}} \sin \frac{\sqrt{15}}{2} t-\frac{1}{3} e^{-t}-\frac{3}{4} t+\frac{1}{2} t^{2}+\frac{29}{16}$
8-117 $y(t)=\frac{1}{3} t^{4}+\frac{4}{3} t^{3}+\frac{1}{3} t^{2}=\frac{1}{3}\left(t^{2}+t+1\right) t^{2}$
8-119 $y(t)=-\frac{1}{4} e^{-8(t-\pi)}+\frac{e^{\pi}}{656} e^{-8(t-\pi)}+\frac{5}{82} e^{t} \cos t+\frac{2}{41} e^{t} \sin t+\frac{5}{4}-\frac{e^{\pi}}{16}$
8-121 $\frac{Y(s)}{F(s)}=\frac{1}{s^{2}+3 s+1}$

8-123

$$
\begin{aligned}
& x(t)=-\frac{4}{13} e^{-2 t}+\frac{1}{26} e^{t}(8 \cos 2 t+27 \sin 2 t) \\
& y(t)=-\frac{10}{13} e^{-2 t}+\frac{1}{26} e^{t}(46 \cos 2 t-43 \sin 2 t)
\end{aligned}
$$

8-125

$$
x(t)=\frac{1}{4} e^{-t}+\frac{1}{2} \sin t-\frac{5}{4} e^{-\frac{1}{2} t} \cos \frac{\sqrt{7}}{2} t+\frac{1}{4 \sqrt{7}} e^{-\frac{1}{2} t} \sin \frac{\sqrt{7}}{2} t
$$

$$
y(t)=\frac{1}{2}+\frac{1}{2} e^{-t}+\sin t-e^{-\frac{1}{2} t} \cos \frac{\sqrt{7}}{2} t-\frac{2}{\sqrt{7}} e^{-\frac{1}{2} t} \sin \frac{\sqrt{7}}{2} t
$$

8-127

$$
\begin{aligned}
& x(t)=-\frac{1}{2} \sin t+\frac{85}{44} e^{\frac{1}{2} t} \cos \frac{\sqrt{7}}{2}-\frac{127}{44 \sqrt{7}} e^{\frac{1}{2} t} \sin \frac{\sqrt{7}}{2}-\frac{7}{4} e^{t}-\frac{2}{11} e^{-4 t} \\
& y(t)=\frac{1}{2} \cos t+\frac{1}{2} \sin t-\frac{8}{11} e^{\frac{1}{2} t} \cos \frac{\sqrt{7}}{2}+\frac{61}{11 \sqrt{7}} e^{\frac{1}{2} t} \sin \frac{\sqrt{7}}{2}+\frac{5}{22} e^{-4 t} \\
& z(t)=-\frac{1}{2} \sin t+\frac{53}{44} e^{\frac{1}{2} t} \cos \frac{\sqrt{7}}{2}+\frac{117}{44 \sqrt{7}} e^{\frac{1}{2} t} \sin \frac{\sqrt{7}}{2}+\frac{7}{4} e^{t}+\frac{1}{22} e^{-4 t}
\end{aligned}
$$

8-129 $\frac{X_{2}(s)}{G(s)}=\frac{4 s}{s^{2}-2 s-12}$
8-131 $\frac{1}{6} e^{-2 t}-\frac{1}{6} e^{-4 t}$
8-133 $e^{-2 t}$
8-135 $\mathbf{x}(t)=\boldsymbol{\varphi}(t) \mathbf{x}(0)+\mathbf{A}^{\mathbf{- 1}}[\boldsymbol{\varphi}(t)-\mathbf{I}] \mathbf{B p}$
8-137 (a) $\frac{1}{45 \mathrm{e}^{5 t}}-\frac{1}{18 \mathrm{e}^{2 t}}+\frac{1}{30}$
(b) $\frac{1}{65}-\frac{\left(\cos (3 t)+\frac{2 \sin (3 t)}{3}\right)}{65 \mathrm{e}^{2 t}}$
(c) $\frac{7}{24 \mathrm{e}^{3 t}}-\frac{13}{40 \mathrm{e}^{5 t}}+\frac{1}{30}$
(d) $\frac{2}{3 \mathrm{e}^{2 t}}-\frac{7}{6 \mathrm{e}^{3 t}}+\frac{13}{30 \mathrm{e}^{5 t}}+\frac{1}{15}$

