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Chapter 1

Section 1.1

1. (a) The population consists of all the times the process could be run. It is conceptual.

(b) The population consist of all the registered voters in the state. It is tangible.

(c) The population consist of all people with high cholesterol levels. It is tangible.

(d) The population consist of all concrete specimens that could be made from the new formulation. It is conceptual.

(e) The population consist of all bolts manufactured that day. It is tangible.

3. (a) False

(b) True

5. (a) No. What is important is the population proportion of defectives; the sample proportion is only an approx-
imation. The population proportion for the new process may in fact be greater or less than that of the old
process.

(b) No. The population proportion for the new process may be 0.12 or more, even though the sample proportion
was only 0.11.

(c) Finding 2 defective circuits in the sample.

7. A good knowledge of the process that generated the data.

9. (a) A controlled experiment

(b) It is well-justified, because it is based on a controlled experiment rather than an observational study.
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Section 1.2

1. False

3. No. In the sample 1, 2, 4 the mean is 7/3, which does not appear at all.

5. The sample size can be any odd number.

7. Yes. If all the numbers in the list are the same, the standard deviation will equal 0.

9. The mean and standard deviation both increase by 5%.

11. The total height of the 20 men is 20×178= 3560. The total height of the 30 women is 30×164= 4920.

The total height of all 50 people is 3560+4920= 8480. There are 20+30= 50 people in total. Therefore the
mean height for both groups put together is 8480/50= 169.6 cm.

13. (a) All would be divided by 2.54.

(b) Not exactly the same, because the measurements would be alittle different the second time.

15. (a) The sample size isn= 16. The tertiles have cutpoints(1/3)(17)= 5.67 and(2/3)(17)= 11.33. The first tertile
is therefore the average of the sample values in positions 5 and 6, which is(44+46)/2= 45. The second tertile
is the average of the sample values in positions 11 and 12, which is(76+79)/2= 77.5.

(b) The sample size isn = 16. The quintiles have cutpoints(i/5)(17) for i = 1,2,3,4. The quintiles are therefore
the averages of the sample values in positions 3 and 4, in positions 6 and 7, in positions 10 and 11, and in
positions 13 and 14. The quintiles are therefore(23+41)/2= 32,(46+49)/2= 47.5, (74+76)/2= 75, and
(82+89)/2= 85.5.
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Section 1.3

1. (a)

Stem Leaf
0 011112235677
1 235579
2 468
3 11257
4 14699
5 5
6 16
7 9
8 0099
9

10
11 0
12 7
13 7

(b) Here is one histogram. Other
choices for the endpoints are possi-
ble.
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The boxplot shows one outlier.
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3. Stem Leaf
1 1588
2 00003468
3 0234588
4 0346
5 2235666689
6 00233459
7 113558
8 568
9 1225

10 1
11
12 2
13 06
14
15
16
17 1
18 6
19 9
20
21
22
23 3

There are 23 stems in this plot. An advantage of this plot overthe one in Figure 1.6 is that the values are given
to the tenths digit instead of to the ones digit. A disadvantage is that there are too many stems, and many of
them are empty.

5. (a) Here are histograms for each group. Other choices for the endpoints are possible.
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(b)

1

2

3

4
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6

7

Catalyst A                Catalyst B

Y
ie

ld
(c) The yields for catalyst B are considerably more spread out than

those for catalyst A.The median yield for catalyst A is greater
than the median for catalyst B. The median yield for B is closer
to the first quartile than the third, but the lower whisker is longer
than the upper one, so the median is approximately equidistant
from the extremes of the data. Thus the yields for catalyst B are
approximately symmetric. The largest yield for catalyst A is an
outlier; the remaining yields for catalyst A are approximately
symmetric.

7. (a) The proportion is the sum of the relative frequencies (heights) of the rectangles above 240. This sum is approx-
imately 0.14+0.10+0.05+0.01+0.02. This is closest to 30%.

(b) The height of the rectangle over the interval 240–260 is greater than the sum of the heights of the rectangles
over the interval 280–340. Therefore there are more men in the interval 240–260 mg/dL.

9. (a)
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(c) Yes, the shapes of the histograms are the same.
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11. (a)
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(b) Yes. The value 100 is an outlier.

13. The figure on the left is a sketch of separate histograms for each group. The histogram on the right is a sketch
of a histogram for the two groups combined. There is more spread in the combined histogram than in either of
the separate ones. Therefore the standard deviation of all 200 resistances is greater than 5Ω. The answer is (ii).

15. (a) IQR = 3rd quartile− 1st quartile. A: IQR = 6.02−1.42= 4.60, B: IQR = 9.13−5.27= 3.86

(b) Yes, since the minimum is within 1.5 IQR of the first quartile and the
maximum is within 1.5 IQR of the third quartile, there are no outliers,
and the given numbers specify the boundaries of the box and the ends of
the whiskers.
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(c) No. The minimum value of−2.235 is an “outlier,” since it is more than 1.5 times the interquartile range below
the first quartile. The lower whisker should extend to the smallest point that is not an outlier, but the value of
this point is not given.

17. (a)
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(b) The boxplot indicates that the value 470 is an outlier.

(c) 0 100 200 300 400 500
Fracture Strength (MPa) 

(d) The dotplot indicates that the value 384 is detached fromthe bulk of the data, and thus could be considered to
be an outlier.

19. (a)
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(b)
x 1.4 2.4 4.0 4.9 5.7 6.3 7.8 9.0 9.3 11.0

lny 0.83 1.31 1.74 2.29 1.93 2.76 2.73 3.61 3.54 3.97

0 5 10 15
0.5

1

1.5

2

2.5

3

3.5

4

x

ln y The relationship is approximately linear.

(c) It would be easier to work withx and lny, because the relationship is approximately linear.

Supplementary Exercises for Chapter 1

1. (a) The mean will be divided by 2.2.

(b) The standard deviation will be divided by 2.2.

3. (a) False. The true percentage could be greater than 5%, with the observation of 4 out of 100 due to sampling
variation.

(b) True

(c) False. If the result differs greatly from 5%, it is unlikely to be due to sampling variation.

(d) True. If the result differs greatly from 5%, it is unlikely to be due to sampling variation.

5. (a) It is not possible to tell by how much the mean changes, because the sample size is not known.
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(b) If there are more than two numbers on the list, the median is unchanged. If there are only two numbers on the
list, the median is changed, but we cannot tell by how much.

(c) It is not possible to tell by how much the standard deviation changes, both because the sample size is unknown
and because the original standard deviation is unknown.

7. (a) The mean decreases by 0.774.

(b) The value of the mean after the change is 25−0.774= 24.226.

(c) The median is unchanged.

(d) It is not possible to tell by how much the standard deviation changes, because the original standard deviation is
unknown.

9. Statement (i) is true. The sample is skewed to the right.

11. (a) Incorrect, the total area is greater than 1.

(b) Correct. The total area is equal to 1.

(c) Incorrect. The total area is less than 1.

(d) Correct. The total area is equal to 1.

13. (a) Skewed to the left. The 85th percentile is much closerto the median (50th percentile) than the 15th percentile
is. Therefore the histogram is likely to have a longer left-hand tail than right-hand tail.
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(b) Skewed to the right. The 15th percentile is much closer tothe median (50th percentile) than the 85th percentile
is. Therefore the histogram is likely to have a longer right-hand tail than left-hand tail.

15. (a)
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(c) Approximately symmetric
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The data on the raw scale are skewed so much to the right that itis impossible to see the features of the
histogram.
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17. (a)

0 2 4 10 15 20 25 30 50
0

0.05

0.1

0.15

0.2

0.25
D

en
si

ty

Number of shares owned

(b) The sample size is 651, so the median is approximated by the point at which the area to the left is 0.5 =
325.5/651. The area to the left of 3 is 295/651, and the area tothe left of 4 is 382/651. The point at which the
area to the left is 325.5/651 is 3+(325.5−295)/(382−295)= 3.35.

(c) The sample size is 651, so the first quartile is approximated by the point at which the area to the left is 0.25 =
162.75/651. The area to the left of 1 is 18/651, and the area tothe left of 2 is 183/651. The point at which the
area to the left is 162.75/651 is 1+(162.75−18)/(183−18)= 1.88.

(d) The sample size is 651, so the third quartile is approximated by the point at which the area to the left is 0.75 =
488.25/651. The area to the left of 5 is 425/651, and the area to the left of 10 is 542/651. The point at which
the area to the left is 488.25/651 is 5+(10−5)(488.25−425)/(542−425)= 7.70.

19. (a)
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Sacaton Gila Plain Casa Grande 

(b) Each sample contains one outlier.

(c) In the Sacaton boxplot, the median is about midway between the first and third quartiles, suggesting that the
data between these quartiles are fairly symmetric. The upper whisker of the box is much longer than the lower
whisker, and there is an outlier on the upper side. This indicates that the data as a whole are skewed to the right.
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In the Gila Plain boxplot data, the median is about midway between the first and third quartiles, suggesting
that the data between these quartiles are fairly symmetric.The upper whisker is slightly longer than the lower
whisker, and there is an outlier on the upper side. This suggest that the data as a whole are somewhat skewed
to the right. In the Casa Grande boxplot, the median is very close to the first quartile. This suggests that there
are several values very close to each other about one-fourthof the way through the data. The two whiskers are
of about equal length, which suggests that the tails are about equal, except for the outlier on the upper side.
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Chapter 2

Section 2.1

1. P(does not fail) = 1−P(fails) = 1−0.12= 0.88

3. (a) The outcomes are the 16 different strings of 4 true-false answers. These are{TTTT, TTTF, TTFT, TTFF, TFTT,
TFTF, TFFT, TFFF, FTTT, FTTF, FTFT, FTFF, FFTT, FFTF, FFFT, FFFF}.

(b) There are 16 equally likely outcomes. The answers are allthe same in two of them, TTTT and FFFF. Therefore
the probability is 2/16 or 1/8.

(c) There are 16 equally likely outcomes. There are four of them, TFFF, FTFF, FFTF, and FFFT, for which exactly
one answer is “True.” Therefore the probability is 4/16 or 1/4.

(d) There are 16 equally likely outcomes. There are five of them, TFFF, FTFF, FFTF, FFFT, and FFFF, for which
at most one answer is “True.” Therefore the probability is 5/16.

5. (a) The outcomes are the sequences of candidates that end with either #1 or #2. These are{1, 2, 31, 32, 41, 42,
341, 342, 431, 432}.

(b) A = {1, 2}

(c) B = {341, 342, 431, 432}

(d) C = {31, 32, 341, 342, 431, 432}

(e) D = {1, 31, 41, 341, 431}

(f) A and E are mutually exclusive because they have no outcomes in commom.

B and E are not mutually exclusive because they both contain the outcomes 341, 342, 431, and 432.

C and E are not mutually exclusive because they both contain the outcomes 341, 342, 431, and 432.

D and E are not mutually exclusive because they both contain the outcomes 41, 341, and 431.

7. (a) P(living room or den) = P(living room)+P(den)

= 0.26+0.22

= 0.48
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(b) P(not bedroom) = 1−P(bedroom)

= 1−0.37

= 0.63

9. (a) The events of having a major flaw and of having only minorflaws are mutually exclusive. Therefore

P(major flaw or minor flaw) = P(major flaw)+P(only minor flaws) = 0.15+0.05= 0.20.

(b) P(no major flaw) = 1−P(major flaw) = 1−0.05= 0.95.

11. (a) False

(b) True

13. (a) P(S∪C) = P(S)+P(C)−P(S∩C)

= 0.4+0.3−0.2

= 0.5

(b) P(Sc∩Cc) = 1−P(S∪C) = 1−0.5= 0.5.

(c) We need to findP(S∩Cc). Now P(S) = P(S∩C)+P(S∩Cc) (this can be seen from a Venn diagram). Now

P(S∩C) = P(S)+P(C)−P(S∪C)

= 0.4+0.3−0.5

= 0.2

SinceP(S) = 0.4 andP(S∩C) = 0.2, P(S∩Cc) = 0.2.

15. (a) LetR be the event that a student is proficient in reading, and letM be the event that a student is proficient in
mathematics. We need to findP(Rc∩M). Now P(M) = P(R∩M)+P(Rc∩M) (this can be seen from a Venn
diagram). We know thatP(M) = 0.78 andP(R∩M) = 0.65. ThereforeP(Rc∩M) = 0.13.

(b) We need to findP(R∩Mc). Now P(R) = P(R∩M)+P(R∩Mc) (this can be seen from a Venn diagram). We
know thatP(R) = 0.85 andP(R∩M) = 0.65. ThereforeP(R∩Mc) = 0.20.
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(c) First we computeP(R∪M):
P(R∪M) = P(R)+P(M)−P(R∩M) = 0.85+0.78−0.65= 0.98.
Now P(Rc∩Mc) = 1−P(R∪M) = 1−0.98= 0.02.

17. P(A∩B) = P(A)+P(B)−P(A∪B)

= 0.98+0.95−0.99

= 0.94

19. (a) False

(b) True

(c) False

(d) True

Section 2.2

1. (a)(4)(4)(4) = 64

(b) (2)(2)(2) = 8

(c) (4)(3)(2) = 24

3.

(
8
4

)
=

8!
4!4!

= 70

5. (a)(8)(7)(6) = 336
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(b)

(
8
3

)
=

8!
3!5!

= 56

7. (210)(45) = 1,048,576

9. (a) 368 = 2.8211×1012

(b) 368−268 = 2.6123×1012

(c)
368−268

368 = 0.9260

11. P(match) = P(BB)+P(WW)

= (8/14)(4/6)+ (6/14)(2/6)

= 44/84= 0.5238

Section 2.3

1. A andB are independent ifP(A∩B) = P(A)P(B). ThereforeP(B) = 0.25.

3. (a) 5/15

(b) Given that the first resistor is 50Ω, there are 14 resistors remaining of which 5 are 100Ω. Therefore
P(2nd is 100Ω|1st is 50Ω) = 5/14.

(c) Given that the first resistor is 100Ω, there are 14 resistors remaining of which 4 are 100Ω. Therefore
P(2nd is 100Ω|1st is 100Ω) = 4/14.
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5. Given that a student is an engineering major, it is almost certain that the student took a calculus course. There-
fore P(B|A) is close to 1. Given that a student took a calculus course, it is much less certain that the student is
an engineering major, since many non-engineering majors take calculus. ThereforeP(A|B) is much less than
1, soP(B|A) > P(A|B).

7. Let A represent the event that the biotechnology company is profitable, and letB represent the event that the
information technology company is profitable. ThenP(A) = 0.2 andP(B) = 0.15.

(a) P(A∩B) = P(A)P(B) = (0.2)(0.15) = 0.03.

(b) P(Ac∩Bc) = P(Ac)P(Bc) = (1−0.2)(1−0.15)= 0.68.

