
Outerbridge Crossing between Staten Island 
and New Jersey

Constructed in 1928, the Outerbridge Crossing is a cantilever truss bridge consisting of
a 750-ft main span, two 375-ft anchor arms, and a 300-ft through truss span at either
end. The 143-ft clearance at the suspended midspan permits large ships to pass under
the bridge. It is the outermost crossing in the district of The Port Authority of New York
and New Jersey. Replaced by newer, stronger materials and structural systems, truss
bridges have diminished in popularity in recent years.
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4Trusses

Chapter Objectives
• Study the characteristics and behavior of trusses. Since truss members carry only axial loads, the con-

figuration of the bars is key to a truss’ efficiency and use.

• Analyze determinate trusses by method of joints and method of sections to determine bar forces. Also
learn to visually identify bars with zero force.

• Classify determinate and indeterminate truss structures, and determine the degree of indeterminacy.

• Determine if a truss structure is stable or unstable.

123

4.1
Introduction

A truss is a structural element composed of a stable arrangement of slender
interconnected bars (see Figure 4.1a). The pattern of bars, which often subdi-
vides the truss into triangular areas, is selected to produce an efficient, light-
weight, load-bearing member. Although joints, typically formed by welding or
bolting truss bars to gusset plates, are rigid (see Figure 4.1b), the designer nor-
mally assumes that members are connected at joints by frictionless pins, as
shown in Figure 4.1c. (Example 4.9 on page 149 clarifies the effect of this
assumption.) Since no moment can be transferred through a frictionless pin
joint, truss members are assumed to carry only axial force—either tension or
compression. Because truss members act in direct stress, they carry load
efficiently and often have relatively small cross sections.

As shown in Figure 4.1a, the upper and lower members, which are either
horizontal or sloping, are called the top and bottom chords. The chords are
connected by vertical and diagonal members.

The structural action of many trusses is similar to that of a beam. As a
matter of fact, a truss can often be viewed as a beam in which excess material
has been removed to reduce weight. The chords of a truss correspond to 
the flanges of a beam. The forces that develop in these members make up the
internal couple that carries the moment produced by the applied loads. The

C H A P T E R
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124 Chapter 4 � Trusses

primary function of the vertical and diagonal members is to transfer vertical
force (shear) to the supports at the ends of the truss. Generally, on a per pound
basis it costs more to fabricate a truss than to roll a steel beam; however, the
truss will require less material because the material is used more efficiently. In
a long-span structure, say 200 ft or more, the weight of the structure can rep-
resent the major portion (on the order of 75 to 85 percent) of the design load
to be carried by the structure. By using a truss instead of a beam, the engineer
can often design a lighter, stiffer structure at a reduced cost.

Even when spans are short, shallow trusses called bar joists are often used
as substitutes for beams when loads are relatively light. For short spans these
members are often easier to erect than beams of comparable capacity because
of their lighter weight. Moreover, the openings between the web members
provide large areas of unobstructed space between the floor above and the
ceiling below the joist through which the mechanical engineer can run heat-
ing and air-conditioning ducts, water and waste pipes, electrical conduit, and
other essential utilities.

In addition to varying the area of truss members, the designer can vary the
truss depth to reduce its weight. In regions where the bending moment is
large—at the center of a simply supported structure or at the supports in a con-
tinuous structure—the truss can be deepened (see Figure 4.2).

The diagonals of a truss typically slope upward at an angle that ranges
from 45 to 60°. In a long-span truss the distance between panel points should
not exceed 15 to 20 ft (5 to 7 m) to limit the unsupported length of the com-
pression chords, which must be designed as columns. As the slenderness of a
compression chord increases, it becomes more susceptible to buckling. The
slenderness of tension members must be limited also to reduce vibrations pro-
duced by wind and live load.

Figure 4.1: (a) Details of a truss; (b) welded
joint; (c) idealized joint, members connected
by a frictionless pin.

Figure 4.2: (a) and (b) depth of truss varied
to conform to ordinates of moment curve.
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(b)

–M –M
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4.1 � Introduction 125

If a truss carries equal or nearly equal loads at all panel points, the direc-
tion in which the diagonals slope will determine if they carry tension or com-
pression forces. Figure 4.3, for example, shows the difference in forces set up
in the diagonals of two trusses that are identical in all respects (same span,
same loads, and so forth) except for the direction in which the diagonals slope
(T represents tension and C indicates compression).

Although trusses are very stiff in their own plane, they are very flexible out
of plane and must be braced or stiffened for stability. Since trusses are often
used in pairs or spaced side by side, it is usually possible to connect several
trusses together to form a rigid-box type of structure. For example, Figure 4.4
shows a bridge constructed from two trusses. In the horizontal planes of the top

T T T T

C C C C

Figure 4.3: T represents tension and C
compression.

(a)

(b)

truss

truss

transverse
beam

typical
panel

bracing

floor
slab

diagonal bracing
typical all panelstruss

truss

floor
beams

floor
beam

stringer

Figure 4.4: Truss with floor beams and sec-
ondary bracing: (a) perspective showing
truss interconnected by transverse beams and
diagonal bracing; diagonal bracing in bottom
plane, omitted for clarity, is shown in (b);
(b) bottom view showing floor beams and 
diagonal bracing. Lighter beams and bracing
are also required in the top plane to stiffen
trusses laterally.
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126 Chapter 4 � Trusses

and bottom chords, the designer adds transverse members, running between
panel points, and diagonal bracing to stiffen the structure. The upper and lower
chord bracing together with the transverse members forms a truss in the hori-
zontal plane to transmit lateral wind load into the end supports. Engineers also
add diagonal knee bracing in the vertical plane at the ends of the structure to
ensure that the trusses remain perpendicular to the top and bottom planes of the
structure.

Photo 4.1: Massive roof trusses with bolted
joints and gusset plates.

Photo 4.2: Reconstructed Tacoma Narrows bridge showing trusses used to stiffen the
roadway floor system. See original bridge in Photo 2.1.

Types of Trusses

The members of most modern trusses are arranged in triangular patterns
because even when the joints are pinned, the triangular form is geometrically
stable and will not collapse under load (see Figure 4.5a). On the other hand, a
pin-connected rectangular element, which acts like an unstable linkage (see
Figure 4.5b), will collapse under the smallest lateral load.

4.2

(a) (b)
Figure 4.5: Pin-jointed frames: (a) stable;
(b) unstable.
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4.3 � Analysis of Trusses 127

One method to establish a stable truss is to construct a basic triangular unit
(see the shaded triangular element ABC in Figure 4.6) and then establish addi-
tional joints by extending bars from the joints of the first triangular element.
For example, we can form joint D by extending bars from joints B and C.
Similarly, we can imagine that joint E is formed by extending bars from joints
C and D. Trusses formed in this manner are called simple trusses.

If two or more simple trusses are connected by a pin or a pin and 
a tie, the resulting truss is termed a compound truss (see Figure 4.7). Finally,
if a truss—usually one with an unusual shape—is neither a simple nor a com-
pound truss, it is termed a complex truss (see Figure 4.8). In current practice,
where computers are used to analyze, these classifications are not of great
significance.

A C

B D

E

Figure 4.6: Simple truss.

Analysis of Trusses

A truss is completely analyzed when the magnitude and sense (tension
or compression) of all bar forces and reactions are determined. To compute
the reactions of a determinate truss, we treat the entire structure as a rigid
body and, as discussed in Section 3.6, apply the equations of static equili-
brium together with any condition equations that may exist. The analysis used
to evaluate the bar forces is based on the following three assumptions:

1. Bars are straight and carry only axial load (i.e., bar forces are directed
along the longitudinal axis of truss members). This assumption also
implies that we have neglected the deadweight of the bar. If the weight
of the bar is significant, we can approximate its effect by applying one-
half of the bar weight as a concentrated load to the joints at each end of
the bar.