8-139 (a) $\frac{1}{9 \mathrm{e}^{2 t}}-\frac{1}{9 \mathrm{e}^{5 t}}$ (b) $-\frac{4}{169}+\frac{1}{13} t+\frac{1}{507}(12 \cos (3 t)-5 \sin (3 t)) \mathrm{e}^{-2 t}$
(c) $\frac{13}{40} \mathrm{e}^{-5 t}+\frac{1}{6} t+\frac{29}{180}-\frac{35}{72} \mathrm{e}^{-3 t}$ (d) $-\frac{13}{30} \mathrm{e}^{-5 t}+\frac{7}{45}-\frac{5}{3} \mathrm{e}^{-2 t}+\frac{35}{18} \mathrm{e}^{-3 t}+\frac{1}{3} t$

8-147 $F(s)=\frac{C}{D s^{2}}-\frac{C}{D s^{2}} e^{-D s}-\frac{C}{s} e^{-D s}$
8-149 $x(t)=\frac{2}{15} t^{5}-\frac{2}{3} t^{4}+3 t^{3}-9 t^{2}+19 t-19+19 e^{-t}$

8-151 $x(t)=\frac{1}{6}\left(e^{-2 t}-e^{-5 t}\right)$
8-153 $x(t)=\frac{2 v_{1}}{11} \sqrt{\frac{10 m}{k}} \sin \sqrt{\frac{k}{10 m}} t$

8-155 (a) $p_{0}=30 \times 10^{3} \mathrm{~Pa} \quad \tau=-0.2 / \ln 0.5=0.289$
(b) $x(t)=-0.643 \cos 10 t+0.2225 \sin 10 t+0.643 e^{-3.46 t}$

8-157 $\ddot{x}=\frac{a}{b^{2}+\omega_{n}^{2}}\left(-b \omega_{n} \sin \omega_{n} t-\omega_{n}^{2} \cos \omega_{n} t+\omega_{n}^{2} e^{b t}\right)$
8-159 $x(t)=-\frac{F_{0}}{k T} t+\frac{F_{0}}{k}+\frac{F_{0}}{k T \omega_{n}} \sin \omega_{n} t-\frac{F_{0}}{k} \cos \omega_{n} t$
8-161 $y(x)=\frac{A L^{2}}{24}\left(3 x-\frac{L}{2}\right)=\frac{f_{0} L^{2}}{24 E I}\left(3 x-\frac{L}{2}\right) \quad$ where $x \geq \frac{L}{2}$

CHAPTER 9

9-29

Strip method, $N=1: \frac{\mathrm{e}}{2}, \quad 35.19 \%$, Strip method, $\mathrm{N}=2: \frac{1}{8}\left(\mathrm{e}^{\frac{1}{2}}+3 \mathrm{e}^{\frac{3}{2}}\right), 10.04 \%$
Trapezoidal rule, $\mathrm{N}=1: \frac{\mathrm{e}^{2}}{2}, \quad 76.16 \%$, Trapezoidal rule, $\mathrm{N}=2: \frac{1}{4} \mathrm{e}(\mathrm{e}+1), 20.48 \%$