(c) P(A∪B) = P(A)+P(B)−P(A∩B)

= P(A)+P(B)−P(A)P(B)

= 0.2+0.15− (0.2)(0.15)

= 0.32

9. Let V denote the event that a person buys a hybrid vehicle, and letT denote the event that a person buys a
hybrid truck. Then

P(T |V) =
P(T ∩V)

P(V)

=
P(T)

P(V)

=
0.05
0.12

= 0.417

11. LetOK denote the event that a valve meets the specification, letR denote the event that a valve is reground,
and letS denote the event that a valve is scrapped. ThenP(OK∩Rc) = 0.7, P(R) = 0.2, P(S∩Rc) = 0.1,
P(OK|R) = 0.9, P(S|R) = 0.1.

(a) P(Rc) = 1−P(R) = 1−0.2= 0.8
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(b) P(S|Rc) =
P(S∩Rc)

P(Rc)
=

0.1
0.8

= 0.125

(c) P(S) = P(S∩Rc)+P(S∩R)

= P(S∩Rc)+P(S|R)P(R)

= 0.1+(0.1)(0.2)

= 0.12

(d) P(R|S) =
P(S∩R)

P(S)

=
P(S|R)P(R)

P(S)

=
(0.1)(0.2)

0.12
= 0.167

(e) P(OK) = P(OK∩Rc)+P(OK∩R)

= P(OK∩Rc)+P(OK|R)P(R)

= 0.7+(0.9)(0.2)

= 0.88

(f) P(R|OK) =
P(R∩OK)

P(OK)

=
P(OK|R)P(R)

P(OK)

=
(0.9)(0.2)

0.88
= 0.205

(g) P(Rc|OK) =
P(Rc∩OK)

P(OK)

=
0.7
0.88

= 0.795
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13. LetT1 denote the event that the first device is triggered, and letT2 denote the event that the second device is
triggered. ThenP(T1) = 0.9 andP(T2) = 0.8.

(a) P(T1∪T2) = P(T1)+P(T2)−P(T1∩T2)

= P(T1)+P(T2)−P(T1)P(T2)

= 0.9+0.8− (0.9)(0.8)

= 0.98

(b) P(T1c∩T2c) = P(T1c)P(T2c) = (1−0.9)(1−0.8)= 0.02

(c) P(T1∩T2) = P(T1)P(T2) = (0.9)(0.8) = 0.72

(d) P(T1∩T2c) = P(T1)P(T2c) = (0.9)(1−0.8) = 0.18

15. (a)
88

88+12
= 0.88

(b)
88

88+165+260
= 0.1715

(c)
88+165

88+65+260
= 0.4932

(d)
88+165

88+12+165+35
= 0.8433

17. (a)
56+24

100
= 0.80

(b)
56+14

100
= 0.70

(c) P(Gene 2 dominant| Gene 1 dominant) =
P(Gene 1 dominant∩Gene 2 dominant)

P(Gene 1 dominant)
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=
56/100

0.8
= 0.7

(d) Yes.P(Gene 2 dominant| Gene 1 dominant) = P(Gene 2 dominant)

19. LetR, D, andI denote the events that the senator is a Republian, Democrat,or Independent, respectively, and
let M andF denote the events that the senator is male or female, respectively.

(a) P(R∩M) = 0.41

(b) P(D∪F) = P(D)+P(F)−P(D∩F)

= (0.37+0.16)+ (0.16+0.04)−0.16

= 0.57

(c) P(R) = P(R∩M)+P(R∩F)

= 0.41+0.04

= 0.45

(d) P(Rc) = 1−P(R) = 1−0.45= 0.55

(e) P(D) = P(D∩M)+P(D∩F)

= 0.37+0.16

= 0.53

(f) P(I) = P(I ∩M)+P(I ∩F)

= 0.02+0

= 0.02

(g) P(D∪ I) = P(D)+P(I) = 0.53+0.02= 0.55

21. (a) That the gauges fail independently.
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(b) One cause of failure, a fire, will cause both gauges to fail. Therefore, they do not fail independently.

(c) Too low. The correct calculation would useP(second gauge fails|first gauge fails) in place ofP(second gauge fails).
Because there is a chance that both gauges fail together in a fire, the condition that the first gauge fails makes
it more likely that the second gauge fails as well.
ThereforeP(second gauge fails|first gauge fails) > P(second gauge fails).

23. (a)P(A) = 3/10

(b) Given thatA occurs, there are 9 components remaining, of which 2 are defective.

ThereforeP(B|A) = 2/9.

(c) P(A∩B) = P(A)P(B|A) = (3/10)(2/9) = 1/15

(d) Given thatAc occurs, there are 9 components remaining, of which 3 are defective.

ThereforeP(B|A) = 3/9. NowP(Ac∩B) = P(Ac)P(B|Ac) = (7/10)(3/9) = 7/30.

(e) P(B) = P(A∩B)+P(Ac∩B) = 1/15+7/30= 3/10

(f) No. P(B) 6= P(B|A) [or equivalently,P(A∩B) 6= P(A)P(B)].

25. n = 10,000. The two components are a simple random sample from the population. When the population is
large, the items in a simple random sample are nearly independent.

27. LetR denote the event of a rainy day, and letC denote the event that the forecast is correct. ThenP(R) = 0.1,
P(C|R) = 0.8, andP(C|Rc) = 0.9.

(a) P(C) = P(C|R)P(R)+P(C|Rc)P(Rc)

= (0.8)(0.1)+ (0.9)(1−0.1)

= 0.89
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(b) A forecast of no rain will be correct on every non-rainy day. Therefore the probability is 0.9.

29. Let F denote the event that an item has a flaw. LetA denote the event that a flaw is detected by the first
inspector, and letB denote the event that the flaw is detected by the second inspector.

(a) P(F |Ac) =
P(Ac|F)P(F)

P(Ac|F)P(F)+P(Ac|Fc)P(Fc)

=
(0.1)(0.1)

(0.1)(0.1)+ (1)(0.9)

= 0.011

(b) P(F |Ac∩Bc) =
P(Ac∩Bc|F)P(F)

P(Ac∩Bc|F)P(F)+P(Ac∩Bc|Fc)P(Fc)

=
P(Ac|F)P(Bc|F)P(F)

P(Ac|F)P(Bc|F)P(F)+P(Ac|Fc)P(Bc|Fc)P(Fc)

=
(0.1)(0.3)(0.1)

(0.1)(0.3)(0.1)+ (1)(1)(0.9)

= 0.0033

31. (a) Each child has probability 0.25 of having the disease. Since the children are independent, the probability that
both are disease-free is 0.752 = 0.5625.

(b) Each child has probability 0.5 of being a carrier. Since the children are independent, the probability that both
are carriers is 0.52 = 0.25.

(c) Let D denote the event that a child has the disease, and letC denote the event that the child is a carrier. Then
P(D) = 0.25,P(C) = 0.5, andP(Dc) = 0.75. We first computeP(C|Dc), the probability that a child who does
not have the disease is a carrier. First,P(C∩Dc) = P(C) = 0.5. Now

P(C|Dc) =
P(C∩Dc)

P(Dc)
=

0.5
0.75

=
2
3

Since children are independent, the probability that both children are carriers given that neither has the disease
is (2/3)2 = 4/9.

(d) LetWD denote the event that the woman has the disease, LetWC denote the event that the woman is a carrier,
and letWF denote the event that the woman does not have the disease and is not a carrier. ThenP(WD) = 0.25,
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P(WC) = 0.5, andP(WF) = 0.25, LetCD denote the event that the child has the disease.

P(CD) = P(CD ∩WD)+P(CD∩WC)+P(CD∩WF)

= P(CD |WD)P(WD)+P(CD |WC)P(WC)+P(CD |WF)P(WF)

= (0.5)(0.25)+ (0.25)(0.5)+ (0)(0.25)

= 0.25

33. LetD represent the event that the man actually has the disease, and let+ represent the event that the test gives
a positive signal.

We are given thatP(D) = 0.005,P(+|D) = 0.99, andP(+|Dc) = 0.01.

It follows thatP(Dc) = 0.995,P(−|D) = 0.01, andP(−|Dc) = 0.99.

(a) P(D|−) =
P(−|D)P(D)

P(−|D)P(D)+P(−|Dc)P(Dc)

=
(0.01)(0.005)

(0.01)(0.005)+ (0.99)(0.995)

= 5.08×10−5

(b) P(++ |D) = 0.992 = 0.9801

(c) P(++ |Dc) = 0.012 = 0.0001

(d) P(D|++) =
P(++ |D)P(D)

P(++ |D)P(D)+P(++ |Dc)P(Dc)

=
(0.9801)(0.005)

(0.9801)(0.005)+ (0.0001)(0.995)
= 0.9801

35. P(system functions) = P[(A∩B)∩ (C∪D)]. Now P(A∩B) = P(A)P(B) = (1−0.05)(1−0.03)= 0.9215, and
P(C∪D) = P(C)+P(D)−P(C∩D) = (1−0.07)+ (1−0.14)− (1−0.07)(1−0.14)= 0.9902.

Therefore

P[(A∩B)∩ (C∪D)] = P(A∩B)P(C∪D)

= (0.9215)(0.9902)

= 0.9125
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37. LetC denote the event that component C functions, and letD denote the event that component D functions.

(a) P(system functions) = P(C∪D)

= P(C)+P(D)−P(C∩D)

= (1−0.08)+ (1−0.12)− (1−0.08)(1−0.12)

= 0.9904

Alternatively,

P(system functions) = 1−P(system fails)

= 1−P(Cc∩Dc)

= 1−P(Cc)P(Dc)

= 1− (0.08)(0.12)

= 0.9904

(b) P(system functions) = 1−P(Cc∩Dc) = 1− p2 = 0.99. Thereforep =
√

1−0.99= 0.1.

(c) P(system functions) = 1− p3 = 0.99. Thereforep = (1−0.99)1/3 = 0.2154.

(d) Letn be the required number of components. Thenn is the smallest integer such that 1−0.5n≥ 0.99. It follows
thatnln(0.5) ≤ ln0.01, son≥ (ln0.01)(ln0.5) = 6.64. Sincen must be an integer,n = 7.

Section 2.4

1. (a) Discrete

(b) Continuous

(c) Discrete

(d) Continuous

(e) Discrete

3. (a)µX = 1(0.4)+2(0.2)+3(0.2)+4(0.1)+5(0.1)= 2.3
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(b) σ2
X = (1−2.3)2(0.4)+ (2−2.3)2(0.2)+ (3−2.3)2(0.2)+ (4−2.3)2(0.1)+ (5−2.3)2(0.1) = 1.81

Alternatively,σ2
X = 12(0.4)+22(0.2)+32(0.2)+42(0.1)+52(0.1)−2.32 = 1.81

(c) σX =
√

1.81= 1.345

(d) Y = 10X. Therefore the probability density function is as follows.

y 10 20 30 40 50
p(y) 0.4 0.2 0.2 0.1 0.1

(e) µY = 10(0.4)+20(0.2)+30(0.2)+40(0.1)+50(0.1)= 23

(f) σ2
Y = (10−23)2(0.4)+ (20−23)2(0.2)+ (30−23)2(0.2)+ (40−23)2(0.1)+ (50−23)2(0.1) = 181

Alternatively,σ2
Y = 102(0.4)+202(0.2)+302(0.2)+402(0.1)+502(0.1)−232 = 181

(g) σY =
√

181= 13.45

5. (a)
x 1 2 3 4 5

p(x) 0.70 0.15 0.10 0.03 0.02

(b) P(X ≤ 2) = P(X = 1)+P(X = 2) = 0.70+0.15= 0.85

(c) P(X > 3) = P(X = 4)+P(X = 5) = 0.03+0.02= 0.05

(d) µX = 1(0.70)+2(0.15)+3(0.10)+4(0.03)+5(0.02)= 1.52

(e) σX =
√

12(0.70)+22(0.15)+32(0.10)+42(0.03)+52(0.02)−1.522 = 0.9325

7. (a)∑5
x=1cx= 1, soc(1+2+3+4+5)= 1, soc = 1/15.

(b) P(X = 2) = c(2) = 2/15= 0.2

(c) µX = ∑5
x=1xP(X = x) = ∑5

x=1 x2/15= (12 +22+32+42+52)/15= 11/3

(d) σ2
X = ∑5

x=1(x− µX)2P(X = x) = ∑5
x=1x(x− 11/3)2/15 = (64/135)+ 2(25/135)+ 3(4/135)+ 4(1/135)+

5(16/135) = 14/9
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Alternatively,σ2
X = ∑5

x=1 x2P(X = x)−µ2
X = ∑5

x=1x3/15− (11/3)2 = (13+23+33+43+53)/15− (11/3)2 =
14/9

(e) σX =
√

14/9 = 1.2472

9. (a)

x p1(x)
0 0.2
1 0.16
2 0.128
3 0.1024
4 0.0819
5 0.0655

(b)

x p2(x)
0 0.4
1 0.24
2 0.144
3 0.0864
4 0.0518
5 0.0311

(c) p2(x) appears to be the better model. Its probabilities are all fairly close to the proportions of days observed in
the data. In contrast, the probabilities of 0 and 1 forp1(x) are much smaller than the observed proportions.

(d) No, this is not right. The data are a simple random sample,and the model represents the population. Simple
random samples generally do not reflect the population exactly.

11. LetA denote an acceptable chip, andU an unacceptable one.

(a) If the first two chips are both acceptable, thenY = 2. This is the smallest possible value.

(b) P(Y = 2) = P(AA) = (0.9)2 = 0.81

(c) P(Y = 3|X = 1) =
P(Y = 3 andX = 1)

P(X = 1)
.

Now P(Y = 3 andX = 1) = P(AUA) = (0.9)(0.1)(0.9) = 0.081, andP(X = 1) = P(A) = 0.9.

ThereforeP(Y = 3|X = 1) = 0.081/0.9= 0.09.
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(d) P(Y = 3|X = 2) =
P(Y = 3 andX = 2)

P(X = 2)
.

Now P(Y = 3 andX = 2) = P(UAA) = (0.1)(0.9)(0.9) = 0.081, and

P(X = 2) = P(UA) = (0.1)(0.9) = 0.09.

ThereforeP(Y = 3|X = 2) = 0.081/0.09= 0.9.

(e) If Y = 3 the only possible values forX areX = 1 andX = 2.

Therefore

P(Y = 3) = P(Y = 3|X = 1)P(X = 1)+P(Y = 3|X = 2)P(X = 2)

= (0.09)(0.9)+ (0.9)(0.09)

= 0.162

13. (a)
Z 90

80

x−80
800

dx=
x2−160x

1600

90

80

= 0.0625

(b)
Z 120

80
x

x−80
800

dx=
x3−120x

2400

120

80

= 320/3= 106.67

(c) σ2
X =

Z 120

80
x2x−80

800
dx− (320/3)2 =

x4

3200
− x3

30

120

80

− (320/3)2 = 800/9

σX =
√

800/9= 9.428

(d) F(x) =

Z x

−∞
f (t)dt

If x < 80,F(x) =

Z 80

−∞
0dt = 0

If 80 ≤ x < 120,F(x) =

Z 80

−∞
0dt+

Z x

80

t −80
800

dt = x2/1600−x/10+4.