2. Members are connected to joints by frictionless pins. That is, no
moments can be transferred between the end of a bar and the joint to
which it connects. (If joints are rigid and members stiff, the structure
should be analyzed as a rigid frame.)

3. Loads are applied only at joints.

As a sign convention (after the sense of a bar force is established) we label
a tensile force positive and a compression force negative. Alternatively, we can

4.3

simple
truss

simple
truss

Figure 4.7: Compound truss is made up of
simple trusses.

(a)

(b)

Figure 4.8: Complex trusses.
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128 Chapter 4 � Trusses

denote the sense of a force by adding after its numerical value a T to indicate a
tension force or a C to indicate a compression force.

If a bar is in tension, the axial forces at the ends of the bar act outward
(see Figure 4.9a) and tend to elongate the bar. The equal and opposite forces
on the ends of the bar represent the action of the joints on the bar. Since the
bar applies equal and opposite forces to the joints, a tension bar will apply a
force that acts outward from the center of the joint.

If a bar is in compression, the axial forces at the ends of the bar act inward
and compress the bar (see Figure 4.9b). Correspondingly, a bar in compres-
sion pushes against a joint (i.e., applies a force directed inward toward the
center of the joint).

Bar forces may be analyzed by considering the equilibrium of a joint—
the method of joints—or by considering the equilibrium of a section of a
truss—the method of sections. In the latter method, the section is produced by
passing an imaginary cutting plane through the truss. The method of joints is
discussed in Section 4.4; the method of sections is treated in Section 4.6.

A B

(a)

joint A

TTTT

joint B

A B

(b)

joint A

CCCC

joint B

Figure 4.9: Free-body diagrams of axially
loaded bars and adjacent joints: (a) bar AB in
tension; (b) bar AB in compression.

Method of Joints

To determine bar forces by the method of joints, we analyze free-body dia-
grams of joints. The free-body diagram is established by imagining that we
cut the bars by an imaginary section just before the joint. For example, in
Figure 4.10a to determine the bar forces in members AB and BC, we use the
free body of joint B shown in Figure 4.10b. Since the bars carry axial force,
the line of action of each bar force is directed along the longitudinal axis of
the bar.

Because all forces acting at a joint pass through the pin, they constitute a
concurrent force system. For this type of force system, only two equations of
statics (that is, �Fx � 0 and �Fy � 0) are available to evaluate unknown bar
forces. Since only two equations of equilibrium are available, we can only
analyze joints that contain a maximum of two unknown bar forces.

The analyst can follow several procedures in the method of joints. For 
the student who has not analyzed many trusses, it may be best initially to write
the equilibrium equations in terms of the components of the bar forces. On the
other hand, as one gains experience and becomes familiar with the method, it
is possible, without formally writing out the equilibrium equations, to deter-
mine bar forces at a joint that contains only one sloping bar by observing the
magnitude and direction of the components of the bar forces required to pro-
duce equilibrium in a particular direction. The latter method permits a more
rapid analysis of a truss. We discuss both procedures in this section.

To determine bar forces by writing out the equilibrium equations, we
must assume a direction for each unknown bar force (known bar forces must
be shown in their correct sense). The analyst is free to assume either tension
or compression for any unknown bar force (many engineers like to assume
that all bars are in tension, that is, they show all unknown bar forces acting
outward from the center of the joint). Next, the forces are resolved into their

4.4

A

B

C

P = 30 kips

(a)

3

4

B
FBC

P = 30 kips

(b)

FAB

3

4

XAB

YAB

Figure 4.10: (a) Truss (dashed lines show
location of circular cutting plane used to iso-
late joint B); (b) free body of joint B.
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4.4 � Method of Joints 129

X and Y (rectangular) components. As shown in Figure 4.10b, the force or the
components of a force in a particular bar are subscripted with the letters used
to label the joints at each end of the bar. To complete the solution, we write
and solve the two equations of equilibrium.

If only one unknown force acts in a particular direction, the computations
are most expeditiously carried out by summing forces in that direction. After
a component is computed, the other component can be established by setting
up a proportion between the components of the force and the slope of the bar
(the slope of the bar and the bar force are obviously identical).

If the solution of an equilibrium equation produces a positive value
of force, the direction initially assumed for the force was correct. On the other
hand, if the value of force is negative, its magnitude is correct, but the direc-
tion initially assumed is incorrect, and the direction of the force must be
reversed on the sketch of the free-body diagram. After the bar forces are estab-
lished at a joint, the engineer proceeds to adjacent joints and repeats the 
preceding computation until all bar forces are evaluated. This procedure is
illustrated in Example 4.1.

Determination of Bar Forces by Inspection

Trusses can often be analyzed rapidly by inspection of the bar forces and
loads acting on a joint that contains one sloping bar in which the force is
unknown. In many cases the direction of certain bar forces will be obvious
after the resultant of the known force or forces is established. For example,
since the applied load of 30 kips at joint B in Figure 4.10b is directed down-
ward, the y-component, YAB of the force in member AB—the only bar with a
vertical component—must be equal to 30 kips and directed upward to satisfy
equilibrium in the vertical direction. If YAB is directed upward, force FAB must
act upward and to the right, and its horizontal component XAB must be
directed to the right. Since XAB is directed to the right, equilibrium in the 
horizontal direction requires that FBC act to the left. The value of XAB is easily
computed from similar triangles because the slopes of the bars and the bar
forces are identical (see Section 3.2).

and

XAB � 40 kips

To determine the force FBC, we mentally sum forces in the x direction.

 FBC � 40 kips 

 0 � �FBC � 40 

 S�  �Fx � 0 

XAB �
4

3
YAB �

4

3
130 2

XAB

4
�

YAB

3

Ans.

Ans.
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130 Chapter 4 � Trusses

Analyze the truss in Figure 4.11a by the method of joints. Reactions are given.

Solution
The slopes of the various members are computed and shown on the sketch.
For example, the top chord ABC, which rises 12 ft in 16 ft, is on a slope 
of 3 : 4.

To begin the analysis, we must start at a joint with a maximum of two
bars. Either joint A or C is acceptable. Since the computations are simplest at
a joint with one sloping member, we start at A. On a free body of joint A (see
Figure 4.11b), we arbitrarily assume that bar forces FAB and FAD are tensile
forces and show them acting outward on the joint. We next replace FAB by its
rectangular components XAB and YAB. Writing the equilibrium equation in the
y-direction, we compute YAB.

�Fy � 0

0 � �24 � YAB and YAB � 24 kips Ans.

�

c 

E X A M P L E  4 . 1

Figure 4.11: (a) Truss; (b) joint A; (c) joint B;
(d ) joint D; (e) summary of bar forces 
(units in kips).

11� 5�

6�
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22 kips
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(a)
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A
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(b)

40 kips
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(c)

B

24 kips
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0
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(d)
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(e)
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4.4 � Method of Joints 131

Since YAB is positive, it is a tensile force, and the assumed direction on the
sketch is correct. Compute XAB and FAB by proportion, considering the slope
of the bar.

and

Ans.

Compute FAD.

Ans.

Since the minus sign indicates that the direction of force FAD was assumed
incorrectly, the force in member AD is compression, not tension.

We next isolate joint B and show all forces acting on the joint 
(see Figure 4.11c). Since we determined FAB � 40 kips tension from the
analysis of joint A, it is shown on the sketch acting outward from joint B.
Superimposing an x-y coordinate system on the joint and resolving FBD

into rectangular components, we evaluate YBD by summing forces in the 
y direction.

Since YBD � 0, it follows that FBD � 0. From the discussion to be presented
in Section 4.5 on zero bars, this result could have been anticipated.