9-31

Trapezoidal rule, $\mathbf{N}=\mathbf{1}:-\frac{\pi}{2}\left(e^{\pi}+1\right), 276.55 \%$, Trapezoidal rule, $\mathbf{N}=2:-\frac{\pi}{4}\left(1+e^{\pi}\right), 88.27 \%$.
Simpson's rule, $\mathbf{N}=\mathbf{1}-\frac{\pi}{6}\left(1+e^{\pi}\right), 25.52 \%$, Simpson's rule, $\mathbf{N}=2:-10.2288,1.57 \%$.
9-33
Strip method, $\mathbf{N}=1: 6,18.18 \%$, Strip method, $\mathbf{N}=2: 7,4.54 \%$.
Simpson's rule, $\mathrm{N}=1$ and $2: \frac{22}{3}, 0.00 \%$,
9-35
Strip method, $\mathbf{N}=1: 8 e^{-4}, 70.69 \%$, Strip method, $\mathbf{N}=2: 0.7365,47.30 \%$.
Trapezoidal rule, $\mathbf{N}=1: 8 e^{-16}, \cong 100 \%$, Trapezoidal rule, $\mathbf{N}=2: 0.073263,85.35 \%$.
Simpson's rule, $\mathbf{N}=1: 0.097683,80.46 \%$, Simpson's rule, $\mathbf{N}=\mathbf{2}: 0.51542,3.08 \%$.
9-37 Exact results and all numerical methods result in 0 . Relative error 0.00%.
9-39
Strip Method for $\mathbf{N}=10: E X A C T:=2.09726402$: $N U M E R I C A L:=2.08846084 i$ RELERROR $:=0.4197457$:
Strip Method for $\mathbf{N}=100$: $E X A C T:=2.09726402$: $N U M E R I C A L:=2.09717583$ ' $R E L E R R O R:=0.0042052$ ،
Trapezoidal Rule for $\mathbf{N}=10: E X A C T:=2.09726402: N U M E R I C A L:=2.11488449$ 亿 $R E L E R R O R:=0.8401647$
Trapezoidal Rule for $\mathbf{N}=100: E X A C T:=2.09726402:$ NUMERICAL $:=2.09744041$ (RELERROR $:=0.0084105$
$9-41$
Trapezoidal Rule for $\mathbf{N}=10: E X A C T:=107.298331^{\prime} N U M E R I C A L:=102.965004$: $R E L E R R O R:=4.0385782$
Trapezoidal Rule for $\mathbf{N}=100: E X A C T:=107.298331^{\prime} N U M E R I C A L:=107.254214 \cdot R E L E R R O R:=0.0411159($
Strip Method for $\mathbf{N}=10: E X A C T:=107.298331 \wedge$ NUMERICAL $:=109.435382$ (RELERROR $:=1.991691 \leqslant$
Strip Method for $\mathbf{N}=100: E X A C T:=107.298331 ' N U M E R I C A L:=107.320386: R E L E R R O R:=0.020555]$
Simpson's Rule for $\mathbf{N}=10: E X A C T:=107.298331^{\prime}$ 'NUMERICAL $:=107.278590$ (RELERROR $:=0.0183984($
Simpson's Rule for $\mathbf{N}=100: E X A C T:=107.298331^{\prime} N U M E R I C A L:=107.298329^{\prime}$ RELERROR $:=0.0000018$ ؛

Strip Method for $\mathbf{N = 1 0}:$ EXACT $:=7.33333333$:NUMERICAL $:=7.32000000$ (RELERROR $:=0.181818177$.
Strip Method for $\mathbf{N = 1 0 0}$: EXACT $:=7.33333333$.NUMERICAL $:=7.33320000($ RELERROR $:=0.00181817727$
Simpson's Rule for $\mathbf{N}=10$ and $\mathbf{N}=100: E X A C T:=7.33333333 . N U M E R I C A L:=7.33333333$.
RELERROR := 0 .
9-45
Strip Method for N=10: EXACT $:=0.499999943^{\prime}$ NUMERICAL $:=0.506861656 \cdot$ RELERROR $:=1.3723427$
Strip Method for N=100: $E X A C T:=0.499999943^{\prime}$ NUMERICAL $:=0.500066629$. RELERROR $:=0.0133374$
Trapezoidal Rule for $\mathbf{N = 1 0}: E X A C T:=0.499999943^{\prime} N U M E R I C A L:=0.486444617$,
RELERROR: $=2.7110655($
Trapezoidal Rule for $\mathbf{N}=100: E X A C T:=0.499999943^{\prime}$ NUMERICAL $:=0.499866588$;
RELERROR : $=0.0266710$ 4
Simpson's Rule for $\mathbf{N}=10$: $E X A C T:=0.499999943^{\prime}$ NUMERICAL $:=0.500055976$
RELERROR : $=0.0112066214$
Simpson's Rule for N=100: $E X A C T:=0.499999943$ NUMERICAL $:=0.499999949$ RELERROR $:=0.0000011$
9-53

Trapezoidal Rule

a) One step: $3.066,0.14 \%$.
b) Two steps: 3.295, 0.30\%.

Simpson's Rule

a) One step: $3.062,0.00 \%$.
b) Two steps: $3.285,0.00 \%$.

9-55

Strip Method

a) One step: $-0.922,0.00 \%$.
b) Two steps: $-0.849,0.00 \%$.

Simpson's Rule

a) One step: $-0.922,0.00 \%$.
b) Two steps: $-0.849,0.00 \%$.

9-57

Strip Method

a) One step: $1.019,0.03 \%$.
b) Two steps: $1.0717,0.04 \%$.

Trapezoidal Rule

a) One step: $1.0182,0.05 \%$.
b) Two steps: $1.070,0.08 \%$.

Simpson's Rule

a) One step: $1.0188,0.00 \%$.
b) Two steps: $1.071,0.00 \%$.