If x≥ 120,F(x) =

Z 80

−∞
0dt+

Z 120

80

t −80
800

dt+
Z x

120
0dt = 1.

15. (a)µ =

Z ∞

0
0.1te−0.1t dt
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= −te−0.1t
∞

0

−
Z ∞

0
−e−0.1t dt

= 0−10e−0.1t
∞

0

= 10

(b) σ2 =

Z ∞

0
0.1t2e−0.1t dt−µ2

= −t2e−0.1t
∞

0

−
Z ∞

0
−2te−0.1t dt−100

= 0+20
Z ∞

0
0.1te−0.1t dt−100

= 0+20(10)−100

= 100

σX =
√

100= 10

(c) F(x) =

Z x

−∞
f (t)dt.

If x≤ 0, F(x) =
Z x

−∞
0dt = 0.

If x > 0, F(x) =

Z 0

−∞
0dt+

Z x

0
0.1e−0.1t dt = 1−e−0.1x.

(d) LetT represent the lifetime.P(T < 12) = P(T ≤ 12) = F(12) = 1−e−1.2 = 0.6988.

17. With this process, the probability that a ring meets the specification is
Z 10.1

9.9
15[1−25(x−10.05)2]/4dx=

Z 0.05

−0.15
15[1−25x2]/4dx= 0.25(15x−125x3)

0.05

−0.15

= 0.641.

With the process in Exercise 16, the probability is
Z 10.1

9.9
3[1−16(x−10)2]dx=

Z 0.1

−0.1
3[1−16x2]dx= 3x−16x3

0.1

−0.1

= 0.568.

Therefore this process is better than the one in Exercise 16.
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19. (a)P(X > 3) =

Z 4

3
(3/64)x2(4−x)dx=

(
x3

16
− 3x4

256

) 4

3

= 67/256

(b) P(2 < X < 3) =
Z 3

2
(3/64)x2(4−x)dx=

(
x3

16
− 3x4

256

) 3

2

= 109/256

(c) µ=

Z 4

0
(3/64)x3(4−x)dx=

(
3x4

64
− 3x5

320

) 4

0

= 2.4

(d) σ2 =

Z 4

0
(3/64)x4(4−x)dx−µ2 =

(
3x5

80
− x6

128

) 4

0

−2.42 = 0.64

(e) F(x) =

Z x

−∞
f (t)dt

If x≤ 0, F(x) =
Z x

−∞
0dt = 0

If 0 < x < 4, F(x) =

Z x

0
(3/64)t2(4− t)dt = (16x3−3x4)/256

If x≥ 3, F(x) =

Z 4

0
(3/64)t2(4− t)dt = 1

21. (a)P(X < 0.2) =

Z 0.2

0
12(x2−x3)dx= 4x3−3x4

0.2

0

= 0.0272

(b) µ=
Z 1

0
12x(x2−x3)dx= 3x4− 12

5
x5

1

0

= 0.6

(c) The variance is

σ2 =
Z 1

0
12x2(x2 +x3)dx−µ2

=

(
12
5

x5 +2x6
) 1

0

−0.62

= 0.04
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(d) F(x) =

Z x

−∞
f (t)dt

If x≤ 0, F(x) =

Z x

−∞
0dt = 0

If 0 < x≤ 1, F(x) =

Z x

0
12(t2− t3)dt = 4t3−3t4

x

0

= 4x3−3x4

If x > 1, F(x) =

Z 1

0
12(t2− t3)dt = 1

(e) P(0 < X < 0.8) =

Z 0.8

0
12(x2−x3)dx=

(
4x3−3x4)

0.8

0

= 0.81922

23. (a)P(X < 2.5) =

Z 2.5

2
(3/52)x(6−x)dx= (9x2−x3)/52

2.5

2

= 0.2428

(b) P(2.5 < X < 3.5) =

Z 3.5

2.5
(3/52)x(6−x)dx=

9x2−x3

52

3.5

2.5

= 0.5144

(c) µ=

Z 4

2
(3/52)x2(6−x)dx=

24x3−3x4

208

4

2

= 3

(d) The variance is

σ2 =

Z 4

2
(3/52)x3(6−x)dx−µ2

=
9x4

104
− 3x5

260

4

2

−32

= 0.3230769

The standard deviation isσ =
√

0.3230769= 0.5684.

(e) LetX represent the thickness. ThenX is within±σ of the mean if 2.4316< X < 3.5684.

P(2.4316< X < 3.5684) =
Z 3.5684

2.4316
(3/52)x(6−x)dx=

9x2−x3

52

3.5684

2.4316

= 0.5832

(f) F(x) =
Z x

−∞
f (t)dt
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If x≤ 2, F(x) =

Z x

−∞
0dt = 0.

If 2 < x < 4, F(x) =
Z 2

−∞
0dt+

Z x

2
(3/52)t(6− t)dt =

9x2−x3−28
52

.

If x≥ 4, F(x) =

Z 2

−∞
0dt+

Z 4

2
(3/52)t(6− t)dt+

Z x

4
0dt = 1.

25. (a)P(X < 2) =
Z 2

0
xe−x dx=

(
−xe−x

2

0

+
Z 2

0
e−x dx

)
=

(
−2e−2−e−x

2

0

)
= 1−3e−2 = 0.5940

(b) P(1.5 < X < 3) =
Z 3

1.5
xe−x dx=

(
−xe−x

3

1.5

+
Z 3

1.5
e−xdx

)
=

(
−3e−3+1.5e−1.5−e−x

3

1.5

)

= 2.5e−1.5−4e−3 = 0.3587

(c) µ=

Z ∞

0
x2e−x dx= −x2e−x

∞

0

+

Z ∞

0
2xe−x dx= 0+2xe−x

∞

0

= 2

(d) F(x) =

Z x

−∞
f (t)dt

If x < 0, F(x) =

Z x

−∞
0dt = 0

If x > 0, F(x) =

Z x

0
te−t dt = 1− (x+1)e−x

Section 2.5

1. (a)µ3X = 3µX = 3(9.5) = 28.5

σ3X = 3σX = 3(0.4) = 1.2

(b) µY−X = µY −µX = 6.8−9.5= −2.7

σY−X =
√

σ2
Y + σ2

X =
√

0.12+0.42 = 0.412

(c) µX+4Y = µX +4µY = 9.5+4(6.8) = 36.7

σX+4Y =
√

σ2
X +42σ2

Y =
√

0.42+16(0.12) = 0.566
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3. LetX1, ...,X4 be the lifetimes of the four transistors. LetS= X1 + · · ·+X4 be the total lifetime.

µS = ∑µXi = 4(900) = 3600

σS =
√

∑σ2
Xi

=
√

4(302) = 60

5. LetX1, ...,X5 be the thicknesses of the five layers. LetS= X1 + · · ·+X5 be the total thickness.

(a) µS = ∑µXi = 5(1.2) = 6.0

(b) σS =
√

∑σ2
Xi

=
√

5(0.042) = 0.0894

7. (a)µM = µX+1.5Y = µX +1.5µY = 0.125+1.5(0.350)= 0.650

(b) σM = σX+1.5Y =
√

σ2
X +1.52σ2

Y =
√

0.052+1.52(0.12) = 0.158

9. LetX1 andX2 denote the lengths of the pieces chosen from the population with mean 30 and standard deviation
0.1, and letY1 andY2 denote the lengths of the pieces chosen from the population with mean 45 and standard
deviation 0.3.

(a) µX1+X2+Y1+Y2 = µX1 +µX2 +µY1 +µY2 = 30+30+45+45= 150

(b) σX1+X2+Y1+Y2 =
√

σ2
X1

+ σ2
X2

+ σ2
Y1

+ σ2
Y2

=
√

0.12+0.12+0.32+0.32 = 0.447

11. (a) The number of passenger-miles is 8000(210) = 1,680,000. LetX be the number of gallons of fuel used. Then
µX = 1,680,000(0.15)= 252,000 gallons.

(b) σX =
√

(1,680,000)(0.01) = 12.9615

(c) µX/1,680,000= (1/1,680,000)µX = (1/1,680,000)(252,000)= 0.15.
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(d) σX/1,680,000 = (1/1,680,000)σX = (1/1,680,000)(12.9615)= 7.7152×10−6

13. (a)µ= 0.0695+
1.0477

20
+

0.8649
20

+
0.7356

20
+

0.2171
30

+
2.8146

60
+

0.5913
15

+
0.0079

10
+5(0.0006) = 0.2993

(b) σ =
√

0.00182 +(0.0269
20 )2 +(0.0225

20 )2 +(0.0113
20 )2 +(0.0185

30 )2 +(0.0284
60 )2 +(0.0031

15 )2 +(0.0006
10 )2 + 52(0.0002)2 = 0.00288

15. (a)P(X < 9.98) =

Z 9.98

9.95
10dx= 10x

9.98

9.95

= 0.3

(b) P(Y > 5.01) =

Z 5.1

5.01
5dy= 5y

5.1

5.01

= 0.45

(c) SinceX andY are independent,
P(X < 9.98 andY > 5.01) = P(X < 9.98)P(Y > 5.01) = (0.3)(0.45) = 0.135

(d) µX =

Z 10.05

9.95
10xdx= 5x2

10.05

9.95

= 10

(e) µY =

Z 5.1

4.9
5ydy= 2.5y2

5.1

4.9

= 5

17. (a) Letµ = 40.25 be the mean SiO2 content, and letσ = 0.36 be the standard deviation of the SiO2 content, in a
randomly chosen rock. LetX be the average content in a random sample of 10 rocks.

ThenµX = µ= 40.25, andσX =
σ√
10

=
0.36√

10
= 0.11.

(b) Letn be the required number of rocks. Then
σ√
n

=
0.36√

n
= 0.05.

Solving forn yieldsn = 51.84. Sincen must be an integer, taken = 52.
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Section 2.6

1. (a) 0.17

(b) P(X ≥ 1 andY < 2) = P(1,0)+P(1,1)+P(2,0)+P(2,1)= 0.17+0.23+0.06+0.14= 0.60

(c) P(X < 1) = P(X = 0) = P(0,0)+P(0,1)+P(0,2)= 0.10+0.11+0.05= 0.26

(d) P(Y ≥ 1) = 1−P(Y = 0) = 1−P(0,0)−P(1,0)−P(2,0)= 1−0.10−0.17−0.06= 0.67

(e) P(X ≥ 1) = 1−P(X = 0) = 1−P(0,0)−P(0,1)−P(0,2)= 1−0.10−0.11−0.05= 0.74

(f) P(Y = 0) = P(0,0)+P(1,0)+P(2,0)= 0.10+0.17+0.06= 0.33

(g) P(X = 0 andY = 0) = 0.10

3. (a) pY|X(0|0) =
pX,Y(0,0)

pX(0)
=

0.10
0.26

= 0.3846

pY|X(1|0) =
pX,Y(0,1)

pX(0)
=

0.11
0.26

= 0.4231

pY|X(2|0) =
pX,Y(0,2)

pX(0)
=

0.05
0.26

= 0.1923

(b) pX|Y(0|1) =
pX,Y(0,1)

pY(1)
=

0.11
0.48

= 0.2292

pX|Y(1|1) =
pX,Y(1,1)

pY(1)
=

0.23
0.48

= 0.4792

pX|Y(2|1) =
pX,Y(2,1)

pY(1)
=

0.14
0.48

= 0.2917

(c) E(Y |X = 0) = 0pY|X(0|0)+1pY|X(1|0)+2pY|X(2|0) = 0.8077

(d) E(X |Y = 1) = 0pX|Y(0|1)+1pX|Y(1|1)+2pX|Y(2|1) = 1.0625
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5. (a)µX+Y = µX +µY = 0.89+1.22= 2.11

(b) σX+Y =
√

σ2
X + σ2

Y +2Cov(X,Y) =
√

1.0379+1.1916+2(−0.1158)= 1.4135

(c) P(X +Y = 3) = P(0,3)+P(1,2)+P(2,1)+P(3,0)= 0.10+0.05+0.05+0.04= 0.24

7. (a) 2X +3Y

(b) µ2X+3Y = 2µX +3µY = 2(0.89)+3(1.22)= 5.44

(c) σ2X+3Y =
√

22σ2
X +32σ2

Y +2(2)(3)Cov(X,Y)

=
√

22(1.0379)+32(1.1916)−2(2)(3)(−0.1158)

= 3.6724

9. (a) The marginal probability mass functionpX(x) is found by summing along the rows of the joint probability
mass function.

y
x 0 1 2 3 4 pX(x)
0 0.06 0.03 0.01 0.00 0.00 0.10
1 0.06 0.08 0.04 0.02 0.00 0.20
2 0.04 0.05 0.12 0.06 0.03 0.30
3 0.00 0.03 0.07 0.09 0.06 0.25
4 0.00 0.00 0.02 0.06 0.07 0.15

pY(y) 0.16 0.19 0.26 0.23 0.16

pX(0) = 0.10, pX(1) = 0.20, pX(2) = 0.30, pX(3) = 0.25, pX(4) = 0.15, pX(x) = 0 if x 6= 0,1,2,3, or 4.

(b) The marginal probability mass functionpY(y) is found by summing down the columns of the joint probability
mass function. SopY(0) = 0.16, pY(1) = 0.19, pY(2) = 0.26, pY(3) = 0.23, pY(4) = 0.16, pY(y) = 0 if
y 6= 0,1,2,3, or 4.

(c) No. The joint probability mass function is not equal to the product of the marginals. For example,pX,Y(0,0) =
0.06 6= pX(0)pY(0).
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(d) µX = 0pX(0)+1pX(1)+2pX(2)+3pX(3)+4pX(4) = 0(0.10)+1(0.20)+2(0.30)+3(0.25)+4(0.15)= 2.15

µY = 0pY(0)+1pY(1)+2pY(2)+3pY(3)+4pY(4) = 0(0.16)+1(0.19)+2(0.26)+3(0.23)+4(0.16)= 2.04

(e) σ2
X = 02pX(0)+12pX(1)+22pX(2)+32pX(3)+42pX(4)−µ2

X

= 02(0.10)+12(0.20)+22(0.30)+32(0.25)+42(0.15)−2.152

= 1.4275

σX =
√

1.4275= 1.1948

σ2
Y = 02pY(0)+12pY(1)+22pY(2)+32pY(3)+42pY(4)−µ2

Y

= 02(0.16)+12(0.19)+22(0.26)+32(0.23)+42(0.16)−2.042

= 1.6984

σY =
√

1.6984= 1.3032

(f) Cov(X,Y) = µXY−µXµY.