Compute FBC.

Ans.

Analyze joint D with FBD � 0 and FDC shown as a compressive force (see
Figure 4.11d ).

As a check of the results, we observe that the components of FDC are pro-
portional to the slope of the bar. Since all bar forces are known at this point,
we can also verify that joint C is in equilibrium, as an alternative check. The
results of the analysis are summarized in Figure 4.11e on a sketch of the truss.
A tension force is indicated with a plus sign, a compressive force with a 
minus sign.

 
�

c �Fy � 0   0 � 24 � YDC   and   YDC � 24 kips 

 S�  �Fx � 0   0 � 10 � XDC   and   XDC � 10 kips 

 FBC � 40 kips tension 

 0 � FBC � 40 

 S�  �Fx � 0 

 YBD � 0 

 
�

c �Fy � 0 

FAD � �32 � 22 � �10 kips

0 � �22 � XAB � FAD

 S�  �Fx � 0 

FAB �
5

3
YAB �

5

3
124 2 � 40 kips

XAB �
4

3
YAB �

4

3
124 2 � 32 kips

YAB

3
�

XAB

4
�

FAB

5
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132 Chapter 4 � Trusses

Trusses, such as those used in highway bridges, typically support moving loads.
As the load moves from one point to another, forces in truss members vary. For
one or more positions of the load, certain bars may remain unstressed. The
unstressed bars are termed zero bars. The designer can often speed the analysis
of a truss by identifying bars in which the forces are zero. In this section we dis-
cuss two cases in which bar forces are zero.

Case 1.  If No External Load Is Applied to a Joint That
Consists of Two Bars, the Force in Both Bars 
Must Be Zero

To demonstrate the validity of this statement, we will first assume that forces
F1 and F2 exist in both bars of the two-bar joint in Figure 4.12a, and then we
demonstrate that the joint cannot be in equilibrium unless both forces equal
zero. We begin by superimposing on the joint a rectangular coordinate system
with an x axis oriented in the direction of force F1, and we resolve force F2

into components X2 and Y2 that are parallel to the x and y axes of the coordi-
nate system, respectively. If we sum forces in the y direction, it is evident that
the joint cannot be in equilibrium unless Y2 equals zero because no other force
is available to balance Y2. If Y2 equals zero, then F2 is zero, and equilibrium
requires that F1 also equal zero.

A second case in which a bar force must equal zero occurs when a joint
is composed of three bars—two of which are collinear.

Case 2. If No External Load Acts at a Joint Composed 
of Three Bars—Two of Which Are Collinear—
the Force in the Bar That Is Not Collinear 
Is Zero

To demonstrate this conclusion, we again superimpose a rectangular coordi-
nate system on the joint with the x axis oriented along the axis of the two
collinear bars. If we sum forces in the y direction, the equilibrium equation
can be satisfied only if F3 equals zero because there is no other force to bal-
ance its y-component Y3 (see Figure 4.12b).

Although a bar may have zero force under a certain loading condition,
under other loadings the bar may carry stress. Thus the fact that the force
in a bar is zero does not indicate that the bar is not essential and may be
eliminated.

4.5
Zero Bars

Figure 4.12: Conditions that produce zero
forces in bars: (a) two bars and no external
loads, F1 and F2 equal zero; (b) two collinear
bars and no external loads, force in third bar
(F3) is zero.

(a)

F1

x

y

Y2

X2

F2

(b)

F1

F2

X3

y

x

F3

Y3
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4.5 � Zero Bars 133

Based on the earlier discussion in Section 4.5, label all the bars in the truss of
Figure 4.13 that are unstressed when the 60-kip load acts.

Solution
Although the two cases discussed in this section apply to many of the bars,
we will examine only joints A, E, I, and H. The verification of the remaining
zero bars is left to the student. Since joints A and E are composed of only two
bars and no external load acts on the joints, the forces in the bars are zero (see
Case 1).

Because no horizontal loads act on the truss, the horizontal reaction at I
is zero. At joint I the force in bar IJ and the 180-kip reaction are collinear;
therefore, the force in bar IH must equal zero because no other horizontal
force acts at the joint. A similar condition exists at joint H. Since the force in
bar IH is zero, the horizontal component of bar HJ must be zero. If a compo-
nent of a force is zero, the force must also be zero.

Figure 4.13

E X A M P L E  4 . 2
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134 Chapter 4 � Trusses

To analyze a stable truss by the method of sections, we imagine that the truss is
divided into two free bodies by passing an imaginary cutting plane through the
structure. The cutting plane must, of course, pass through the bar whose force
is to be determined.At each point where a bar is cut, the internal force in the bar
is applied to the face of the cut as an external load. Although there is no restric-
tion on the number of bars that can be cut, we often use sections that cut three
bars since three equations of static equilibrium are available to analyze a free
body. For example, if we wish to determine the bar forces in the chords and
diagonal of an interior panel of the truss in Figure 4.14a, we can pass a vertical
section through the truss, producing the free-body diagram shown in
Figure 4.14b. As we saw in the method of joints, the engineer is free to assume
the direction of the bar force. If a force is assumed in the correct direction, solu-
tion of the equilibrium equation will produce a positive value of force. Alter-
natively, a negative value of force indicates that the direction of the force was
assumed incorrectly.

If the force in a diagonal bar of a truss with parallel chords is to be com-
puted, we cut a free body by passing a vertical section through the diagonal
bar to be analyzed. An equilibrium equation based on summing forces in the 
y-direction will permit us to determine the vertical component of force in the
diagonal bar.

If three bars are cut, the force in a particular bar can be determined by
extending the forces in the other two bars along their line of action until
they intersect. By summing moments about the axis through the point of
intersection, we can write an equation involving the third force or one of
its components. Example 4.3 illustrates the analysis of typical bars in a
truss with parallel chords. Example 4.4 on page 136, which covers the
analysis of a determinate truss with four restraints, illustrates a general
approach to the analysis of a complicated truss using both the method of
sections and the method of joints.

Method of Sections
4.6

15�

20� 20�

4 @ 15� = 60�

(a) (b)

A

B C D

E

FGH

40 kips 40 kips40 kips

1

30 kips

30 kips

50 kips

A

B
FBC

FHG

FHCYHC

XHC

H

40 kips

30 kips

30 kips

50 kips70 kips

1

Figure 4.14
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4.6 � Method of Sections 135

Using the method of sections, compute the forces or components of force in
bars HC, HG, and BC of the truss in Figure 4.14a.

Solution
Pass section 1-1 through the truss cutting the free body shown in Figure 4.14b.
The direction of the axial force in each member is arbitrarily assumed. To sim-
plify the computations, force FHC is resolved into vertical and horizontal com-
ponents.

Compute YHC (see Figure 4.14b).

Ans.

From the slope relationship,

Ans.  

Compute FBC. Sum moments about an axis through H at the intersection
of forces FHG and FHC.

Ans.

Compute FHG.

Ans.

Since the solution of the equilibrium equations above produced positive
values of force, the directions of the forces shown in Figure 4.14b are correct.

FHG � 75 kips compression

0 � 30 � FHG � XHC � FBC � 30

 S�  �Fx � 0 

 FBC � 67.5 kips tension 

 0 � 30 120 2 � 50 115 2 � FBC 120 2  

A� �MH � 0

XHC �
3

4
YHC �  7.5 kips

XHC

3
�

YHC

4

 YHC � 10 kips tension 

 0 � 50 � 40 � YHC 

�

c �Fy � 0

E X A M P L E  4 . 3

lee01099_ch04_122-165.qxd  7/7/10  12:13 PM  Page 135



136 Chapter 4 � Trusses

Analyze the determinate truss in Figure 4.15a to determine all bar forces and
reactions.