9-59

Strip Method

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=1,0.00 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20}=1,0.00 \%$.

Trapezoidal Rule

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=1,0.00 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20}=1,0.00 \%$.
9-61

Trapezoidal Rule

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=25.9950,0.74 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20}=25.8540,0.17 \%$.

Simpson's Rule

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=25.8040,0.00 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20}=25.8540$, of 0.00%.

Strip Method

After 10 steps with $\mathbf{h}=0.2: y_{10}=-0.3882,0.03 \%$.
After 20 steps with $\mathbf{h}=0.1: y_{20} \cong-0.3881,0.00 \%$.

Simpson's Rule

After 10 steps with $\mathbf{h = 0 . 2}: y_{10}=-0.3881,0.02 \%$
After 20 steps with $\mathbf{h}=0.1: y_{20} \cong-0.3881,0.00 \%$
9-65

Strip Method

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=2.4634,0.04 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 2.4639,0.01 \%$.

Trapezoidal Rule

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=2.4655,0.06 \%$
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 2.4644,0.06 \%$.

Simpson's Rule

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=2.4641,0.00 \%$
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 2.4641,0.00 \%$.

9-71 After one step: $2,26.42 \%$. After two steps: $4,45.87 \%$.
9-73 After one step: $3,2.43 \%$. After two steps: $3.216,15.86 \%$.
9-75 After one step: $1,0.00 \%$. After two steps: $0,0.00 \%$.
9-77 After one step: $4.01176,0.06 \%$. After two steps: $4.02861,0.13 \%$.
9-79
After 10 steps with $\mathbf{h = 0 . 2 :} y_{10}=5.37762,48.29 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 7.26788,30.11 \%$.
9-81 There is a typographical error in this problem. The change is yellowed below and will be corrected in the second printing. Given: $y^{\prime}=3 e^{x} y, y(0)=-2$

After 10 steps with $h=0.2: y_{10}=-25,529.4, \approx 100 \%$
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong-432,193.00,99.90 \%$.

9-83
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=6.19174,16.20 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 6.72749,8.95 \%$.
9-85 After 10 and 20 steps with $\mathbf{h}=\mathbf{0 . 2}$ and $\mathbf{h}=\mathbf{0 . 1}: y_{10}=0,0.00 \%$.
9-87 There is a typographical error in this problem. The change is yellowed below and will be corrected in the second printing. Given: $y^{\prime}=-x e^{y}, y(0)=1$

After 10 steps with $\mathbf{h = 0 . 2}: y_{10}=-0.86427,0.26 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong-0.86246,0.05 \%$.

$9-89$

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=1.13745,3.53 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 1.11745,1.71 \%$.
9-91 There is a typographical error in this problem. The change is yellowed below and will be corrected in the second printing. Given: $y^{\prime}=\frac{4 x y}{x^{2}+y^{2}}, y(1)=2$

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=5.34311,0.15 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 5.34731,0.07 \%$.
9-93
After 10 steps with $\mathbf{h = 0 . 2}$: $y_{10}=15.71430,7.56 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 16.33660,3.90 \%$.
9-105 There is a typographical error in this problem. The change is yellowed below and will be corrected in the second printing.Given: $y^{\prime}=x^{2} e^{y}, y(2)=-2$

After one step: : $L D E_{1}=G D E_{1}=-1.01 \%$
After two steps: $L D E_{2}=-1.70 \%, G D E_{2}=-2.96 \%$
9-107
After one step: $L D E_{1}=G D E_{1}=100 \%$
After two steps: $L D E_{2}=67.70 \%, G D E_{2}=72.97 \%$
(a) $\quad N=10, h=0.2$

x	$y_{\text {numerical }}$	YY	$y_{\text {exact }}$	LDE (\%)	GDE (\%)
2.00000	-0.77784	-0.77878	-0.77915	0.04788	0.16917

(b) $\quad N=20, h=0.1$

x	$y_{\text {numerical }}$	YY	$y_{\text {exact }}$	LDE $(\%)$	GDE (\%)
2.00000	-0.77822	-0.77908	-0.77915	0.00964	0.11976

9-111 There is a typographical error in this problem. The change is yellowed below and will be corrected in the second printing. Given: $y^{\prime}=x^{2} e^{y}, \quad y(0)=-2$
(a) $\quad N=10, h=0.2$

| x | $y_{\text {numerical }}$ | YY | $y_{\text {exact }}$ | LDE (\%) | GDE (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.00000 | -1.64591 | -1.57570 | -1.55232 | -1.50652 | -6.02925 |