µXY = (0)(0)pX,Y(0,0)+ (0)(1)pX,Y(0,1)+ (0)(2)pX,Y(0,2)+ (0)(3)pX,Y(0,3)+ (0)(4)pX,Y(0,4)

+ (1)(0)pX,Y(1,0)+ (1)(1)pX,Y(1,1)+ (1)(2)pX,Y(1,2)+ (1)(3)pX,Y(1,3)+ (1)(4)pX,Y(1,4)

+ (2)(0)pX,Y(2,0)+ (2)(1)pX,Y(2,1)+ (2)(2)pX,Y(2,2)+ (2)(3)pX,Y(2,3)+ (2)(4)pX,Y(2,4)

+ (3)(0)pX,Y(3,0)+ (3)(1)pX,Y(3,1)+ (3)(2)pX,Y(3,2)+ (3)(3)pX,Y(3,3)+ (3)(4)pX,Y(3,4)

+ (4)(0)pX,Y(4,0)+ (4)(1)pX,Y(4,1)+ (4)(2)pX,Y(4,2)+ (4)(3)pX,Y(4,3)+ (4)(4)pX,Y(4,4)

= (0)(0)(0.06)+ (0)(1)(0.03)+ (0)(2)(0.01)+(0)(3)(0.00)+(0)(4)(0.00)

+ (1)(0)(0.06)+ (1)(1)(0.08)+ (1)(2)(0.04)+(1)(3)(0.02)+(1)(4)(0.00)

+ (2)(0)(0.04)+ (2)(1)(0.05)+ (2)(2)(0.12)+(2)(3)(0.06)+(2)(4)(0.03)

+ (3)(0)(0.00)+ (3)(1)(0.03)+ (3)(2)(0.07)+(3)(3)(0.09)+(3)(4)(0.06)

+ (4)(0)(0.00)+ (4)(1)(0.00)+ (4)(2)(0.02)+(4)(3)(0.06)+(4)(4)(0.07)

= 5.44

µX = 2.15,µY = 2.04

Cov(X,Y) = 5.44− (2.15)(2.04)= 1.0540

(g) ρX,Y =
Cov(X,Y)

σXσY
=

1.0540
(1.1948)(1.3032)

= 0.6769

11. (a)pY|X(0|4) =
pX,Y(4,0)

pX(4)
=

0.00
0.15

= 0

pY|X(1|4) =
pX,Y(4,1)

pX(4)
=

0.00
0.15

= 0
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pY|X(2|4) =
pX,Y(4,2)

pX(4)
=

0.02
0.15

= 2/15

pY|X(3|4) =
pX,Y(4,3)

pX(4)
=

0.06
0.15

= 2/5

pY|X(4|4) =
pX,Y(4,4)

pX(4)
=

0.07
0.15

= 7/15

(b) pX|Y(0|3) =
pX,Y(0,3)

pY(3)
=

0.00
0.23

= 0

pX|Y(1|3) =
pX,Y(1,3)

pY(3)
=

0.02
0.23

= 2/23

pX|Y(2|3) =
pX,Y(2,3)

pY(3)
=

0.06
0.23

= 6/23

pX|Y(3|3) =
pX,Y(3,3)

pY(3)
=

0.09
0.23

= 9/23

pX|Y(4|3) =
pX,Y(4,3)

pY(3)
=

0.06
0.23

= 6/23

(c) E(Y |X = 4) = 0pY|X(0|4)+1pY|X(1|4)+2pY|X(2|4)+3pY|X(3|4)+4pY|X(4|4) = 3.33

(d) E(X |Y = 3) = 0pX|Y(0|3)+1pX|Y(1|3)+2pX|Y(2|3)+3pX|Y(3|3)+4pX|Y(4|3) = 2.83

13. (a)µZ = µX+Y = µX +µY = 1.01+1.23= 2.24

(b) σZ = σX+Y =
√

σ2
X + σ2

Y +2Cov(X,Y) =
√

0.8099+0.9971+2(0.2377)= 1.511

(c) P(Z = 2) = P(X +Y = 2)

= P(X = 0 andY = 2)+P(X = 1 andY = 1)+P(X = 2 andY = 0)

= 0.07+0.16+0.02

= 0.25

15. (a)pY|X(0|3) =
pX,Y(3,0)

pX(3)
=

0.01
0.07

= 0.1429
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pY|X(1|3) =
pX,Y(3,1)

pX(3)
=

0.02
0.07

= 0.2858

pY|X(2|3) =
pX,Y(3,2)

pX(3)
=

0.02
0.07

= 0.2858

pY|X(3|3) =
pX,Y(3,3)

pX(3)
=

0.02
0.07

= 0.2858

(b) pX|Y(0|1) =
pX,Y(0,1)

pY(1)
=

0.10
0.34

= 0.2941

pX|Y(1|1) =
pX,Y(1,1)

pY(1)
=

0.16
0.34

= 0.4706

pX|Y(2|1) =
pX,Y(2,1)

pY(1)
=

0.06
0.34

= 0.1765

pX|Y(3|1) =
pX,Y(3,1)

pY(1)
=

0.02
0.34

= 0.0588

(c) E(Y |X = 3) = 0pY|X(0|3)+1pY|X(1|3)+2pY|X(2|3)+3pY|X(3|3) = 1.71.

(d) E(X |Y = 1) = 0pX|Y(0|1)+1pX|Y(1|1)+2pX|Y(2|1)+3pX|Y(3|1) = 1

17. (a) Cov(X,Y) = µXY−µXµY

µXY =
Z 2

1

Z 5

4

1
6

xy(x+y)dydx

=

Z 2

1

1
6

(
x2y2

2
+

xy3

3

) 5

4

dx

=

Z 2

1

1
6

(
9x2

2
+

61x
3

)
dx

=
1
6

(
3x3

2
+

61x2

6

) 2

1

=
41
6

fX(x) =
1
6

(
x+

9
2

)
for 1≤ x≤ 2 (see Example 2.55).

µX =

Z 2

1

1
6

x

(
x+

9
2

)
dx=

1
6

(
x3

3
+

9x2

4

) 2

1

=
109
72

.

fY(y) =
1
6

(
y+

3
2

)
for 4≤ y≤ 5 (see Example 2.55).
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µY =

Z 5

4

1
6

y

(
y+

3
2

)
dy=

1
6

(
y3

3
+

3y2

4

) 5

4

=
325
72

.

Cov(X,Y) = µXY−µXµY =
41
6

−
(

109
72

)(
325
72

)
= −0.000193.

(b) ρX,Y =
Cov(X,Y)

σXσY
.

σ2
X =

Z 2

1

1
6

x2
(

x+
9
2

)
dx−µ2

X =
1
6

(
x4

4
+

3x3

2

) 2

1

−
(

109
72

)2

= 0.08314.

σ2
Y =

Z 5

4

1
6

y2
(

y+
3
2

)
dx−µ2

Y =
1
6

(
y4

4
+

y3

2

) 5

4

−
(

325
72

)2

= 0.08314.

ρX,Y =
−0.000193√

(0.08314)(0.08314)
= −0.00232.

19. (a) Cov(X,Y) = µXY−µXµY.

µXY =

Z 1

0

Z 1

0
xy

3(x2 +y2)

2
dxdy

=

Z 1

0

(
3x4y

8
+

3x2y3

4

) 1

0

dy

=
Z 1

0

(
3y
8

+
3y3

4

)
dy

=

(
3y2

16
+

3y4

16

) 1

0

dy

=
3
8

µX =

Z 1

0
x

1+3x2

2
dx=

(
x2

4
+

3x4

8

) 1

0

=
5
8

.

µY =

Z 1

0
y

1+3y2

2
dy=

(
y2

4
+

3y4

8

) 1

0

=
5
8

.

Cov(X,Y) =
3
8
−
(

5
8

)2

= − 1
64

.

(b) ρX,Y =
Cov(X,Y)

σXσY
.
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σ2
X =

Z 1

0
x2 1+3x2

2
dx−µ2

X =

(
x3

6
+

3x5

10

) 1

0

−
(

5
8

)2

=
73
960

.

σ2
Y =

Z 1

0
y21+3y2

2
dy−µ2

Y =

(
y3

6
+

3y5

10

) 1

0

−
(

5
8

)2

=
73
960

.

ρX,Y =
−1/64√

73/960
√

73/960
= −15

73
.

(c) fY |X(y|0.5) =
fX,Y(0.5,y)

fX(0.5)
.

For 0< y < 1, fX,Y(0.5,y) =
3+12y2

8
, fX(0.5) =

7
8

.

So for 0< y < 1, fY |X(y|0.5) =
3+12y2

7

(d) E(Y |X = 0.5) =

Z 1

0
y fY |X(y|0.5)dy=

Z 1

0
y

3+12y2

7
dy=

3y2 +6y4

14

1

0

=
9
14

21. (a) The probability mass function ofY is the same as that ofX, so fY(y) = e−y if y > 0 and fY(y) = 0 if y ≤ 0.
SinceX andY are independent,f (x,y) = fX(x) fY(y).

Thereforef (x,y) =

{
e−x−y x > 0 andy > 0

0 otherwise

(b) P(X ≤ 1 andY > 1) = P(X ≤ 1)P(Y > 1)

=

(
Z 1

0
e−xdx

)(
Z ∞

1
e−y dy

)

=

(
−e−x

1

0

)(
−e−y

∞

1

)

= (1−e−1)(e−1)

= e−1−e−2

= 0.2325

(c) µX =
Z ∞

0
xe−xdx= −xe−x

∞

0

−
Z ∞

0
e−x dx= 0− (−e−x)

∞

0

= 0+1= 1
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(d) SinceX andY have the same probability mass function,µY = µX = 1.

ThereforeµX+Y = µX +µY = 1+1= 2.

(e) P(X +Y ≤ 2) =

Z ∞

−∞

Z 2−x

−∞
f (x,y)dydx

=

Z 2

0

Z 2−x

0
e−x−y dydx

=

Z 2

0
e−x

(
−e−y

2−x

0

)
dx

=

Z 2

0
e−x(1−ex−2)dx

=

Z 2

0
(e−x−e−2)dx

= (−e−x−xe−2)

2

0

= 1−3e−2

= 0.5940

23. (a)R= 0.3X +0.7Y

(b) µR = µ0.3X+0.7Y = 0.3µX +0.7µY = (0.3)(6)+ (0.7)(6) = 6.

The risk isσR = σ0.3X+0.7Y =
√

0.32σ2
X +0.72σ2

Y +2(0.3)(0.7)Cov(X,Y).

Cov(X,Y) = ρX,YσXσY = (0.3)(3)(3) = 2.7.

ThereforeσR =
√

0.32(32)+0.72(32)+2(0.3)(0.7)(2.7) = 2.52.

(c) µR = µ(0.01K)X+(1−0.01K)Y = (0.01K)µX +(1−0.01K)µY = (0.01K)(6)+ (1−0.01K)(6)= 6.

σR =
√

(0.01K)2σ2
X +(1−0.01K)2σ2

Y +2(0.01K)(1−0.01K)Cov(X,Y).

ThereforeσR=
√

(0.01K)2(32)+ (1−0.01K)2(32)+2(0.01K)(1−0.01K)(2.7)= 0.03
√

1.4K2−140K +10,000.

(d) σR is minimized when 1.4K2−140K +10000 is minimized.

Now
d

dK
(1.4K2−140K +10000) = 2.8K−140, so

d
dK

(1.4K2−140K +10000) = 0 if K = 50.

σR is minimized whenK = 50.

(e) For any correlationρ, the risk is 0.03
√

K2 +(100−K)2+2ρK(100−K).

If ρ 6= 1 this quantity is minimized whenK = 50.
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25. (a)σM1 =
√

σ2
M1 =

√
σ2

R+E1
=
√

σ2
R+ σ2

E1 =
√

22 +12 = 2.2361. Similarly,σM2 = 2.2361.

(b) µM1M2 = µR2+E1R+E2R+E1E2
= µR2 +µE1µR+µE2µR+µE1µE2 = µR2

(c) µM1µM2 = µR+E1µR+E2 = (µR+µE1)(µR+µE2) = µRµR = µ2
R

(d) Cov(M1,M2) = µM1M2 −µM1µM2 = µR2 −µ2
R = σ2

R

(e) ρM1,M2 =
Cov(M1,M2)

σM1σM2

=
σ2

R

σM1σM2

=
4

(2.2361)(2.2361)
= 0.8

27. (a) Cov(aX,bY) = µaX·bY−µaXµbY = µabXY−aµXbµY = abµXY−abµXµY

= ab(µXY−µXµY) = abCov(X,Y).

(b) ρaX,bY = Cov(aX,bY)/(σaXσbY) = abCov(X,Y)/(abσXσY) = Cov(X,Y)/(σXσY) = ρX,Y.

29. (a)V(X− (σX/σY)Y) = σ2
X +(σX/σY)2σ2

Y −2(σX/σY)Cov(X,Y)

= 2σ2
X −2(σX/σY)Cov(X,Y)

(b) V(X− (σX/σY)Y) ≥ 0

2σ2
X −2(σX/σY)Cov(X,Y) ≥ 0

2σ2
X −2(σX/σY)ρX,YσXσY ≥ 0

2σ2
X −2ρX,Yσ2

X ≥ 0

1−ρX,Y ≥ 0

ρX,Y ≤ 1

(c) V(X +(σX/σY)Y) ≥ 0

2σ2
X +2(σX/σY)Cov(X,Y) ≥ 0

2σ2
X +2(σX/σY)ρX,YσXσY ≥ 0

2σ2
X +2ρX,Yσ2

X ≥ 0

1+ ρX,Y ≥ 0

ρX,Y ≥ −1
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31. µY = µ7.84C+11.44N+O−1.58Fe

= 7.84µC +11.44µN +µO−1.58µFe

= 7.84(0.0247)+11.44(0.0255)+0.1668−1.58(0.0597)

= 0.5578

σ2
Y = σ2

7.84C+11.44N+O−1.58Fe

= 7.842σ2
C +11.442σ2

N + σ2
O +1.582σ2

Fe+2(7.84)(11.44)Cov(C,N)+2(7.84)Cov(C,O)−2(7.84)(1.58)Cov(C,Fe)

+2(11.44)Cov(N,O)−2(11.44)(1.58)Cov(N,Fe)−2(1.58)Cov(O,Fe)

= 7.842(0.0131)2+11.442(0.0194)2+0.03402+1.582(0.0413)2+2(7.84)(11.44)(−0.0001118)

+2(7.84)(0.0002583)−2(7.84)(1.58)(0.0002110)+2(11.44)(−0.0002111)−2(11.44)(1.58)(0.00007211)

−2(1.58)(0.0004915)

= 0.038100

σ =
√

0.038100= 0.1952

33. (a)
R ∞
−∞

R ∞
−∞ f (x,y)dxdy=

R d
c

R b
a kdxdy= k

R d
c

R b
a dxdy= k(d−c)(b−a) = 1.