Solution
Since the supports at A, C, and D supply four restraints to the truss in 
Figure 4.15a, and only three equations of equilibrium are available, we cannot
determine the value of all the reactions by applying the three equations of
static equilibrium to a free body of the entire structure. However, recognizing
that only one horizontal restraint exists at support A, we can determine its
value by summing forces in the x-direction.

Ans. Ax � 60 kips 

 �Ax � 60 � 0 

 S�  �Fx � 0 

Figure 4.15
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E X A M P L E  4 . 4
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4.6 � Method of Sections 137

Since the remaining reactions cannot be determined by the equations of statics,
we must consider using the method either of joints or of sections. At this stage
the method of joints cannot be applied because three or more unknown forces
act at each joint. Therefore, we will pass a vertical section through the center
panel of the truss to produce the free body shown in Figure 4.15b. We must use
the free body to the left of the section because the free body to the right of the
section cannot be analyzed since the reactions at C and D and the bar forces in
members BC and FE are unknown.

Compute Ay (see Figure 4.15b).

Ans.

Compute FBC. Sum moments about an axis through joint F.

Ans.

Compute FFE.

Ans.

Now that several internal bar forces are known, we can complete the
analysis using the method of joints. Isolate joint E (Figure 4.15c).

Ans.

Since the slope of bar ED is 1:1, YED � XED � 80 kips.

Ans.

The balance of the bar forces and the reactions at C and D can be determined
by the method of joints. Final results are shown on a sketch of the truss in
Figure 4.15d.

 FEC � 80 kips 1tension 2  

 FEC � YED � 0 

 
�

c �Fy � 0 

 XED � 80 kips 1compression 2  

 80 � XED � 0 

 S�  �Fx � 0 

 FFE � FBC � 80 kips 1compression 2  

 �60 � 60 � FBC � FFE � 0 

 S�  �Fx � 0 

 FBC � 80 kips 1tension 2  

 60 120 2 � FBC 115 2 � 0 

 A� �MF � 0 

 Ay � 0 

 
�

c �Fy � 0 
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138 Chapter 4 � Trusses

Determine the forces in bars HG and HC of the truss in Figure 4.16a by the
method of sections.

E X A M P L E  4 . 5

4 @ 24� = 96�

6�

18�

B C D
E

H

A
B

F

G

H

A

(a)

RA = 60 kips RE = 60 kips

1

30 kips 60 kips 30 kips

3

4

4
1

1

24� 24�

24�

(c)

60 kips 30 kips

F1Y1

X1G

C
F2

F3

x

A
a

B

H

F2Y2

X2

30 kips60 kips

24� 24�

(b)

F1

C
F2

F3

Figure 4.16: (a) Details of truss; (b) free body to compute force in bar HC; (c) free body
to compute force in bar HG.
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4.6 � Method of Sections 139

Solution
First compute the force in bar HC. Pass vertical section 1-1 through the truss,
and consider the free body to the left of the section (see Figure 4.16b). The
bar forces are applied as external loads to the ends of the bars at the cut. Since
three equations of statics are available, all bar forces can be determined by 
the equations of statics. Let F2 represent the force in bar HC. To simplify the
computations, we select a moment center (point a that lies at the intersection
of the lines of action of forces F1 and F3). Force F2 is next extended along its
line of action to point C and replaced by its rectangular components X2 and Y2.
The distance x between a and the left support is established by proportion us-
ing similar triangles, that is, aHB and the slope (1: 4) of force F1.

Sum moments of the forces about point a and solve for Y2.

Ans.

Based on the slope of bar HC, establish X2 by proportion.

Ans.

Now compute the force F1 in bar HG. Select a moment center at the in-
tersection of the lines of action of forces F2 and F3, that is, at point C (see
Figure 4.16c). Extend force F1 to point G and break into rectangular compo-
nents. Sum moments about point C.

Ans.

Establish Y1 by proportion.

Ans.Y1 �
X1

4
� 22.5 kips

X1

4
�

Y1

1

X1 � 90 kips compression

0 � 60 148 2 � 30 124 2 � X1 124 2

A� �Mc � 0

X2 �
4

3
Y2 � 10 kips

Y2

3
�

X2

4

Y2 � 7.5 kips tension

0 � �60 148 2 � 30 172 2 � Y2 196 2

A� �Ma � 0

x � 48 ft

1

18
�

4

x � 24
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140 Chapter 4 � Trusses

Using the method of sections, compute the forces in bars BC and JC of the 
K truss in Figure 4.17a.

E X A M P L E  4 . 6

20� 20� 20� 20�

30�

15�

15�

A B C D

EFGH

I J K
FJB

G

A B

I

H

FJG

FBC

FGF

(a) (b)

24 kips 48 kips 24 kips 48 kips

1 2

48 kips

1 2

Figure 4.17: (a) K truss; (b) free body to the left of section 1-1 used to evaluate FBC;
(c) free body used to compute FJC; (d ) bar forces.
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4.6 � Method of Sections 141

Solution
Since any vertical section passing through the panel of a K truss cuts four
bars, it is not possible to compute bar forces by the method of sections be-
cause the number of unknowns exceeds the number of equations of statics.
Since no moment center exists through which three of the bar forces pass, not
even a partial solution is possible using a standard vertical section. As we 
illustrate in this example, it is possible to analyze a K truss by using two sec-
tions in sequence, the first of which is a special section curving around an 
interior joint.

To compute the force in bar BC, we pass Section 1–1 through the truss in
Figure 4.17a. The free body to the left of the section is shown in Figure 4.17b.
Summing moments about the bottom joint G gives

Ans.

To compute FJC, we pass section 2-2 through the panel and consider again the
free body to the left (see Figure 4.17c). Since the force in bar BC has been
evaluated, the three unknown bar forces can be determined by the equations
of statics. Use a moment center at F. Extend the force in bar JC to point C and
break into rectangular components.

Ans.

NOTE. The K truss can also be analyzed by the method of joints by starting
from an outside joint such as A or H. The results of this analysis are shown in
Figure 4.17d. The K bracing is typically used in deep trusses to reduce the
length of the diagonal members. As you can see from the results in
Figure 4.17d, the shear in a panel divides equally between the top and bottom
diagonals. One diagonal carries compression, and the other carries tension.

FJC �
5

4
 XJC � 60 kips tension

XJC � 48 kips

0 � 16 130 2 � XJC 130 2 � 20 148 2 � 40 124 2

A� �MF � 0

 FBC � 16 kips tension 

 30FBC � 24 120 2 � 0 

 A� �MG � 0 
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142 Chapter 4 � Trusses

Determinacy and Stability

Thus far the trusses we have analyzed in this chapter have all been
stable determinate structures; that is, we knew in advance that we could
carry out a complete analysis using the equations of statics alone. Since inde-
terminate trusses are also used in practice, an engineer must be able to recog-
nize a structure of this type because indeterminate trusses require a special
type of analysis. As we will discuss in Chapter 11, compatibility equations
must be used to supplement equilibrium equations.

If you are investigating a truss designed by another engineer, you will
have to establish if the structure is determinate or indeterminate before you
begin the analysis. Further, if you are responsible for establishing the
configuration of a truss for a special situation, you must obviously be able to
select an arrangement of bars that is stable. The purpose of this section is to
extend to trusses the introductory discussion of stability and determinacy in
Sections 3.8 and 3.9—topics you may wish to review before proceeding to the
next paragraph.