(b) $\quad N=20, h=0.1$

| \boldsymbol{x} | $y_{\text {numerical }}$ | YY | $\boldsymbol{y}_{\text {exact }}$ | LDE $(\%)$ | GDE $(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.00000 | -1.60254 | -1.55903 | -1.55232 | -0.43239 | -3.23517 |

$\mathbf{9 - 1 1 3}$

(a) $\quad N=10, h=0.2$

| x | $y_{\text {numerical }}$ | YY | $y_{\text {exact }}$ | LDE $(\%)$ | GDE $(\%)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2.00000 | 2.47969 | 2.68943 | 2.81201 | 4.35908 | 11.81790 |

(b) $\quad N=20, h=0.1$

| \boldsymbol{x} | $y_{\text {numerical }}$ | YY | $y_{\text {exact }}$ | LDE $(\%)$ | GDE (\%) |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 2.00000 | 2.64773 | 2.77967 | 2.81201 | 1.15010 | 5.84214 |

$\mathbf{9 - 1 1 5} h=\frac{0.1}{200}$
$\mathbf{9 - 1 1 7} h=\frac{0.1}{200}$
9-119 $h=\frac{0.1}{3000}$
9-125 After one step: $4.81667,0.00 \%$. After two steps: $4.65463,0.00 \%$.
9-127 After one step: $1.49600,0.83 \%$.After two steps: 2.37930, 3.48\%.
9-129 After one step: $22.6400,6.09 \%$. After two steps: $58.3569,14.44 \%$.
9-131 After one step: $-1.93713,0.01 \%$. After two steps: $-1.84212,0.03 \%$.
9-133 After one step: $2.00954,0.01 \%$. After two steps: $2.03741,0.01 \%$.

9-135
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=2481.28,57.26 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 4224.97,27.23 \%$.
9-137
After $\mathbf{1 0}$ steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=118.198,7.36 \%$
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 124.804,2.19 \%$.
9-139
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10} \cong 17.60930,0.95 \%$
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10} \cong 17.73240,0.26 \%$
9-141
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=5.44462,0.00 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 5.44451,0.00 \%$.
9-143
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=1.88171,0.91 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 1.86873,0.22 \%$.
9-145
After 10 steps with $\mathbf{h = 0 . 2}$: $y_{10}=58.74190,1.28 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 59.29590,0.34 \%$.
9-147
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}$: $y_{10}=0.33501,0.50 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 0.33373,0.12 \%$.
9-153 After one step: 4.82, 0.07\%.After two steps: 4.65985, 0.11%.
9-155 After one step: $1.48,1.89 \%$. After two steps: 2.30695, 6.41\%.
9-157 After one step: $22,8.75 \%$. After two steps: $55.0176,19.34 \%$.

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=1857.48,68.01 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 3761.1,35.22 \%$.

9-161

After 10 steps with $\mathbf{h = 0 . 2 :} y_{10}=118.197,7.37 \%$
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 124.804,2.19 \%$.
$9-163$
After 10 steps with $h=0.2: y_{10} \cong 17.60930,0.95 \%$
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 17.73260,0.26 \%$.

9-171 After one step: $4.81650,0.00 \%$. After two steps: $4.65465,0.00 \%$.
9-173 After one step: $1.50846,0.00 \%$. After two steps: $2.46400,0.04 \%$.
9-175 After one step: $24.05560,0.22 \%$. After two steps: $67.75830,0.66 \%$.
9-177 After one step: $-1.93739,0.00 \%$. After two steps: $-1.84260,0.00 \%$.
9-179 After one step: $2.00969,0.00 \%$. After two steps: $2.03767,0.00 \%$.
9-181

After 10 steps with $\mathbf{h = 0 . 2}: y_{10}=5445.76,6.21 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 5764.32,0.72 \%$
$9-183$

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=127.52100,0.06 \%$
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 124.804,2.19 \%$

9-185

After 10 steps with $\mathbf{h = 0 . 2}: y_{10} \cong 17.60930,0.95 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 17.73240,0.26 \%$.
9-187
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=5.44432,0.00 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 5.44447,0.00 \%$

After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=1.86469,0.00 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 1.86466,0.00 \%$

9-191

After 10 steps with $\mathbf{h = 0 . 2}: y_{10}=59.0020,0.00 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 59.50130,0.00 \%$.
9-193
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=0.33334,0.00 \%$.
After 20 steps with $\mathbf{h}=\mathbf{0 . 1}: y_{20} \cong 0.33373,0.12 \%$.
9-205 After one step: $5.633270,0.00 \%$. After two steps: $5.928240,0.00 \%$.