Thereforek =
1

(b−a)(d−c)
.

(b) fX(x) =
R d

c kdy=
d−c

(b−a)(d−c)
=

1
b−a

(c) fY(y) =
R b

a kdx=
b−a

(b−a)(d−c)
=

1
d−c

(d) f (x,y) =
1

(b−a)(d−c)
=

(
1

b−a

)(
1

d−c

)
= fX(x) fY(y)

Supplementary Exercises for Chapter 2

1. LetA be the event that component A functions, letB be the event that component B functions, letC be the event
that component C functions, and letD be the event that component D functions. ThenP(A) = 1−0.1 = 0.9,
P(B) = 1−0.2 = 0.8, P(C) = 1−0.05= 0.95, andP(D) = 1−0.3= 0.7. The event that the system functions
is (A∪B)∪ (C∪D).

P(A∪B) = P(A)+P(B)−P(A∩B)= P(A)+P(B)−P(A)P(B) = 0.9+0.8− (0.9)(0.8)= 0.98.
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P(C∪D) = P(C)+P(D)−P(C∩D) = P(C)+P(D)−P(C)P(D) = 0.95+0.7− (0.95)(0.7)= 0.985.

P[(A∪B)∪ (C∪D)] = P(A∪B)+P(C∪D)−P(A∪B)P(C∪D) = 0.98+0.985− (0.98)(0.985)= 0.9997.

3. LetA denote the event that the resistance is above specification,and letB denote the event that the resistance is
below specification. ThenA andB are mutually exclusive.

(a) P(doesn’t meet specification) =P(A∪B) = P(A)+P(B) = 0.05+0.10= 0.15

(b) P[B|(A∪B)] =
P[(B∩ (A∪B)]

P(A∪B)
=

P(B)

P(A∪B)
=

0.10
0.15

= 0.6667

5. Let R be the event that the shipment is returned. LetB1 be the event that the first brick chosen meets the
specification, letB2 be the event that the second brick chosen meets the specification, letB3 be the event that
the third brick chosen meets the specification, and letB4 be the event that the fourth brick chosen meets the
specification. Since the sample size of 4 is a small proportion of the population, it is reasonable to treat these
events as independent, each with probability 0.9.

P(R) = 1−P(Rc) = 1−P(B1∩B2∩B3∩B4) = 1− (0.9)4 = 0.3439.

7. Let A be the event that the bit is reversed at the first relay, and letB be the event that the bit is reversed at
the second relay. ThenP(bit received is the same as the bit sent) = P(Ac ∩Bc) + P(A∩B) = P(Ac)P(Bc) +
P(A)P(B) = 0.92+0.12 = 0.82.

9. Let A be the event that two different numbers come up, and letB be the event that one of the dice comes up
6. ThenA contains 30 equally likely outcomes (6 ways to choose the number for the first die times 5 ways to
choose the number for the second die). Of these 30 outcomes, 10 belong toB, specifically (1,6), (2,6), (3,6),
(4,6), (5,6), (6,1), (6,2), (6,3), (6,4), and (6,5). ThereforeP(B|A) = 10/30= 1/3.
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11. (a)P(X ≤ 2 andY ≤ 3) =
Z 2

0

Z 3

0

1
6

e−x/2−y/3dydx

=

Z 2

0

1
2

e−x/2

(
−e−y/3

3

0

)
dx

=

Z 2

0

1
2

e−x/2(1−e−1)dx

= (e−1−1)e−x/2
2

0

= (1−e−1)2

= 0.3996

(b) P(X ≥ 3 andY ≥ 3) =

Z ∞

3

Z ∞

3

1
6

e−x/2−y/3dydx

=

Z ∞

3

1
2

e−x/2

(
−e−y/3

∞

3

)
dx

=

Z ∞

3

1
2

e−x/2e−1dx

= −e−1e−x/2
∞

3

= e−5/2

= 0.0821

(c) If x≤ 0, f (x,y) = 0 for all y so fX(x) = 0.

If x > 0, fX(x) =

Z ∞

0

1
6

e−x/2−y/3dy=
1
2

e−x/2

(
−e−y/3

∞

0

)
=

1
2

e−x/2.

ThereforefX(x) =

{ 1
2

e−x/2 x > 0

0 x≤ 0

(d) If y≤ 0, f (x,y) = 0 for all x so fY(y) = 0.

If y > 0, fY(y) =
Z ∞

3

1
6

e−x/2−y/3dx=
1
3

e−y/3

(
−e−x/2

∞

0

)
=

1
3

e−y/3.

ThereforefY(y) =

{ 1
3

e−y/3 y > 0

0 y≤ 0
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(e) Yes, f (x,y) = fX(x) fY(y).

13. Let D denote the event that a snowboard is defective, letE denote the event that a snowboard is made in
the eastern United States, letW denote the event that a snowboard is made in the western United States, and
let C denote the event that a snowboard is made in Canada. ThenP(E) = P(W) = 10/28, P(C) = 8/28,
P(D|E) = 3/100,P(D|W) = 6/100, andP(D|C) = 4/100.

(a) P(D) = P(D|E)P(E)+P(D|W)P(W)+P(D|C)P(C)

=

(
10
28

)(
3

100

)
+

(
10
28

)(
6

100

)
+

(
8
28

)(
4

100

)

=
122
2800

= 0.0436

(b) P(D∩C) = P(D|C)P(C) =

(
8
28

)(
4

100

)
=

32
2800

= 0.0114

(c) LetU be the event that a snowboard was made in the United States.

ThenP(D∩U) = P(D)−P(D∩C) =
122
2800

− 32
2800

=
90

2800
.

P(U |D) =
P(D∩U)

P(D)
=

90/2800
122/2800

=
90
122

= 0.7377.

15. The total number of pairs of cubicles is
(6

2

)
= 6!

2!4! = 15. Each is equally likely to be chosen. Of these pairs,
five are adjacent (1 and 2, 2 and 3, 3 and 4, 4 and 5, 5 and 6). Therefore the probability that an adjacent pair of
cubicles is selected is 5/15, or 1/3.

17. (a)µ3X = 3µX = 3(2) = 6, σ2
3X = 32σ2

X = (32)(12) = 9

(b) µX+Y = µX +µY = 2+2= 4, σ2
X+Y = σ2

X + σ2
Y = 12 +32 = 10

(c) µX−Y = µX −µY = 2−2= 0, σ2
X−Y = σ2

X + σ2
Y = 12 +32 = 10
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(d) µ2X+6Y = 2µX +6µY = 2(2)+6(2) = 16, σ2
2X+6Y = 22σ2

X +62σ2
Y = (22)(12)+ (62)(32) = 328

19. The marginal probability mass functionpX(x) is found by summing along the rows of the joint probability
mass function.

y
x 100 150 200 pX(x)

0.02 0.05 0.06 0.11 0.22
0.04 0.01 0.08 0.10 0.19
0.06 0.04 0.08 0.17 0.29
0.08 0.04 0.14 0.12 0.30
pY(y) 0.14 0.36 0.50

(a) For additive concentration(X): pX(0.02) = 0.22, pX(0.04) = 0.19, pX(0.06) = 0.29, pX(0.08) = 0.30, and
pX(x) = 0 for x 6= 0.02, 0.04, 0.06, or 0.08.

For tensile strength(Y): The marginal probability mass functionpY(y) is found by summing down the columns
of the joint probability mass function. ThereforepY(100) = 0.14, pY(150) = 0.36, pY(200) = 0.50, and
pY(y) = 0 for y 6= 100, 150, or 200.

(b) No,X andY are not independent. For exampleP(X = 0.02∩Y = 100) = 0.05, but
P(X = 0.02)P(Y = 100) = (0.22)(0.14) = 0.0308.

(c) P(Y ≥ 150|X = 0.04) =
P(Y ≥ 150 andX = 0.04)

P(X = 0.04)

=
P(Y = 150 andX = 0.04)+P(Y = 200 andX = 0.04)

P(X = 0.04)

=
0.08+0.10

0.19
= 0.947

(d) P(Y > 125|X = 0.08) =
P(Y > 125 andX = 0.08)

P(X = 0.08)

=
P(Y = 150 andX = 0.08)+P(Y = 200 andX = 0.08)

P(X = 0.08)

=
0.14+0.12

0.30
= 0.867

(e) The tensile strength is greater than 175 ifY = 200. Now
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P(Y = 200|X = 0.02) =
P(Y = 200 andX = 0.02)

P(X = 0.02)
=

0.11
0.22

= 0.500,

P(Y = 200|X = 0.04) =
P(Y = 200 andX = 0.04)

P(X = 0.04)
=

0.10
0.19

= 0.526,

P(Y = 200|X = 0.06) =
P(Y = 200 andX = 0.06)

P(X = 0.06)
=

0.17
0.29

= 0.586,

P(Y = 200|X = 0.08) =
P(Y = 200 andX = 0.08)

P(X = 0.08)
=

0.12
0.30

= 0.400.

The additive concentration should be 0.06.

21. (a)pY|X(100|0.06) =
p(0.06,100)

pX(0.06)
=

0.04
0.29

=
4
29

= 0.138

pY|X(150|0.06) =
p(0.06,150)

pX(0.06)
=

0.08
0.29

=
8
29

= 0.276

pY|X(200|0.06) =
p(0.06,200)

pX(0.06)
=

0.17
0.29

=
17
29

= 0.586

(b) pX|Y(0.02|100) =
p(0.02,100)

pY(100)
=

0.05
0.14

=
5
14

= 0.357

pX|Y(0.04|100) =
p(0.04,100)

pY(100)
=

0.01
0.14

=
1
14

= 0.071

pX|Y(0.06|100) =
p(0.06,100)

pY(100)
=

0.04
0.14

=
4
14

= 0.286

pX|Y(0.08|100) =
p(0.08,100)

pY(100)
=

0.04
0.14

=
4
14

= 0.286

(c) E(Y |X = 0.06) = 100pY|X(100|0.06)+150pY|X(150|0.06)+200pY|X(200|0.06)

= 100(4/29)+150(8/29)+200(17/29)

= 172.4

(d) E(X |Y = 100) = 0.02pX|Y(0.02|100)+0.04pX|Y(0.04|100)+0.06pX|Y(0.06|100)+0.08pX|Y(0.08|100)

= 0.02(5/14)+0.04(1/14)+0.06(4/14)+0.08(4/14)

= 0.0500
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23. (a) Under scenario A:

µ= 0(0.65)+5(0.2)+15(0.1)+25(0.05)= 3.75

σ =
√

02(0.65)+52(0.2)+152(0.1)+252(0.05)−3.752 = 6.68

(b) Under scenario B:

µ= 0(0.65)+5(0.24)+15(0.1)+20(0.01)= 2.90

σ =
√

02(0.65)+52(0.24)+152(0.1)+202(0.01)−2.902 = 4.91

(c) Under scenario C:

µ= 0(0.65)+2(0.24)+5(0.1)+10(0.01)= 1.08

σ =
√

02(0.65)+22(0.24)+52(0.1)+102(0.01)−1.082 = 1.81

(d) LetL denote the loss.

Under scenario A,P(L < 10) = P(L = 0)+P(L = 5) = 0.65+0.2= 0.85.

Under scenario B,P(L < 10) = P(L = 0)+P(L = 5) = 0.65+0.24= 0.89.

Under scenario C,P(L < 10) = P(L = 0)+P(L = 2)+P(L = 5) = 0.65+0.24+0.1= 0.99.

25. (a)p(0,0) = P(X = 0 andY = 0) =

(
3
10

)(
2
9

)
=

1
15

= 0.0667

p(1,0) = P(X = 1 andY = 0) =

(
4
10

)(
3
9

)
+

(
3
10

)(
4
9

)
=

4
15

= 0.2667

p(2,0) = P(X = 2 andY = 0) =

(
4
10

)(
3
9

)
=

2
15

= 0.1333

p(0,1) = P(X = 0 andY = 1) =

(
3
10

)(
3
9

)
+

(
3
10

)(
3
9

)
=

3
15

= 0.2000

p(1,1) = P(X = 1 andY = 1) =

(
4
10

)(
3
9

)
+

(
3
10

)(
4
9

)
=

4
15

= 0.2667

p(0,2) = P(X = 0 andY = 2) =

(
3
10

)(
2
9

)
=

1
15

= 0.0667

p(x,y) = 0 for all other pairs(x,y).

The joint probability mass function is

y
x 0 1 2
0 0.0667 0.2000 0.0667
1 0.2667 0.2667 0
2 0.1333 0 0
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(b) The marginal probability density function ofX is:

pX(0) = p(0,0)+ p(0,1)+ p(0,2)=
1
15

+
3
15

+
1
15

=
1
3

pX(1) = p(1,0)+ p(1,1) =
4
15

+
4
15

=
8
15

.

pX(2) = p(2,0) =
2
15

µX = 0pX(0)+1pX(1)+2pX(2) = 0

(
1
3

)
+1

(
8
15

)
+2

(
2
15

)
=

12
15

= 0.8

(c) The marginal probability density function ofY is:

pY(0) = p(0,0)+ p(1,0)+ p(2,0)=
1
15

+
4
15

+
2
15

=
7
15

pY(1) = p(0,1)+ p(1,1) =
3
15

+
4
15

=
7
15

.

pY(2) = p(0,2) =
1
15

µY = 0pY(0)+1pY(1)+2pY(2) = 0

(
7
15

)
+1

(
7
15

)
+2

(
1
15

)
=

9
15

= 0.6

(d) σX =
√

02pX(0)+12pX(1)+22pX(2)−µ2
X

=
√

02(1/3)+12(8/15)+22(2/15)− (12/15)2

=
√

96/225= 0.6532

(e) σY =
√

02pY(0)+12pY(1)+22pY(2)−µ2
Y

=
√

02(7/15)+12(7/15)+22(1/15)− (9/15)2

=
√

84/225= 0.6110

(f) Cov(X,Y) = µXY−µXµY.

µXY = (0)(0)p(0,0)+ (1)(0)p(1,0)+ (2)(0)p(2,0)+(0)(1)p(0,1)+(1)(1)p(1,1)+(0)(2)p(0,2)

= (1)(1)
4
15

=
4
15

Cov(X,Y) =
4
15

−
(

12
15

)(
9
15

)
= − 48

225
= −0.2133
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(g) ρX,Y =
Cov(X,Y)

σXσY
=

−48/225√
96/225

√
84/225

= −0.5345

27. (a)µX =

Z ∞

−∞
x fX(x)dx=

Z 1

0
x

6x2 +6x+2
7

dx=
1
14

(3x4 +4x3+2x2)

1

0

=
9
14

= 0.6429

(b) σ2
X =

Z 1

0
x2 6x2 +6x+2

7
dx−µ2

X =
1
7

(
6x5

5
+

3x4

2
+

2x3

3

) 1

0

−
(

9
14

)2

=
199
2940

= 0.06769

(c) Cov(X,Y) = µXY−µXµY.