If a loaded truss is in equilibrium, all members and joints of the truss must
alsobe inequilibrium.If load isappliedonlyat the jointsandifall trussmembers
areassumed tocarryonlyaxial load (anassumption that implies thedead loadof
members may be neglected or applied at the joints as an equivalent concentrated
load), the forces acting on a free-body diagram of a joint will constitute a con-
current force system. To be in equilibrium, a concurrent force system must
satisfy the following two equilibrium equations:

Since we can write two equilibrium equations for each joint in a truss, the total
number of equilibrium equations available to solve for the unknown bar
forces b and reactions r equals 2n (where n represents the total number of
joints). Therefore, it must follow that if a truss is stable and determinate, the
relationship between bars, reactions, and joints must satisfy the following 
criteria:

(4.1)

In addition, as we discussed in Section 3.8, the restraints exerted by the reactions
must not constitute either a parallel or a concurrent force system.

Although three equations of statics are available to compute the reactions
of a determinate truss, these equations are not independent and they cannot be
added to the 2n joint equations. Obviously, if all joints of a truss are in equi-
librium, the entire structure must also be equilibrium; that is, the resultant of
the external forces acting on the truss equals zero. If the resultant is zero, the
equations of static equilibrium are automatically satisfied when applied to

r � b � 2n

�Fy � 0

�Fx � 0

4.7
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4.7 � Determinacy and Stability 143

the entire structure and thus do not supply additional independent equilibrium
equations.

If

r � b � 2n

then the number of unknown forces exceed the available equations of statics
and the truss is indeterminate. The degree of indeterminacy D equals

D � r � b � 2n (4.2)

Finally, if

r � b � 2n

there are insufficient bar forces and reactions to satisfy the equations of equi-
librium, and the structure is unstable.

Moreover, as we discussed in Section 3.8, you will always find that the
analysis of an unstable structure leads to an inconsistent equilibrium equation.
Therefore, if you are uncertain about the stability of a structure, analyze the
structure for any arbitrary loading. If a solution that satisfies statics results, the
structure is stable.

To illustrate the criteria for stability and determinacy for trusses intro-
duced in this section, we will classify the trusses in Figure 4.18 as stable or
unstable. For those structures that are stable, we will establish whether they
are determinate or indeterminate. Finally, if a structure is indeterminate, we
will also establish the degree of indeterminacy.

Figure 4.18a

b � r � 5 � 3 � 8 2n � 2(4) � 8

Since b � r � 2n and the reactions are not equivalent to either a concurrent
or a parallel force system, the truss is stable and determinate.

Figure 4.18b

b � r � 14 � 4 � 18 2n � 2(8) � 16

Since b � r exceeds 2n (18 � 16), the structure is indeterminate to the second
degree.The structure is one degree externally indeterminate because the supports
supply four restraints, and internally indeterminate to the first degree because
an extra diagonal is supplied in the middle panel to transmit shear.

Figure 4.18c

b � r � 14 � 4 � 18 2n � 2(9) � 18

(a)

A B

A B

(b)

(c)

A
B DC

Figure 4.18: Classifying trusses: (a) stable
determinate; (b) indeterminate second de-
gree; (c) determinate (continues).
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144 Chapter 4 � Trusses

Because b � r � 2n � 18, and the supports are not equivalent to either a
parallel or a concurrent force system, the structure appears stable. We can
confirm this conclusion by observing that truss ABC is obviously a stable
component of the structure because it is a simple truss (composed of trian-
gles) that is supported by three restraints—two supplied by the pin at A and
one supplied by the roller at B. Since the hinge at C is attached to the stable
truss on the left, it, too, is a stable point in space. Like a pin support, it can
supply both horizontal and vertical restraint to the truss on the right. Thus
we can reason that truss CD must also be stable since it, too, is a simple truss
supported by three restraints, that is, two supplied by the hinge at C and one
by the roller at D.

Figure 4.18d Two approaches are possible to classify the structure in
Figure 4.18d. In the first approach, we can treat triangular element BCE as a
three-bar truss (b � 3) supported by three links—AB, EF, and CD (r � 3).
Since the truss has three joints (B, C, and E), n � 3. And b � r � 6 equals 
2n � 2(3) � 6, and the structure is determinate and stable.

Alternatively, we can treat the entire structure as a six-bar truss 
(b � 6), with six joints (n � 6), supported by three pins (r � 6), b � r � 12
equals 2n � 2(6) � 12. Again we conclude that the structure is stable and
determinate.

Figure 4.18e

b � r � 14 � 4 � 18 2n � 2(9) � 18

Since b � r � 2n, it appears the structure is stable and determinate; however,
since a rectangular panel exists between joints B, C, G, and H, we will verify
that the structure is stable by analyzing the truss for an arbitrary load of 4 kips
applied vertically at joint F (see Example 4.7). Since analysis by the method
of joints produces unique values of bar force in all members, we conclude that
the structure is both stable and determinate.

A B

E

F

DC

(d )

A B C D E

F
G

H I

(e)

Figure 4.18: Continued: (d) determinate; (e) determinate.
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4.7 � Determinacy and Stability 145

Figure 4.18f

b � r � 8 � 4 � 12 2n � 2(6) � 12

Although the bar count above satisfies the necessary condition for a stable
determinate structure, the structure appears to be unstable because
the center panel, lacking a diagonal bar, cannot transmit vertical force. To
confirm this conclusion, we will analyze the truss, using the equations of
statics. (The analysis is carried out in Example 4.8.) Since the analysis
leads to an inconsistent equilibrium equation, we conclude that the struc-
ture is unstable.

Figure 4.18g

b � 16 r � 4 n � 10

Although b � r � 2n, the small truss on the right (DEFG) is unstable because
its supports—the link CD and the roller at E—constitute a parallel force
system.

Figure 4.18h Truss is geometrically unstable because the reactions con-
stitute a concurrent force system; that is, the reaction supplied by the link BC
passes through the pin at A.

Figure 4.18i

b � 21 r � 3 n � 10

And b � r � 24, 2n � 20; therefore, truss is indeterminate to the fourth degree.
Although the reactions can be computed for any loading, the indeterminacy is
due to the inclusion of double diagonals in all interior panels.

Figure 4.18j

b � 6 r � 3 n � 5

And b � r � 9, 2n � 10; the structure is unstable because there are fewer
restraints than required by the equations of statics. To produce a stable struc-
ture, the reaction at B should be changed from a roller to a pin.

Figure 4.18k Now b � 9, r � 3, and n � 6; also b � r � 12, 2n � 12. How-
ever, the structure is unstable because the small triangular truss ABC at the top
is supported by three parallel links, which provide no lateral restraint.

Figure 4.18: Classifying trusses: ( f ) unsta-
ble; (g) unstable; (h) unstable; (i) indetermi-
nate fourth degree; ( j) unstable; (k) unstable.

A

( f )

B

A
B

C G F

D
E

(g)

A
B C

(h)

link

(i)

A B

A B

( j)

A B

C

(k)
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146 Chapter 4 � Trusses

Verify that the truss in Figure 4.19 is stable and determinate by demonstrat-
ing that it can be completely analyzed by the equations of statics for a force
of 4 kips at joint F.

Solution
Since the structure has four reactions, we cannot start the analysis by comput-
ing reactions, but instead must analyze it by the method of joints. We first de-
termine the zero bars.

Since joints E and I are connected to only two bars and no external
load acts on the joints, the forces in these bars are zero (see Case 1 of Sec-
tion 4.5). With the remaining two bars connecting to joint D, applying the
same argument would indicate that these two members are also zero bars.
Applying Case 2 of Section 4.5 to joint G would indicate that bar CG is a
zero bar.

Next we analyze in sequence joints F, C, G, H, A, and B. Since all 
bar forces and reactions can be determined by the equations of statics
(results are shown on Figure 4.19), we conclude that the truss is stable and
determinate.

Prove that the truss in Figure 4.20a is unstable by demonstrating that its
analysis for a load of arbitrary magnitude leads to an inconsistent equation
of equilibrium.