9-209 After one step: $\mathbf{- 2 0 . 3 8 6 3 2 , ~ 6 . 5 2 \%}$. After two steps: $\mathbf{- 8 6 . 8 3 4 6 5 , 1 3 . 6 9 \%}$.
9-211 After one step: $-1.468573,0.01 \%$. After two steps: $-1.003938,0.39 \%$.
9-213 After one step: $2.143301,0.00 \%$. After two steps: $2.218951,0.00 \%$.
9-215
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=3084.421,46.88 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 5228.891,9.94 \%$.
9-217
After 10 steps with $\mathbf{h = 0 . 2}: y_{10}=127.1810,0.32 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 127.5772,0.01 \%$.
9-218
After 10 steps with $\mathbf{h = 0 . 2 :} y_{10}=7.388599,0.01 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 7.389046,0.00 \%$.
9-219
After 10 steps with $\mathbf{h = 0 . 2}: y_{10} \cong 17.77719,0.00 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 17.77811,0.00 \%$.
9-221
After 10 steps with $\mathbf{h = 0 . 2 :} y_{10}=5.443662,0.01 \%$.

After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 5.444487,0.00 \%$.
9-223
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=1.86468,0.00 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 1.86466,0.00 \%$.
9-225
After 10 steps with $\mathbf{h}=\mathbf{0 . 2}: y_{10}=59.0020,0.00 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 59.5018,0.00 \%$.
9-227
After 10 steps with h=0.2: $y_{10}=0.333191,0.04 \%$.
After 20 steps with $\mathbf{h = 0 . 1}: y_{20} \cong 0.333326,0.12 \%$.
9-231 After one step: $y_{1}=0.6, z_{1}=0.6$: After two steps: $y_{2}=0.436254, z_{2}=1.16749$.
9-233 After one step: $y_{1}=0.20$: After two steps: $y_{2}=0.32$
9-235
After one step: $y_{1}=0.38520, z_{1}=1.49267$,
After two steps: $y_{1}=0.761160, z_{1}=1.14579$
9-237 After one step: $y_{1}=0.2734$: After two steps: $y_{2}=0.66803$.
9-239
For $\mathbf{N}=10$ and $\mathbf{h}=\mathbf{0 . 2}$: y_{-}Euler $_{10}:=2.16415$ S, z_{-}Euler ${ }_{10}:=2.13392$ (
For $\mathbf{N}=\mathbf{2 0}$ and $\mathbf{h}=\mathbf{0 . 1}: y_{-}$Euler $_{20}:=2.38017^{\circ}$, z_{-}Euler $_{20}:=2.32252^{\prime}$,
9-241.
For $\mathbf{N}=10$ and $\mathbf{h}=\mathbf{0 . 2}: y_{-}$Euler $_{10}:=6.83329\left(\right.$, $_{-}$Euler $_{10}:=17.39652$
For $\mathbf{N}=\mathbf{2 0}$ and $\mathbf{h}=\mathbf{0 . 1}: \boldsymbol{y}_{-}$Euler $_{20}:=7.97525\left(, z_{-}\right.$Euler $_{20}:=20.1406<$
9-243 For $\mathbf{N}=\mathbf{1 0}$ and $\mathbf{h}=\mathbf{0 . 2}: y_{10}=3.389388$, For $\mathbf{N}=\mathbf{2 0}$ and $\mathbf{h}=\mathbf{0} .1 y_{20}=3.311436$
9-245
For $\mathbf{N}=10$ and $\mathbf{h}=\mathbf{0 . 2}$: y_{-}RungeKutta ${ }_{10}:=8.17620<, z_{-}$RungeKutta ${ }_{10}:=2.83962 \angle$
For $\mathbf{N}=\mathbf{2 0}$ and $\mathbf{h}=\mathbf{0 . 1}$: y_{-}RungeKutta ${ }_{20}:=8.17707^{\circ}$, z_{-}RungeKutta ${ }_{20}:=2.83995$;
9-247 For $\mathbf{N}=\mathbf{1 0}$ and $\mathbf{h}=\mathbf{0 . 2}: y_{10}=4.666445$, For $\mathbf{N}=\mathbf{2 0}$ and $\mathbf{h}=\mathbf{0 . 1}: y_{20}=4.666412$
9-287 (a) $t=521$ minutes