µXY =
Z 1

0

Z 1

0
xy

(
6
7

)
(x+y)2dxdy

=

Z 1

0

6
7

y

(
x4

4
+

2x3y
3

+
x2y2

2

1

0

)
dy

=
Z 1

0

6
7

(
y3

2
+

2y2

3
+

y
4

)
dy

=
6
7

(
y2

8
+

2y3

9
+

y4

8

) 1

0

=
17
42

µX =
9
14

, computed in part (a). To computeµY, note that the joint density is symmetric inx andy, so the

marginal density ofY is the same as that ofX. It follows thatµY = µX =
9
14

.

Cov(X,Y) =
17
42

−
(

9
14

)(
9
14

)
=

−5
588

= −0.008503.

(d) Since the marginal density ofY is the same as that ofX, σ2
Y = σ2

X =
199
2940

.

ThereforeρX,Y =
Cov(X,Y)

σXσY
=

−5/588√
199/2940

√
199/2940

=
−25
199

= −0.1256.

29. (a)pX(0) = 0.6, pX(1) = 0.4, pX(x) = 0 if x 6= 0 or 1.
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(b) pY(0) = 0.4, pY(1) = 0.6, pY(y) = 0 if y 6= 0 or 1.

(c) Yes. It is reasonable to assume that knowledge of the outcome of one coin will not help predict the outcome of
the other.

(d) p(0,0) = pX(0)pY(0) = (0.6)(0.4) = 0.24, p(0,1) = pX(0)pY(1) = (0.6)(0.6) = 0.36,

p(1,0) = pX(1)pY(0) = (0.4)(0.4) = 0.16, p(1,1) = pX(1)pY(1) = (0.4)(0.6) = 0.24,

p(x,y) = 0 for other values of(x,y).

31. (a) The possible values of the pair(X,Y) are the ordered pairs(x,y) where each ofx andy is equal to 1, 2, or 3.
There are nine such ordered pairs, and each is equally likely. ThereforepX,Y(x,y) = 1/9 for x = 1,2,3 and
y = 1,2,3, andpX,Y(x,y) = 0 for other values of(x,y).

(b) BothX andY are sampled from the numbers{1,2,3}, with each number being equally likely.

ThereforepX(1) = pX(2) = pX(3) = 1/3, andpX(x) = 0 for other values ofx. pY is the same.

(c) µX = µY = 1(1/3)+2(1/3)+3(1/3)= 2

(d) µXY = ∑3
x=1 ∑3

y=1 xypX,Y(x,y) =
1
9

3

∑
x=1

3

∑
y=1

xy=
1
9
(1+2+3)(1+2+3)= 4.

Another way to computeµXY is to note thatX andY are independent, soµXY = µXµY = (2)(2) = 4.

(e) Cov(X, Y) = µXY−µXµY = 4− (2)(2) = 0

33. (a)µX =
R ∞
−∞ x f(x)dx. Sincef (x) = 0 for x≤ 0, µX =

R ∞
0 x f(x)dx.

(b) µX =
R ∞

0 x f(x)dx≥
R ∞

k x f(x)dx≥
R ∞

k k f(x)dx= kP(X ≥ k)

(c) µX/k≥ kP(X ≥ k)/k = P(X ≥ k)

(d) µX = µ(Y−µY)2 = σ2
Y

(e) P(|Y−µY| ≥ kσY) = P((Y−µY)2 ≥ k2σ2
Y) = P(X ≥ k2σ2

Y)

(f) P(|Y−µY| ≥ kσY) = P(X ≥ k2σ2
Y) ≤ µX/(k2σ2

Y) = σ2
Y/(k2σ2

Y) = 1/k2
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35. (a) If the pooled test is negative, it is the only test performed, soX = 1. If the pooled test is positive, thenn
additional tests are carried out, one for each individual, so X = n+1. The possible values ofX are therefore 1
andn+1.

(b) The possible values ofX are 1 and 5. NowX = 1 if the pooled test is negative. This occurs if none of the
individuals has the disease. The probability that this occurs is (1− 0.1)4 = 0.6561. ThereforeP(X = 1) =
0.6561. It follows thatP(X = 5) = 0.3439.
SoµX = 1(0.6561)+5(0.3439)= 2.3756.

(c) The possible values ofX are 1 and 7. NowX = 1 if the pooled test is negative. This occurs if none of the
individuals has the disease. The probability that this occurs is (1−0.2)6 = 0.262144. ThereforeP(X = 1) =
0.262144. It follows thatP(X = 7) = 0.737856.
SoµX = 1(0.262144)+7(0.737856)= 5.4271.

(d) The possible values ofX are 1 andn+1. NowX = 1 if the pooled test is negative. This occurs if none of the
individuals has the disease. The probability that this occurs is (1− p)n. ThereforeP(X = 1) = (1− p)n. It
follows thatP(X = n+1) = 1− (1− p)n.
SoµX = 1(1− p)n+(n+1)(1− (1− p)n) = n+1−n(1− p)n.

(e) The pooled method is more economical if 11−10(1− p)10< 10. Solving forp yields p < 0.2057.
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Chapter 3

Section 3.1

1. (ii). The measurements are close together, and thus precise, but they are far from the true value of 100◦C, and
thus not accurate.

3. (a) True

(b) False

(c) False

(d) True

5. (a) No, we cannot determine the standard deviation of the process from a single measurement.

(b) Yes, the bias can be estimated to be 2 pounds, because the reading is 2 pounds when the true weight is 0.

7. (a) Yes, the uncertainty can be estimated with the standard deviation of the five measurements, which is 21.3µg.

(b) No, the bias cannot be estimated, since we do not know the true value.

9. We can get a more accurate estimate by subtracting the biasof 26.2µg, obtaining 100.8µg above 1 kg.

11. (a) No, they are in increasing order, which would be highly unusual for a simple random sample.

(b) No, since they are not a simple random sample from a population of possible measurements, we cannot estimate
the uncertainty.
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Section 3.2

1. (a)σ4X = 4σX = 4(0.3) = 1.2

(b) σX−2Y =
√

σ2
X +22σ2

Y =
√

0.32+(22)(0.22) = 0.5

(c) σ2X−3Y =
√

22σ2
X +32σ2

Y =
√

(22)(0.32)+ (32)(0.22) = 0.8485

3. Letn be the necessary number of measurements. ThenσX = 3/
√

n = 1. Solving forn yieldsn = 9.

5. LetX represent the estimated mean annual level of land uplift forthe years 1774–1884, and letY represent the
estimated mean annual level of land uplift for the years 1885–1984. ThenX = 4.93,Y = 3.92,σX = 0.23, and
σY = 0.19. The difference isX−Y = 1.01 mm.

The uncertainty isσX−Y =
√

σ2
X + σ2

Y =
√

0.232+0.192 = 0.30 mm.

7. d = 3, F = 2.2, σF = 0.1.

W = Fd = (2.2)(3) = 6.6Nm.

σW = σ3F = 3σF = 3(0.1) = 0.3Nm.

9. DW = 1000,DS = 500,σDS = 5.

G = DS/DW = 500/1000= 0.5

σG = σ0.001DS = 0.001σDS = 0.001(5) = 0.005 kg/m3.

11. (a)Ta = 36,k = 0.025,t = 10,T0 = 72,σT0 = 0.5

T = Ta +(T0−Ta)e−kt = 36+0.7788(T0−36) = 36+0.7788(72−36)= 64.04◦F

σT = σTa+(T0−Ta)e−kt = σ36+0.7788(T0−36) = σ0.7788(T0−36) = 0.7788σ(T0−36) = 0.7788σT0 = 0.7788(0.5) = 0.39◦F

(b) T0 = 72,k = 0.025,t = 10,Ta = 36,σTa = 0.5

T = Ta +(T0−Ta)e−kt = Ta +0.7788(72−Ta) = 56.074+0.2212Ta = 56.074+0.2212(36)= 64.04◦F

σT = σ56.074+0.2212Ta = σ0.2212Ta = 0.2212σTa = 0.2212(0.5) = 0.11◦F
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13. (a) The uncertainty in the average of 9 measurements is approximately equal to
s/
√

9 = 0.081/3= 0.027 cm.

(b) The uncertainty in a single measurement is approximately equal tos, which is 0.081 cm.

15. (a) LetX = 87.0 denote the average of the eight measurements, lets= 2.0 denote the sample standard deviation,
and letσ denote the unknown population standard deviation. The volume is estimated withX. The uncertainty
is σX = σ/

√
8≈ s/

√
8 = 2.0/

√
8 = 0.7 mL.

(b) σX ≈ s/
√

16= 2.0/
√

16= 0.5 mL

(c) Letn be the required number of measurements. Thenσ/
√

n = 0.4.
Approximatingσ with s= 2.0 yields 2.0/

√
n≈ 0.4, son≈ 25.

17. LetX denote the average of the 10 yields at 65◦C, and letY denote the average of the 10 yields at 80◦C. LetsX

denote the sample standard deviation of the 10 yields at 65◦C, and letsY denote the sample standard deviation
of the 10 yields at 80◦C. ThenX = 70.14,sX = 0.897156,Y = 90.50,sY = 0.794425.

(a) At 65◦C, the yield isX±sX/
√

10= 70.14±0.897156/
√

10= 70.14±0.28.

At 80◦C, the yield isY±sY/
√

10= 90.50±0.794425/
√

10= 90.50±0.25.

(b) The difference is estimated withY−X = 90.50−70.14= 20.36.

The uncertainty isσY−X =
√

σ2
Y

+ σ2
X

=
√

0.252+0.282 = 0.38.

19. (a) LetσX = 0.05 denote the uncertainty in the instrument. ThenσX = σX/
√

10= 0.05/
√

10= 0.016.

(b) Let σY = 0.02 denote the uncertainty in the instrument. ThenσY = σY/
√

5 = 0.02/
√

5 = 0.0089.

(c) The uncertainty in12X + 1
2Y is

σ0.5X+0.5Y =
√

0.52σ2
X

+0.52σ2
Y

=
√

0.52(0.052/10)+0.52(0.022/5) = 0.0091.

The uncertainty in10
15X + 5

15Y is

σ(2/3)X+(1/3)Y =
√

(2/3)2σ2
X

+(1/3)2σ2
Y

=
√

(2/3)2(0.052/10)+ (1/3)2(0.022/5) = 0.011.

The uncertainty in1
2X + 1

2Y is smaller.
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(d) cbest=
σ2

Y

σ2
X

+ σ2
Y

=
0.022/5

0.052/10+0.022/5
= 0.24.

The minimum uncertainty is
√

c2
bestσ2

X
+(1−cbest)2σ2

Y
= 0.0078.

Section 3.3

1. X = 2.0, σX = 0.3.

(a)
dY
dX

= 3X2 = 12, σY =

∣∣∣∣
dY
dX

∣∣∣∣σX = 3.6

(b)
dY
dX

=
1√
2X

= 0.5, σY =

∣∣∣∣
dY
dX

∣∣∣∣σX = 0.15

(c)
dY
dX

=
−3
X2 = −0.75, σY =

∣∣∣∣
dY
dX

∣∣∣∣σX = 0.225

(d)
dY
dX

=
1
X

= 0.5, σY =

∣∣∣∣
dY
dX

∣∣∣∣σX = 0.15

(e)
dY
dX

= eX = e2 = 7.389, σY =

∣∣∣∣
dY
dX

∣∣∣∣σX = 2.217

(f)
dY
dX

= −sinX = −sin2= 0.909297, σY =

∣∣∣∣
dY
dX

∣∣∣∣σX = 0.273

3. h = 6, r = 5, σr = 0.02,V = πr2h/3 = 157.0796.

dV
dr

= 2πrh/3= 62.8319 σV =

∣∣∣∣
dV
dr

∣∣∣∣σr = 62.8319(0.02) = 1.3 cm3.
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5. (a)g = 9.80,L = 0.742,σL = 0.005,T = 2π
√

L/g = 2.00709
√

L = 1.7289

dT
dL

= 1.003545L−1/2 = 1.165024 σT =

∣∣∣∣
dT
dL

∣∣∣∣σL = 0.0058

T = 1.7289±0.0058 s

(b) L = 0.742,T = 1.73,σT = 0.01,g = 4π2LT−2 = 29.292986T−2 = 9.79

dg
dT

= −58.5860T−3 = −11.315 σT =

∣∣∣∣
dg
dT

∣∣∣∣σT = 0.11

g = 9.79±0.11 m/s2

7. (a)g = 9.80,d = 0.15, l = 30.0, h = 5.33,σh = 0.02,F =
√

gdh/4l = 0.110680
√

h = 0.2555

dF
dh

= 0.055340h−1/2 = 0.023970 σF =

∣∣∣∣
dF
dh

∣∣∣∣σh = 0.0005

F = 0.2555±0.0005 m/s

(b) g = 9.80, l = 30.0, h = 5.33,d = 0.15,σd = 0.03,F =
√

gdh/4l = 0.659760
√

d = 0.2555

dF
dh

= 0.329880d−1/2 = 0.851747 σF =

∣∣∣∣
dF
dd

∣∣∣∣σd = 0.026

F = 0.256±0.026 m/s

Note thatF is given to only three significant digits in the final answer, in order to keep the uncertainty to no
more than two significant digits.

(c) g = 9.80,d = 0.15,h = 5.33, l = 30.00,σl = 0.04,F =
√

gdh/4l = 1.399562l−1/2 = 0.2555

dF
dl

= −0.699781l−3/2 = −0.00425873 σF =

∣∣∣∣
dF
dl

∣∣∣∣σl = 0.0002

F = 0.2555±0.0002 m/s

9. m= 750,V0 = 500.0,V1 = 813.2, σV0 = σV1 = 0.1, D =
m

V1−V0
=

750
V1−V0

= 2.3946.

Let V = V1−V0. ThenV = 813.2−500.0= 313.2, and

σV = σV1−V0 =
√

σ2
V1

+ σ2
V0

=
√

0.12+0.12 = 0.141421.

Now
dD
dV

= −750
V2 = −0.007646, σD =

∣∣∣∣
dD
dV

∣∣∣∣σV = 0.0011.