E X A M P L E  4 . 7

12� 12� 12� 12�

16�

12�

I H G F E

A D
B C

P = 4 kips

4 kips 4 kips 4 kips

3

4

3

4
0

0 +3 +3 0

–3 0

–4 0 0 0

–3

+ –

Figure 4.19: Analysis by method of joints to verify that truss is
stable.
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4.7 � Determinacy and Stability 147

Solution
Apply a load at joint B, say 3 kips, and compute the reactions, considering the
entire structure as a free body.

Equilibrium of joint B (see Figure 4.20b) requires that FBF � 3 kips ten-
sion. Equilibrium in the x direction is possible if FAB � FBC.

We next consider joint F (see Figure 4.20c). To be in equilibrium in the
y-direction, the vertical component of FAF must equal 3 kips and be directed
upward, indicating that bar AF is in compression. Since the slope of bar AF is
1:1, its horizontal component also equals 3 kips. Equilibrium of joint F in the
x direction requires that the force in bar FE equal 3 kips and act to the left.

We now examine support A (Figure 4.20d ). The reaction RA and the com-
ponents of force in bar AF, determined previously, are applied to the joint.
Writing the equation of equilibrium in the y-direction, we find

Since the equilibrium equation is not satisfied, the structure is not stable.

 2 � 3 	 0  1inconsistent 2  

 
�

c �Fy � 0 

 RAY � 3 � RD � 0  RAY � 2 kips 

 
�

c �Fy � 0 

 3 110 2 � 30RD � 0  RD � 1 kip 

 A� �MA � 0 

E X A M P L E  4 . 8

RAY = 2 kips

RAX RDX

3 kips

A

B C

F E

RD = 1 kip

3 @ 10� = 30�

10�

(a)

Figure 4.20: Check of truss stability: 
(a) details of truss; (b) free body of joint B;
(c) free body of joint F; (d ) free body of
support A.
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Computer Analysis of Trusses
4.8

The preceding sections of this chapter have covered the analysis of trusses
based on the assumptions that (1) members are connected at joints by fric-
tionless pins and (2) loads are applied at joints only. When design loads are
conservatively chosen, and deflections are not excessive, over the years
these simplifying assumptions have generally produced satisfactory
designs.

Since joints in most trusses are constructed by connecting members to
gusset plates by welds, rivet, or high-strength bolts, joints are usually rigid. To
analyze a truss with rigid joints (a highly indeterminate structure) would be a
lengthy computation by the classical methods of analysis. That is why, in the
past, truss analysis has been simplified by allowing designers to assume pinned
joints. Now that computer programs are available, we can analyze both deter-
minate and indeterminate trusses as a rigid-jointed structure to provide a more
precise analysis, and the limitation that loads must be applied at joints is no
longer a restriction.

Because computer programs require values of cross-sectional properties
of members—area and moment of inertia—members must be initially sized.
Procedures to estimate the approximate size of members are discussed in
Chapter 15 of the text. In the case of a truss with rigid joints, the assumption of
pin joints will permit you to compute axial forces that can be used to select the
initial cross-sectional areas of members.

To carry out the computer analyses, we will use the RISA-2D com-
puter program that is located on the website of this textbook; that is,
http://www.mhhe.com/leet. Although a tutorial is provided on the website to
explain, step by step, how to use the RISA-2D program, a brief overview of the
procedure is given below.

1. Number all joints and members.
2. After the RISA-2D program is opened, click Global at the top of the

screen. Insert a descriptive title, your name, and the number of
sections.

3. Click Units. Use either Standard Metric or Standard Imperial for U.S.
Customary System units.

4. Click Modify. Set the scale of the grid so the figure of the structure lies
within the grid.

5. Fill in tables in Data Entry Box. These include Joint Coordinates,
Boundary Conditions, Member Properties, Joint Loads, etc. Click
View to label members and joints. The figure on the screen permits
you to check visually that all required information has been supplied
correctly.

6. Click Solve to initiate the analysis.
7. Click Results to produce tables listing bar forces, joint defections, and

support reactions. The program will also plot a deflected shape.
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4.8 � Computer Analysis of Trusses 149

Using the RISA-2D computer program, analyze the determinate truss in
Figure 4.21, and compare the magnitude of the bar forces and joint displace-
ments, assuming (1) joints are rigid and (2) joints are pinned. Joints are de-
noted by numbers in a circle; members, by numbers in a rectangular box. A
preliminary analysis of the truss was used to establish initial values of each
member’s cross-sectional properties (see Table 4.1). For the case of pinned
joints, the member data are similar, but the word pinned appears in the
columns titled End Releases.

E X A M P L E  4 . 9

TABLE 4.1

Member Data for Case of Rigid Joints 

Member Moment of Elastic End Releases

Label I Joint J Joint Area (in2) Inertia (in4) Modulus (ksi) I-End J-End Length (ft)
1 1 2 5.72 14.7 29,000 8
2 2 3 11.5 77 29,000 20.396
3 3 4 11.5 77 29,000 11.662
4 4 1 15.4 75.6 29,000 11.662
5 2 4 5.72 14.7 29,000 10.198

TABLE 4.2

Comparision of Joint Displacements 

Rigid Joints Pinned Joints

Joint X Translation Y Translation Joint X Translation Y Translation
Label (in) (in) Label (in) (in)

1 0 0 1 0 0
2 0 0.011 2 0 0.012
3 0.257 �0.71 3 0.266 �0.738
4 0.007 �0.153 4 0 �0.15

[continues on next page]
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Figure 4.21: Cantilever truss.
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150 Chapter 4 � Trusses

To facilitate the connection of the members to the gusset plates, the truss
members are often fabricated from pairs of double angles oriented back to back.
The cross-sectional properties of these structural shapes, tabulated in the AISC
Manual of Steel Construction, are used in this example.

CONCLUSIONS: The results of the computer analysis shown in Tables 4.2
and 4.3 indicate that the magnitude of the axial forces in the truss bars, as
well as the joint displacements, are approximately the same for both pinned
and rigid joints. The axial forces are slightly smaller in most bars when rigid
joints are assumed because a portion of the load is transmitted by shear and
bending.

Since members in direct stress carry axial load efficiently, cross-sectional
areas tend to be small when sized for axial load alone. However, the flexural
stiffness of small compact cross sections is also small. Therefore, when joints
are rigid, bending stress in truss members may be significant even when the
magnitude of the moments is relatively small. If we check stresses in member
M3, which is constructed from two 8 
 4 
 1>2 in angles, at the section where
the moment is 7.797 kip·ft, the axial stress is P>A � 14.99 kips>in2 and the
bending stress Mc>I � 6.24 kips>in2. In this case, we conclude that bending
stresses are significant in several truss members when the analysis is carried
out assuming joints are rigid, and the designer must verify that the combined
stress of 21.23 kips/in2 does not exceed the allowable value specified by the
AISC design specifications.

TABLE 4.3

Comparison of Member Forces 

Rigid Joints Pin Joints

Member Axial Shear Moment  Member Axial
Label *Section* (kips) (kips) (kip ft) Label Section* (kips)

1 1 �19.256 �0.36 0.918 1 1 �20
2 �19.256 �0.36 �1.965 2 �20

2 1 �150.325 0.024 �2.81 2 1 �152.971
2 �150.325 0.024 �2.314 2 �152.971

3 1 172.429 0.867 �2.314 3 1 174.929
2 172.429 0.867 7.797 2 174.929

4 1 232.546 �0.452 6.193 4 1 233.238
2 232.546 �0.452 0.918 2 233.238

5 1 �53.216 �0.24 0.845 5 1 �50.99
2 �53.216 �0.24 �1.604 2 �50.99

#

*Sections 1 and 2 refer to member ends.

