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This is a sample of the solutions provided in the manual available to instructors. Note

that

• A solution is provided for very problem, and all solutions are typeset.

• There is only one problem per page.

• Problem solutions display the intermediate steps, not just the final answer.

• Free body diagrams are shown in problems requiring derivation of equations of motion.
Circuit diagrams and block diagrams are shown in solutions where needed.

• Solutions display the required MATLAB code along with the resulting plots.

• Problems dealing with Simulink display the required Simulink diagram.

• Frequency response and root locus plots are shown when needed.



In the solutions manual there is only one problem per page. Problem solutions display the
intermediate steps, not just the final answer.

Problem 2.22 The denominator roots are s = −3 and s = −5, which are distinct. Factor
the denominator so that the highest coefficients of s in each factor are unity:

X(s) =
7s + 4

2s2 + 16s + 30
=

1

2

[

7s + 4

(s + 3)(s + 5)

]

The partial-fraction expansion has the form

X(s) =
1

2

[

7s + 4

(s + 3)(s + 5)

]

=
C1

s + 3
+

C2

s + 5

Using the coefficient formula (2.4.4), we obtain

C1 = lim
s→−3

[

(s + 3)
7s + 4

2(s + 3)(s + 5)

]

= lim
s→−3

[

7s + 4

2(s + 5)

]

= −
17

4

C2 = lim
s→−5

[

(s + 5)
7s + 4

2(s + 3)(s + 5)

]

= lim
s→−5

[

7s + 4

2(s + 3)

]

=
31

4

Using the LCD method we have

1

2

7s + 4

(s + 3)(s + 5)
=

C1

s + 3
+

C2

s + 5
=

C1(s + 5) + C2(s + 3)

(s + 3)(s + 5)

=
(C1 + C2)s + 5C1 + 3C2

(s + 3)(s + 5)

Comparing numerators, we see that C1 + C2 = 7/2 and 5C1 + 3C2 = 4/2 = 2, which give
C1 = −17/4 and C2 = 31/4.

The inverse transform is

x(t) = C1e
−3t + C2e

−5t = −
17

4
e−3t +

31

4
e−5t

In this example the LCD method requires more algebra, including the solution of two
equations for the two unknowns C1 and C2.
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Free body diagrams are shown in problems requiring derivation of equations of motion.
Circuit diagrams and block diagrams are shown in solutions where needed.

Problem 3.41 See the following figure. Summing forces in the x and y directions gives:

maGx = µsNB − mg sin θ (1)

NA + NB = mg cos θ (2)

Summing moments about G:

NALA − NBLB + µsNBH = 0 (3)

Solve (2) and (3):

NA =
mg cos θ (µsH − LB)

µsH − LA − LB

=
16, 677 cos θ (µs − 2.1)

µs − 4.6

NB = −
mgLA cos θ

µsH − LA − LB

=
40, 025µs cos θ

4.6− µs

The maximum acceleration is, from (1),

aGx =
23.544µs cos θ

4.6− µs

− 9.81 sin θ

Figure : for Problem 3.41
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Problems dealing with Simulink display the required Simulink diagram.

Problem 5.53 The model is shown in the following figure. Set the Start and End of the

Dead Zone to −0.5 and 0.5 respectively. Set the Sine Wave block to use simulation time.
Set the Amplitude to 2 and the Frequency to 4. In the Math Function block select the

square function. Set the Initial condition of the Integrator to 1. You can plot the results
by typing

�plot(tout,simout),xlabel(′t′),ylabel(′x′)

Using a stop time of 3 results in an error message that indicates that Simulink is having

trouble finding a small enough step size to handle the rapidly decreasing solution. By
experimenting with the stop time, we find that, to two decimal places, a stop time of 1.49

will not generate an error.
This model is unstable, and the output x → −∞ if the time span is long enough. We

can see this by writing the equation as (not including the effect of the dead zone)

ẋ = 2 sin 4t − 10x2

Once x drops below
√

2/10, ẋ remains negative and thus x continues to decrease through
negative values.

Figure : for Problem 5.53.
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Solutions display the required MATLAB code along with the resulting plots.
Problem 6.49 The script file is

KT = 0.2; Kb = 0.2; c = 5e-4; Ra = 0.8; La = 4e-3; I = 5e-4;

den = [La*I, Ra*I + c*La, c*Ra + Kb*KT];

% Speed transfer function:

sys1 = tf(KT, den);

% Current transfer function:

sys2 = tf([I, c], den);

% Applied voltage

t = [0:0.001:0.05]; va = 10*ones(size(t));

% Speed:

om = lsim(sys1, va, t);

% Current:

ia = lsim(sys2, va, t);

subplot(2,1,1), plot(t, om),xlabel(′t (s)′),ylabel(′\omega (rad/s)′)

subplot(2,1,2), plot(t, ia),xlabel(′t (s)′),ylabel(′i_a (A)′)

The plot is shown in the following figure. The peak current is approximately 8 A. The

more accurate value of 8.06 A can be found with the lsim(sys2, va, t) function by
right-clicking on the plot, selecting Characteristics, then Peak Response.
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Figure : for Problem 6.49
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Frequency response plots are shown when needed.

Problem 9.43 The program is given below, along with the resulting plot. The resonant

frequency is 2.51 × 104 rad/s. By moving the cursor along the plot we can determine the
points at which the curve is 3 dB below the peak. These frequencies are 2.39 × 104 and

2.61× 104, so the bandwidth is (2.61− 2.39)× 104 = 2.2× 103 rad/sec.

m = 0.002;k = 1e6;Kf = 20;Kb = 15;R = 10;L = 0.001;

sys = tf(Kf,[m*L,m*R,k*L+Kf*Kb,k*R]);

bode(sys)
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Figure : Plot for Problem 9.43
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Root locus plots are shown when needed.

Problem 11.57 The characteristic equation is 10s3 + (2 + KD)s2 + KP s + KI = 0. With

KP = 55 and KD = 58, we have 10s3 + 60s2 + 55s + KI = 0, or

1 +
KI

10

1

s3 + 6s2 + 5.5s
= 0

The root locus gain is K = KI/10. In MATLAB type

sys = tf(1, [1, 6, 5.5, 0]);

rlocus(sys), axis equal

The plot follows. In Example 10.7.4, KI = 25. This gives ζ = 0.707 and τ = 2. The plot
shows that to reduce the error by increasing KI, the dominant time constant will become

larger and the damping ratio will decrease, making the system slower and more oscillatory.
Moving the cursor along the plot shows that if we decrease the error by half by doubling
KI to 50, the new damping ratio will be approximately 0.44 and the new time constant will

be approximately 1/0.43 = 2.3.
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Figure : for Problem 11.57.
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