D = 2.3946±0.0011 g/mL
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11. (a) The relative uncertainty is 0.4/20.9 = 1.9%

(b) The relative uncertainty is 0.8/15.1 = 5.3%

(c) The relative uncertainty is 23/388 = 5.9%

(d) The relative uncertainty is 0.009/2.465 = 0.37%

13. s= 2.2, t = 0.67,σt = 0.02,g = 2s/t2 = 4.4/t2 = 9.802

lng = ln4.4−2lnt,
d lng

dt
= −2/t = −2.985, σlng =

∣∣∣∣
d lng

dt

∣∣∣∣σt = 0.060

g = 9.802 m/s2 ± 6.0%

15. (a)g = 9.80,L = 0.855,σL = 0.005,T = 2π
√

L/g = 2.00709
√

L = 1.85588

lnT = ln2.00709+0.5lnL,
d lnT

dL
= 0.5/L = 0.584795, σlnT =

∣∣∣∣
d lnT

dL

∣∣∣∣σL = 0.0029

T = 1.856 s± 0.29%

(b) L = 0.855,T = 1.856,σT = 0.005,g = 4π2LT−2 = 33.754047T−2 = 9.799

lng = ln33.754047−2lnT,
d lng
dT

= −2/T = −1.0776, σlng =

∣∣∣∣
d lng
dT

∣∣∣∣σT = 0.0054

g = 9.799 m/s2 ± 0.54%

17. (a)g = 9.80,d = 0.20, l = 35.0, h = 4.51,σh = 0.03,F =
√

gdh/4l = 0.118332
√

h = 0.2513

lnF = ln0.118332+0.5lnh,
d lnF

dh
= 0.5/h= 0.110865, σlnF =

∣∣∣∣
d lnF

dh

∣∣∣∣σh = 0.0033

F = 0.2513 m/s± 0.33%

(b) g = 9.80, l = 35.0, h = 4.51,d = 0.20,σd = 0.008,F =
√

gdh/4l = 0.561872
√

d = 0.2513

lnF = ln0.561872+0.5lnd,
d lnF

dd
= 0.5/d = 2.5, σlnF =

∣∣∣∣
d lnF

dd

∣∣∣∣σd = 0.02
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F = 0.2513 m/s± 2.0%

(c) g = 9.80,d = 0.20,h = 4.51, l = 35.00,σl = 0.4, F =
√

gdh/4l = 1.486573l−1/2 = 0.2513

lnF = ln1.486573−0.5lnl ,
d lnF

dl
= −0.5/l = −0.014286, σlnF =

∣∣∣∣
d lnF

dl

∣∣∣∣σl = 0.0057

F = 0.2513 m/s± 0.57%

19. m= 288.2,V0 = 400.0,V1 = 516.0, σV0 = 0.1, σV1 = 0.2, D =
m

V1−V0
=

288.2
V1−V0

= 2.484

Let V = V1−V0. ThenV = 516.0−400.0= 116.0, and

σV = σV1−V0 =
√

σ2
V1

+ σ2
V0

=
√

0.12+0.22 = 0.223607

lnD = ln288.2− lnV,
d lnD
dV

= −1/V = −0.008621, σlnD =

∣∣∣∣
d lnD
dV

∣∣∣∣σV = 0.0019.

D = 2.484 g/mL± 0.19%

Section 3.4

1. (a)X = 10.0, σX = 0.5,Y = 5.0, σY = 0.1,U = XY2 = 250

∂U
∂X

= Y2 = 25.0,
∂U
∂Y

= 2XY = 100.0, σU =

√(
∂U
∂X

)2

σ2
X +

(
∂U
∂Y

)2

σ2
Y = 16.0

U = 250±16

(b) X = 10.0, σX = 0.5,Y = 5.0, σY = 0.1,U = X2 +Y2 = 125

∂U
∂X

= 2X = 20.0,
∂U
∂Y

= 2Y = 10.0, σU =

√(
∂U
∂X

)2

σ2
X +

(
∂U
∂Y

)2

σ2
Y = 10.0

U = 125±10

(c) X = 10.0, σX = 0.5,Y = 5.0, σY = 0.1,U = (X +Y2)/2 = 17.50

∂U
∂X

= 1/2,
∂U
∂Y

= Y = 5.0, σU =

√(
∂U
∂X

)2

σ2
X +

(
∂U
∂Y

)2

σ2
Y = 0.56

U = 17.50±0.56
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3. (a)s= 55.2, θ = 0.50,σs = 0.1, σθ = 0.02,h = stanθ = 30.1559
∂h
∂s

= tanθ = 0.5463,
∂h
∂θ

= ssec2 θ = 71.6742

σh =

√(
∂h
∂s

)2

σ2
s +

(
∂h
∂θ

)2

σ2
θ = 1.4345

h = 30.2±1.4

(b) σh =

√(
∂h
∂s

)2

σ2
s +

(
∂h
∂θ

)2

σ2
θ ,

∂h
∂s

= 0.5463,
∂h
∂θ

= 71.6742

If σs = 0.05 andσθ = 0.02, thenσh = 1.43.

If σs = 0.1 andσθ = 0.01, thenσh = 0.72.

Reducing the uncertainty inθ to 0.01 radians provides the greater reduction.

5. (a)P1 = 10.1, σP1 = 0.3, P2 = 20.1, σP2 = 0.4, P3 =
√

P1P2 = 14.25

∂P3

∂P1
= 0.5

√
P2/P1 = 0.705354

∂P3

∂P2
= 0.5

√
P1/P2 = 0.354432

σP3 =

√(
∂P3

∂P1

)2

σ2
P1

+

(
∂P3

∂P2

)2

σ2
P2

= 0.25

P3 = 14.25±0.25 MPa

(b) σP3 =

√(
∂P3

∂P1

)2

σ2
P1

+

(
∂P3

∂P2

)2

σ2
P2

,
∂P3

∂P1
= 0.705354,

∂P3

∂P2
= 0.354432

If σP1 = 0.2 andσP2 = 0.4, thenσP3 = 0.20.

If σP1 = 0.3 andσP2 = 0.2, thenσP3 = 0.22.

Reducing the uncertainty inP1 to 0.2 MPa provides the greater reduction.

7. (a) p = 2.3, σp = 0.2, q = 3.1, σq = 0.2, f = pq/(p+q) = 1.320

∂ f
∂p

= q2/(p+q)2 = 0.329561

∂ f
∂q

= p2/(p+q)2 = 0.181413

σ f =

√(
∂ f
∂p

)2

σ2
p +

(
∂ f
∂q

)2

σ2
q = 0.075

f = 1.320±0.075 cm
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(b) σ f =

√(
∂ f
∂p

)2

σ2
p +

(
∂ f
∂q

)2

σ2
q ,

∂ f
∂p

= 0.329561,
∂ f
∂q

= 0.181413

If σp = 0.1 andσq = 0.2, thenσ f = 0.049.

If σp = 0.2 andσq = 0.1, thenσ f = 0.068.

Reducing the uncertainty inp to 0.1 cm provides the greater reduction.

9. (a)C = 1.25, σC = 0.03,L = 1.2, σL = 0.1, A = 1.30, σA = 0.05,

M = A/LC = 0.8667

∂M
∂C

= −A/(LC2) = −0.6933

∂M
∂L

= −A/(L2C) = −0.7222

∂M
∂A

= 1/(LC) = 0.6667

σM =

√(
∂M
∂C

)2

σ2
C +

(
∂M
∂L

)2

σ2
L +

(
∂M
∂A

)2

σ2
A = 0.082

M = 0.867±0.082

(b) σM =

√(
∂M
∂C

)2

σ2
C +

(
∂M
∂L

)2

σ2
L +

(
∂M
∂A

)2

σ2
A ,

∂M
∂C

= −A/(LC2) = −0.6933
∂M
∂L

= −A/(L2C) = −0.7222
∂M
∂A

= 1/(LC) = 0.6667

If σC = 0.01,σL = 0.1, andσA = 0.05, thenσM = 0.080.

If σC = 0.03,σL = 0.05, andσA = 0.05, thenσM = 0.053.

If σC = 0.03,σL = 0.1, andσA = 0.01, thenσM = 0.076.

Reducing the uncertainty inL to 0.05 cm provides the greatest reduction.

11. (a)τ0 = 50, στ0 = 1, w = 1.2, σw = 0.1, k = 0.29, σk = 0.05,

τ = τ0(1−kw) = 32.6

∂τ
∂τ0

= 1−kw= 0.652

∂τ
∂k

= −τ0w = −60

∂τ
∂w

= −τ0k = −14.5

στ =

√(
∂τ
∂τ0

)2

σ2
τ0

+

(
∂τ
∂k

)2

σ2
k +

(
∂τ
∂w

)2

σ2
w = 3.4



SECTION 3.4 63

τ = 32.6±3.4 MPa

(b) στ =

√(
∂τ
∂τ0

)2

σ2
τ0

+

(
∂τ
∂k

)2

σ2
k +

(
∂τ
∂w

)2

σ2
w ,

∂τ
∂τ0

= 1−kw= 0.652,
∂τ
∂k

= −τ0w = −60,
∂τ
∂w

= −τ0k = −14.5

If στ0 = 0.1, σk = 0.05, andσw = 0.1, thenστ = 3.3.

If στ0 = 1.0, σk = 0.025, andσw = 0.1, thenστ = 2.2.

If στ0 = 1.0, σk = 0.05, andσw = 0.01, thenστ = 3.1.

Reducing the uncertainty ink to 0.025 mm−1 provides the greatest reduction.

(c) If στ0 = 0, σk = 0.05, andσw = 0, στ = 3.0. Thus implementing the procedure would reduce the uncertainty
in τ only to 3.0 MPa. It is probably not worthwhile to implement the new procedure for a reduction this small.

13. (a)g = 3867.4, σg = 0.3, b = 1037.0, σb = 0.2, m= 2650.4, σm = 0.1, y = mb/g = 710.68.

∂y
∂g

= −mb/g2 = −0.18376

∂y
∂b

= m/g = 0.685318

∂y
∂m

= b/g = 0.268139

σy =

√(
∂y
∂g

)2

σ2
g +

(
∂y
∂m

)2

σ2
m+

(
∂y
∂b

)2

σ2
b = 0.15

y = 710.68±0.15 g

(b) σy =

√(
∂y
∂g

)2

σ2
g +

(
∂y
∂m

)2

σ2
m+

(
∂y
∂b

)2

σ2
b ,

∂y
∂g

= −mb/g2 = −0.18376,
∂y
∂b

= m/g = 0.685318,
∂y
∂m

= b/g = 0.268139

If σg = 0.1, σb = 0.2, andσm = 0.1, σy = 0.14.

If σg = 0.3, σb = 0.1, andσm = 0.1, σy = 0.09.

If σg = 0.3, σb = 0.2, andσm = 0, σy = 0.15.

Reducing the uncertainty inb to 0.1 g provides the greatest reduction.

15. (a)F = 800, σF = 1, R= 0.75, σR = 0.1, L0 = 25.0, σL0 = 0.1, L1 = 30.0, σL1 = 0.1,

Y =
FL0

πR2(L1−L0)
= 2264
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∂Y
∂F

=
L0

πR2(L1−L0)
= 2.82942

∂Y
∂R

=
−2FL0

πR3(L1−L0)
= −6036.1

∂Y
∂L0

=
FL1

πR2(L1−L0)2 = 543.249

∂Y
∂L1

=
−FL0

πR2(L1−L0)2 = −452.707

σY =

√(
∂Y
∂F

)2

σ2
F +

(
∂Y
∂R

)2

σ2
R+

(
∂Y
∂L0

)2

σ2
L0

+

(
∂Y
∂L1

)2

σ2
L1

= 608

Y = 2264±608 N/mm2

(b) σY =

√(
∂Y
∂F

)2

σ2
F +

(
∂Y
∂R

)2

σ2
R+

(
∂Y
∂L0

)2

σ2
L0

+

(
∂Y
∂L1

)2

σ2
L1

,

∂Y
∂F

=
L0

πR2(L1−L0)
= 2.82942,

∂Y
∂R

=
−2FL0

πR3(L1−L0)
= −6036.1,

∂Y
∂L0

=
FL1

πR2(L1−L0)2 = 543.249,
∂Y
∂L1

=
−FL0

πR2(L1−L0)2 = −452.707

If σF = 0, σR = 0.1, σL0 = 0.1, andσL1 = 0.1, thenσY = 608.

If σF = 1, σR = 0, σL0 = 0.1, andσL1 = 0.1, thenσY = 71.

If σF = 1, σR = 0.1, σL0 = 0, andσL1 = 0.1, thenσY = 605.

If σF = 1, σR = 0.1, σL0 = 0.1, andσL1 = 0, thenσY = 606.

R is the only variable that substantially affects the uncertainty in Y.

17. t = 10,T = 54.1, σT = 0.2, T0 = 70.1, σT0 = 0.2, Ta = 35.7, σTa = 0.1,

k = ln(T0−Ta)/t − ln(T −Ta)/t = 0.1ln(T0−Ta)−0.1ln(T −Ta) = 0.0626

∂k
∂T

=
−1

10(T −Ta)
= −0.00543478

∂k
∂T0

=
1

10(T0−Ta)
= 0.00290698

∂k
∂Ta

=
1

10(T −Ta)
− 1

10(T0−Ta)
= 0.00252781

σk =

√(
∂k
∂T

)2

σ2
T +

(
∂k
∂T0

)2

σ2
T0

+

(
∂k
∂Ta

)2

σ2
Ta

= 0.0013

k = 0.0626±0.0013 min−1
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19. (a) No, they both involve the quantitiesh andr.