Example 4.9 continues . . .
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Summary

• Trusses are composed of slender bars that are assumed to carry only
axial force. Joints in large trusses are formed by welding or bolting
members to gusset plates. If members are relatively small and lightly
stressed, joints are often formed by welding the ends of vertical and
diagonal members to the top and bottom chords.

• Although trusses are stiff in their own plane, they have little lateral
stiffness; therefore, they must be braced against lateral displacement at
all panel points.

• To be stable and determinate, the following relationship must exist
among the number of bars b, reactions r, and joints n:

b � r � 2n

In addition, the restraints exerted by the reactions must not constitute
either a parallel or a concurrent force system.

If b � r � 2n, the truss is unstable. If b � r � 2n, the truss is
indeterminate.

• Determinate trusses can be analyzed either by the method of joints or by
the method of sections. The method of sections is used when the force in
one or two bars is required. The method of joints is used when all bar
forces are required.

• If the analysis of a truss results in an inconsistent value of forces,
that is, one or more joints are not in equilibrium, then the truss is
unstable.
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P4.1. Classify the trusses in Figure P4.1 as stable or un-
stable. If stable, indicate if determinate or indeterminate.
If indeterminate, indicate the degree of indeterminacy.

PROBLEMS

pinned joint

(e)

( f )

(g)

(b)

(a)

(c)

(d)

P4.1
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P4.2. Classify the trusses in Figure P4.2 as stable or un-
stable. If stable, indicate if determinate or indeterminate.
If indeterminate, indicate the degree.

(a) (b)

(c) (d)

(e) ( f ) (g)

P4.3 and P4.4. Determine the forces in all bars of the
trusses. Indicate tension or compression.

20 kN

15 kN

4 m

3 m 3 m 3 m

B C

GA
F

D E

P4.3

16 kips

60 kips

12�

9�9� 9� 9�

B C D E F

24 kips

GA
H

P4.4

P4.2
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154 Chapter 4 � Trusses

P4.5 to P4.10. Determine the forces in all bars of the
trusses. Indicate tension or compression.

C       F = 100 kips

15�

15�

20�20�

D
E

B

A

5 m

5 @ 5 m = 25 m

20 kN 20 kN

A

B

J

C

I

D

H

E F

G

20 kN

10 kN

P4.5

P4.6

60 kips

15�15�15� 15�

36 kips

A

E D

B

36 kips

C

20�

P4.7

60 kN

30 kNB

A
C

6 m

6 m6 m

P4.8

16�

36 kips

8 kips
C

A
B

D E
24 kips

12�

12�

16�

P4.9

P4.10

B

24 kips

G F

A

E

C

D

24 kips

3 @ 10� � 30�

15�
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P4.11 to P4.15. Determine the forces in all bars of the
trusses. Indicate if tension or compression.

15�

10 kips

20 kips

15� 15�

15�

A

B C

D
EF

P4.11

36 kips 24 kips

20�

15� 15� 15� 15� 15�

I H

D
CB

A

G F E

P4.12

10 kips

B

A
H G F

C D

E

10 kips

4 kips

4 @ 8� � 32�

6�

10 kips

P4.13

J I

K L

GH

B
A

D E

F

60 kips

15�

15�

4 @ 20 � = 80�

C

P4.14

64 kips

32 kips

16�

16�16�16�16�

8�
A

B C D
E

F

G

H

P4.15

P4.16. Determine the forces in all bars of the truss. Hint:
If you have trouble computing bar forces, review K truss
analysis in Example 4.6. 

3 m

A I

J

KL

B C D E

F

H G

3 m 3 m

3 m

3 m

60 kN

60 kN

P4.16
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P4.17 to P4.21. Determine the forces in all bars of the
trusses. Indicate if tension or compression.

4 @ 10� =  40�

10�

10�

A

B

J

C

I

D

H
E

FG

10 kips20 kips

15 kips

P4.17

60 kips

60 kips

30 kips

20� 20� 20�

15�

15�

C

G

A

B

F

E

D

P4.18

3 m

A

E

D

B C

F

3 m4 m

60 kN

3 m

4 m

3 m

P4.19

4 m 4 m

4 m

A

B F

G
H

I

C E

D

4 m

4 m

100 kN

P4.20

4 m

A
B

G F

H I E

C
D

A

24 kN 30 kN

4 m 8 m 4 m 4 m

6 m

P4.21
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P4.22 to P4.26. Determine the forces in all truss bars.
Indicate tension or compression.

4 @ 4 m

3 m

3 m

10 kN

6 kN

A

B

C

D

E
FGH

P4.22

10 m

30 kN

6 m

6 m

6 m

8 m

A

B

C

D

E

F

G

45 kN

60 kN

P4.23

P4.24

8 m

30 kN

6 kN

12 kN

12 kN

8 m 8 m

6 m

6 m

6 m

A

B

C

DEFG

H I J

K

L

35 kips

35 kips

55 kips

15�

15�

15�

15�15�

P4.25

8 m

6 m

6 m

6 m

30 kN

60 kN

90 kN

A

B

C

D

H

G

F

E

P4.26
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P4.27. Determine the forces in all bars of the truss in
Figure P4.27. If your solution is statically inconsistent,
what conclusions can you draw about the truss? How
might you modify the truss to improve its behavior? Also,
analyze the truss with your computer program. Explain
your results.

P4.28 to P4.31. Determine the forces in all bars. Indicate
tension or compression.

D

H
G

E F

CB

A I

4 @ 6 m

40 kN

40 kN

6 m

6 m

P4.27

3 @ 4 m

2 m

2 m

12 kN 12 kN

18 kN

A

B

C

D

E
FG

P4.28

10�

10�

10�10�10�

24 kips

24 kips 24 kips

A B C D

E

H

FG

P4.29

B

E

40 kips20�

20�

15�

D

C

A

P4.30

12 kips

6 kips

6�

9�

12�12�

C

D

A B

P4.31
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P4.32 to P4.34. Determine all bar forces. Indicate ten-
sion or compression.

4 @ 5 m

5 m

5 m20 kN 20 kN

24 kNA

B

C

D

E
F

G

H

P4.32

G

C

B
DF

E

6 kips

12�

8�

8�8� 10�10�

30 kips

A

P4.33

6 @ 4 m

4 m

3 m

20 kN 40 kN 40 kN 40 kN 40 kN 40 kN 20 kN

B C D E F G

I

PO

JKL

NM

H

A

P4.34

P4.35 to P4.36. Using the method of sections, determine
the forces in the bars listed below each figure.

10�

10�

40 kips 20 kips20 kips

A

B

C D E F G

H

I
J

4 @ 15� = 60�

AB, BD, AD, BC, and EF

P4.35

6 @ 15� = 90�

BL, KJ, JD, and LC

12�

6�

3�

30 kips30 kips

A
B

L

K
J

C

90 kips

D E
G

F

H

I

P4.36
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P4.37 and P4.39. Using the method of sections, determine
the forces in the bars listed below each figure.

3 @ 12� �  36�

G F E

D

C

BA

J

IH
30 kips

18 kips

12 kips

9�

9�

16�

EF, EI, ED, FH, and IJ

P4.37

30 kips 60 kips

20�

5 @ 15�

BJ, CJ, CI, HG, and DI 

A

B C D E

F

J I GH

P4.38

4 @ 4 m

3 m

3 m

A
B C D

E

F

GHIJK

L M N

12 kN 16 kN

IJ, MC, and MI

12 kN

P4.39

P4.40 to P4.42. Determine the forces in all bars of the
trusses in Figures P4.40 to P4.42. Indicate if bar forces
are tension or compression. Hint: Start with the method
of sections.

3 m 3 m3 m

3 m
2 m

A

B C

D
EF

30 kN

P4.40

4 @ 20�

15�

15�

A
B C D

E

F

L

I G

H
K

J

30 kips 60 kips 30 kips

P4.41

9�

D

A

E

B

F

C

9�6�

12�

12�

6�

24 kips

P4.42
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8 kN

16 kN

16 kN

2 m

A

F

G

I

H

EDCB

5 m 5 m 5 m 5 m

2 m

2 m

P4.43

18 kips

3 @ 18� = 54�

A

B

C

D

E F G H

12 kips

6 kips

12�12�

12�

12�

P4.44

4 @ 4 m

3 m

12 kN 6 kN 12 kN

A

B C D

E

FG

P4.45

2.4 kips

2.4 kips

2.4 kips 7.4 kips

7.2 kips

3.6 kips

1.8 kips

A

H

G

F

E

DCB

8� 8� 8� 8�

6�

6�

P4.46

4 @ 8� = 32�

6�

6�

6�

12 kips

12 kips 12 kips

12 kips 12 kips

A

B

C

D

E

F

G

HJ

I

P4.47

P4.43 to P4.47. Determine the forces or components
of force in all bars of the trusses in Figures P4.43 to
P4.47. Indicate tension or compression.
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30 kips
A

F

E

D

C

B

40� 40� 40�

30�

30�

P4.48

4 m 4 m 4 m

30 kN 60 kN

2 m

3 m 2 m

F

E

D

CBA

P4.49

P4.50

P4.51

4 @ 4 m

20 kN

60 kN

20 kN
90°

4

3

90° 3 m

3 m

4

3

A

B

C D E

H

G

F

J I

6 kN

12 kN

8 kN

12 kN

5 m5 m 2 m2 m2 m2 m

2 m

2 m

3 m

P4.48 to P4.51. Determine the forces or components of
force in all bars of the trusses in Figures P4.48 to P4.51.
Indicate tension or compression.
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P4.52

floor 
beam

lower 
chord

upper 
chord

bracing

Section A–A 

51 kips

12�

4 @ 16� = 64�

94 kips
A

A

A

B
C D E

HIJ

F

G

94 kips

stringer

18 kips

94 kips 51 kips
8�� slab

2�� asphalt

truss

slab

26�

P4.52. A two-lane highway bridge, supported on two
deck trusses that span 64 ft, consists of an 8-in reinforced
concrete slab supported on four steel stringers. The slab is
protected by a 2-in wearing surface of asphalt. The 16-ft-
long stringers frame into the floor beams, which in turn
transfer the live and dead loads to the panel points 
of each truss. The truss, bolted to the left abutment at 
point A, may be treated as pin supported. The right end of

the truss rests on an elastomeric pad at G. The elastomeric
pad, which permits only horizontal displacement of the
joint, can be treated as a roller. The loads shown represent
the total dead and live loads. The 18-kip load is an addi-
tional live load that represents a heavy wheel load.
Determine the force in the lower chord between panel
points I and J, the force in member JB, and the reaction
applied to the abutment at support A.

P4.53. Computer analysis of a truss. The purpose of this
study is to show that the magnitude of the joint
displacements as well as the magnitude of the
forces in members may control the proportions of

structural members. For example, building codes typi-
cally specify maximum permitted displacements to en-
sure that excessive cracking of attached construction, such
as exterior walls and windows, does not occur (see 
Photo 1.1 in Section 1.3).

A preliminary design of the truss in Figure P4.53 pro-
duces the following bar areas: member 1, 2.5 in2; member 2,
3 in2; and member 3, 2 in2. Also E � 29,000 kips/in2. 30 kips

20�

15�

1
3

2

1

2

3

P4.53

Case 1: Determine all bar forces, joint reactions, and
joint displacements, assuming pin joints. Use the com-
puter program to plot the deflected shape.

Case 2: If the maximum horizontal displacement of 
joint 2 is not to exceed 0.25 in, determine the minimum re-
quired area of the truss bars. For this case assume that all
truss members have the same cross-sectional area. Round
the area to the nearest whole number.
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P4.54. Computer study. The objective is to compare the
behavior of a determinate and an indeterminate
structure.
The forces in members of determinate trusses are

not affected by member stiffness. Therefore, there was no
need to specify the cross-sectional properties of the bars of
the determinate trusses we analyzed by hand computations
earlier in this chapter. In a determinate structure, for a given
set of loads, only one load path is available to transmit the
loads into the supports, whereas in an indeterminate struc-
ture, multiple load paths exist (see Section 3.10). In the case
of trusses, the axial stiffness of members (a function of a
member’s cross-sectional area) that make up each load path
will influence the magnitude of the force in each member of
the load path. We examine this aspect of behavior by vary-
ing the properties of certain members of the indeterminate
truss shown in Figure P4.54. Use E � 29,000 kips/in2.

Case 1: Determine the reactions and the forces in mem-
bers 4 and 5 if the area of all bars is 10 in2. P4.54

1

2

15�

20�

3

4

1 3

4

5

2

100 kips

Practical Application
P4.55. Computer analysis of a truss withrigid joints. The

truss in Figure P4.55 is constructed of square steel
tubes welded to form a structure with rigid joints.
The top chord members 1, 2, 3, and 4 are

(a) Considering all joints as rigid, compute the 
axial forces and moments in all bars and the deflection
at midspan when the three 24-kip design loads act at
joints 7, 8, and 9. (Ignore the 4-kip load.)

(b) If a hoist is also attached to the lower chord at
the midpoint of the end panel on the right (labeled 
joint 6*) to raise a concentrated load of 4 kips, deter-
mine the forces and moments in the lower chord 
(members 5 and 6). If the maximum stress is not to 

4 
 4 
 1>4 inch square tubes with A � 3.59 in2 and I �
8.22 in4. All other members are 3 
 3 
 1>4 inch square
tubes with A � 2.59 in2 and I � 3.16 in4. Use E �
29,000 kips/in2.

*Note: If you wish to compute the forces or deflection at a particular point of a member, designate the point as a joint.

Case 2: Repeat the analysis in Case 1, this time increas-
ing the area of member 4 to 20 in2. The area of all other
bars remains 10 in2.

Case 3: Repeat the analysis in Case 1, increasing the
area of member 5 to 20 in2. The area of all other bars re-
mains 10 in2.

What conclusions do you reach from the above study?

1

1

2 43

89

6

7

5
8�

6�
4 @ 12� = 48�

4
10 14

13

11

9 8

24 kips 24 kips 24 kips
4 kips

7 6 5

2 3

12

P4.55

exceed 25 kips/in2, can the lower chord support the
4-kip load safely in addition to the three 24-kip loads?
Compute the maximum stress, using the equation

where (one-half the depth of the lower
chord).

 c � 1.5 in 

 s �
F

A
�

Mc

I
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Practical Application
P4.56. Analyze and compare two trusses, namely the Pratt

Truss and the Howe Truss in Figures P4.56 (a) and
(b), respectively. The trusses have the same depth,
length, panel spacing, loading and supports. All

joints are pinned. For each truss, determine the following:
a) All bar forces, indicate tension or compression.
b) The required cross sectional areas for each bar,

given an allowable tensile stress of 45 ksi, and an
allowable compressive stress of 24 ksi. Note that

allowable compressive stress is lower due to 
buckling.

c) Tabulate your results showing bar forces, cross
sectional areas, and lengths.

d) Calculate the total weight of each truss and deter-
mine which truss has a more efficient configuration.
Explain your results.

e) What other conclusions can you draw from the
study?

P4.56

100 kips100 kips 100 kips 100 kips100 kips

100 kips100 kips 100 kips 100 kips100 kips

20�

20�

6 @ 15� = 90�

6 @ 15� = 90�

Pratt Truss

(a)

Howe Truss

(b)
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