(b) r = 0.9, σr = 0.1, h = 1.7, σh = 0.1, R= c
2πr(h+2r)

πr2(h+4r/3)
= c

2h+4r
hr +4r2/3

= 2.68c

∂R
∂r

= −c
2h2+16rh/3+16r2/3

(4r2/3+ rh)2 = −2.68052c

∂R
∂h

= −c
4r2/3

(4r2/3+ rh)2 = −0.158541c

σR =

√(
∂R
∂r

)2

σ2
r +

(
∂R
∂h

)2

σ2
h = 0.27c

R= 2.68c±0.27c

21. µ= 1.49,τ = 35.2, στ = 0.1, h = 12.0, σh = 0.3,V = τh/µ= τh/1.49= 283.49,

lnV = lnτ+ lnh− ln1.49
∂ lnV

∂τ
= 1/τ = 0.028409

∂ lnV
∂h

= 1/h = 0.083333

σlnV =

√(
∂ lnV

∂τ

)2

σ2
τ +

(
∂ lnV

∂h

)2

σ2
h = 0.025

V = 283.49 mm/s± 2.5%

23. p = 4.3, σp = 0.1, q = 2.1, σq = 0.2, f = pq/(p+q) = 1.41, ln f = ln p+ lnq− ln(p+q)

∂ ln f
∂p

= 1/p−1/(p+q)= 0.0763081

∂ ln f
∂q

= 1/q−1/(p+q)= 0.31994

σln f =

√(
∂ ln f

∂p

)2

σ2
p +

(
∂ ln f

∂q

)2

σ2
q = 0.064

f = 1.41 cm± 6.4%

25. θ1 = 0.216, σθ1 = 0.003,θ2 = 0.456, σθ2 = 0.005,n =
sinθ1

sinθ2
= 0.487, lnn = ln(sinθ1)− ln(sinθ2)

∂ lnn
∂θ1

= cotθ1 = 4.5574
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∂ lnn
∂θ2

= −cotθ2 = −2.03883

σlnn =

√(
∂ lnn
∂θ1

)2

σ2
θ1

+

(
∂ lnn
∂θ2

)2

σ2
θ2

= 0.017

n = 0.487±1.7%

27. F = 750, σF = 1, R= 0.65, σR = 0.09,L0 = 23.7, σL0 = 0.2, L1 = 27.7, σL1 = 0.2,

Y =
FL0

πR2(L1−L0)
= 3347.9, lnY = lnF + lnL0− lnπ−2lnR− ln(L1−L0)

∂ lnY
∂F

= 1/F = 0.001333

∂ lnY
∂L0

= 1/L0 +1/(L1−L0) = 0.292194

∂ lnY
∂R

= −2/R= −3.07692

∂ lnY
∂L1

= −1/(L1−L0) = −0.25

σlnY =

√(
∂ lnY
∂F

)2

σ2
F +

(
∂ lnY
∂L0

)2

σ2
L0

+

(
∂ lnY

∂R

)2

σ2
R+

(
∂ lnY
∂L1

)2

σ2
L1

= 0.29

Y = 3347.9 N/mm2 ± 29%

29. r = 0.8, σr = 0.1, h = 1.9, σh = 0.1

(a) S= 2πr(h+2r) = 17.59, lnS= ln(2π)+ lnr + ln(h+2r)

∂ lnS
∂r

=
1
r

+
2

h+2r
= 1.82143

∂ lnS
∂h

=
1

h+2r
= 0.285714

σlnS =

√(
∂ lnS

∂r

)2

σ2
r +

(
∂ lnS

∂h

)2

σ2
h = 0.18

S= 17.59µm± 18%

(b) V = πr2(h+4r/3) = 5.965, lnV = ln(π)+2lnr + ln(h+4r/3)

∂ lnV
∂r

=
2
r

+
4

3h+4r
= 2.94944

∂ lnV
∂h

=
3

3h+4r
= 0.337079
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σlnV =

√(
∂ lnV

∂r

)2

σ2
r +

(
∂ lnV

∂h

)2

σ2
h = 0.30

V = 5.965µm3 ± 30%

(c) R= c
2πr(h+2r)

πr2(h+4r/3)
= c

2h+4r
rh+4r2/3

= 2.95c, lnR= lnc+ ln(2h+4r)− ln(rh+4r2/3)

∂ lnR
∂r

=
2

2r +h
− 8r +3h

4r2 +3rh
= −1.12801

∂ lnR
∂h

=
1

2r +h
− 3

4r +3h
= −0.0513644

σlnR =

√(
∂ lnR

∂r

)2

σ2
r +

(
∂ lnR

∂h

)2

σ2
h = 0.11

R= 2.95c±11%

Note that the uncertainty inR cannot be determined directly from the uncertainties inSandV, becauseSand
V are not independent.

(d) No

31. R= kld−2. The relative uncertainties are
σk

k
= 0 (sincek is a constant),

σl

l
= 0.03, and

σd

d
= 0.02.

σR

R
=

√(σk

k

)2
+
(σl

l

)2
+
(
−2

σd

d

)2
=
√

02 +0.032+(−0.04)2 = 0.05.

The relative uncertainty is 5.0%.

Supplementary Exercises for Chapter 3

1. (a)X = 25.0, σX = 1,Y = 5.0, σY = 0.3, Z = 3.5, σZ = 0.2. LetU = XY+Z.

∂U
∂X

= Y = 5.0,
∂U
∂Y

= X = 25.0,
∂U
∂Z

= 1

σU =

√(
∂U
∂X

)2

σ2
X +

(
∂U
∂Y

)2

σ2
Y +

(
∂U
∂Z

)2

σ2
Z = 9.0

(b) X = 25.0, σX = 1,Y = 5.0, σY = 0.3, Z = 3.5, σZ = 0.2. LetU = Z/(X +Y).

∂U
∂X

= −Z/(X +Y)2 = −0.003889,
∂U
∂Y

= −Z/(X +Y)2 = −0.003889,
∂U
∂Z

= 1/(X +Y) = 0.03333

σU =

√(
∂U
∂X

)2

σ2
X +

(
∂U
∂Y

)2

σ2
Y +

(
∂U
∂Z

)2

σ2
Z = 0.0078
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(c) X = 25.0, σX = 1,Y = 5.0, σY = 0.3, Z = 3.5, σZ = 0.2. LetU =
√

X(lnY+Z).

∂U
∂X

=
1
2

√
lnY+Z

X
= 0.226041,

∂U
∂Y

=
1

2Y

√
X

lnY+Z
= 0.221199,

∂U
∂Z

=
1
2

√
X

lnY+Z
= 1.105996,

σU =

√(
∂U
∂X

)2

σ2
X +

(
∂U
∂Y

)2

σ2
Y +

(
∂U
∂Z

)2

σ2
Z = 0.32

(d) X = 25.0, σX = 1,Y = 5.0, σY = 0.3, Z = 3.5, σZ = 0.2. LetU = XeZ2−2Y.

∂U
∂X

= eZ2−2Y = 9.487736,
∂U
∂Y

= −2XeZ2−2Y = −474.38679,
∂U
∂Z

= 2XZeZ2−2Y = −1660.353771

σU =

√(
∂U
∂X

)2

σ2
X +

(
∂U
∂Y

)2

σ2
Y +

(
∂U
∂Z

)2

σ2
Z = 361.41

3. (a) LetX, Y, andZ represent the measured lengths of the components, and letT = X +Y + Z be the combined
length. ThenσX = σY = σZ = 1.2.

σT =
√

σ2
X + σ2

Y + σ2
Z = 2.1 mm

(b) Let σ be the required uncertainty inX andY. ThenσT =
√

σ2 + σ2+ σ2 = 0.05. Solving forσ yields σ =
0.029 mm.

5. (a)γ = 9800,η = 0.85, ση = 0.02,Q = 60, σQ = 1, H = 3.71, σH = 0.10

P = ηγQH = 9800ηQH = 1.854×106

∂P
∂η

= 9800QH = 2.18148×106

∂P
∂Q

= 9800ηH = 30904.3

∂P
∂H

= 9800ηQ= 499800

σP =

√(
∂P
∂η

)2

σ2
η +

(
∂P
∂Q

)2

σ2
Q +

(
∂P
∂H

)2

σ2
H = 73188.9

P = (1.854±0.073)×106 W

(b) The relative uncertainty is
σP

P
=

0.073×106

1.854×106 = 0.039= 3.9%.
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(c) σP =

√(
∂P
∂η

)2

σ2
η +

(
∂P
∂Q

)2

σ2
Q +

(
∂P
∂H

)2

σ2
H ,

∂P
∂η

= 9800QH = 2.18148×106,
∂P
∂Q

= 9800ηH = 30904.3,
∂P
∂H

= 9800ηQ= 499800

If ση = 0.01,σQ = 1, andσH = 0.1, thenσP = 6.3×104.

If ση = 0.02,σQ = 0.5, andσH = 0.1, thenσP = 6.8×104.

If ση = 0.02,σQ = 1, andσH = 0.05, thenσP = 5.9×104.

Reducing the uncertainty inH to 0.05 m provides the greatest reduction.

7. (a)H = 4, c = 0.2390,∆T = 2.75, σ∆T = 0.02,m= 0.40, σm = 0.01

C =
cH(∆T)

m
=

0.956(∆T)

m
= 6.57

∂C
∂∆T

=
0.956

m
= 2.39

∂C
∂m

=
−0.956(∆T)

m2 = −16.4312

σC =

√(
∂C

∂∆T

)2

σ2
∆T +

(
∂C
∂m

)2

σ2
m = 0.17

C = 6.57±0.17 kcal.

(b) The relative uncertainty is
σC

C
=

0.17
6.57

= 0.026= 2.6%.

Alternatively, lnC = ln0.956+ ln(∆T)− lnm, so
∂ lnC
∂∆T

=
1

∆T
= 0.363636,

∂ lnC
∂m

=
−1
m

= −2.5,

σC

C
= σlnC =

√(
∂ lnC
∂∆T

)2

σ2
∆T +

(
∂ lnC
∂m

)2

σ2
m = 0.026= 2.6%

(c) σC =

√(
∂C

∂∆T

)2

σ2
∆T +

(
∂C
∂m

)2

σ2
m,

∂C
∂∆T

=
0.956

m
= 2.39

∂C
∂m

=
−0.956(∆T)

m2 = −16.4312

If σ∆T = 0.01 andσm = 0.01, thenσC = 0.17.

If σ∆T = 0.02 andσm = 0.005, thenσC = 0.10.

Reducing the uncertainty in the mass to 0.005 g provides the greater reduction.

9. (a) LetX be the measured northerly component of velocity and letY be the measured easterly component of
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velocity. The velocity of the earth’s crust is estimated with V =
√

X2 +Y2.

Now X = 22.10, σX = 0.34 andY = 14.3, σY = 0.32, soV =
√

22.102+14.32 = 26.32, and

∂V
∂X

= X/
√

X2 +Y2 = 0.83957

∂V
∂Y

= Y/
√

X2 +Y2 = 0.543251

σV =

√(
∂V
∂X

)2

σ2
X +

(
∂V
∂Y

)2

σ2
Y = 0.33

V = 26.32±0.33 mm/year

(b) Let T be the estimated number of years it will take for the earth’s crust to move 100 mm.

By part (a),V = 26.3230, σV = 0.334222. We are using extra precision inV andσV to get good precision for
T andσT .

Now T = 100/V = 3.799,
dT
dV

= −100/V2 = −0.144321

σT =

∣∣∣∣
dT
dV

∣∣∣∣σV = 0.144321(0.334222)= 0.048

T = 3.799±0.048 years

11. LetX1 andX2 represent the estimated thicknesses of the outer layers, and letY1,Y2,Y3 represent the estimated
thicknesses of the inner layers. ThenX1 = X2 = 0.50, Y1 = Y2 = Y3 = 6.25, σXi = 0.02 for i = 1,2, and
σYj = 0.05 for j = 1,2,3.

The estimated thickness of the item isT = X1 +X2+Y1+Y2+Y3 = 19.75.

The uncertainty in the estimate isσT =
√

σ2
X1

+ σ2
X2

+ σ2
Y1

+ σ2
Y2

+ σ2
Y3

= 0.09.

The thickness is 19.75±0.09 mm.

13. (a) The relative uncertainty inλ is σλ/λ = σlnλ. The given relative uncertainties areσlnV = 0.0001,σln I = 0.0001,
σlnA = 0.001,σln l = 0.01,σlna = 0.01. lnλ = lnV + ln I + lnA− lnπ− ln l − lna.

σlnλ =
√

σ2
lnV + σ2

ln I + σ2
lnA + σ2

ln l + σ2
lna =

√
0.00012+0.00012+0.0012+0.012+0.012 = 0.014 = 1.4%

(b) If σlnV = 0.0001,σln I = 0.0001,σlnA = 0.001,σln l = 0.005, andσlna = 0.01, thenσlnV = 0.011.

If σlnV = 0, σln I = 0, σlnA = 0, σln l = 0.01, andσlna = 0.01, thenσlnV = 0.014.

Reducing the uncertainty inl to 0.5% provides the greater reduction.
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15. (a) Yes, since the strengths of the wires are all estimated to be the same, the sum of the strengths is the same as the
strength of one of them multiplied by the number of wires. Therefore the estimated strength is 80,000 pounds
in both cases.

(b) No, for the ductile wire method the squares of the uncertainties of the 16 wires are added, to obtainσ =√
16×202 = 80. For the brittle wire method, the uncertainty in the strength of the weakest wire is multiplied

by the number of wires, to obtainσ = 16×20= 320.

17. (a)r = 3.00, σr = 0.03,v = 4.0, σv = 0.2. Q = πr2v = 113.1.

∂Q
∂r

= 2πrv = 75.3982

∂Q
∂v

= πr2 = 28.2743

σQ =

√(
∂Q
∂r

)2

σ2
r +

(
∂Q
∂v

)2

σ2
v = 6.1

Q = 113.1±6.1 m3/s

(b) r = 4.00, σr = 0.04,v = 2.0, σv = 0.1. Q = πr2v = 100.5.

∂Q
∂r

= 2πrv = 50.2655

∂Q
∂v

= πr2 = 50.2655

σQ =

√(
∂Q
∂r

)2

σ2
r +

(
∂Q
∂v

)2

σ2
v = 5.4

Q = 100.5±5.4 m3/s

(c) The relative uncertainty is
σQ

Q
= σlnQ.

lnQ = lnπ +2lnr + lnv, σln r =
σr

r
= 0.01, σlnv =

σv

v
= 0.05,

∂ lnQ
∂r

=
2
r
,

∂ lnQ
∂v

=
1
v

σlnQ =

√(
∂ lnQ

∂r

)2

σ2
r +

(
∂ lnQ

∂v

)2

σ2
v =

√
22
(σr

r

)2
+
(σv

v

)2
=
√

22(0.012)+0.052 = 0.054

Yes, the relative uncertainty inQ can be determined from the relative uncertainties inr andv, and it is equal to
5.4%.
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19. (a)C0 = 0.03,t = 40,C = 0.0023, σC = 0.0002.k = (1/t)(1/C−1/C0) = (1/40)(1/C)−5/6= 10.04

dk
dC

=
−1

40C2 = −4725.90,σk =

∣∣∣∣
dk
dC

∣∣∣∣σC = 4725.90(0.0002)= 0.95

k = 10.04±0.95 s−1

(b) C0 = 0.03,t = 50,C = 0.0018, σC = 0.0002.k = (1/t)(1/C−1/C0) = (1/50)(1/C)−2/3= 10.4

dk
dC

=
−1

50C2 = −6172.84,σk =

∣∣∣∣
dk
dC

∣∣∣∣σC = 6172.84(0.0002)= 1.2

k = 10.4±1.2 s−1

(c) Letk = (k̂1+ k̂2)/2= 0.5̂k1+0.5̂k2. From parts (a) and (b),σk̂1
= 0.945180 andσk̂2

= 1.234568. We are using
extra precision inσk̂1

andσk̂2
in order to get good precision inσk.

σk =
√

0.52σ2
k̂1

+0.52σ2
k̂2

=
√

0.52(0.9451802)+0.52(1.2345682) = 0.78

(d) The value ofc is cbest=
σ2

k̂2

σ2
k̂1

+ σ2
k̂2

=
1.2345682

0.9451802+1.2345682
= 0.63.

21. (a) Letsbe the measured side of the square. Thens= 181.2, σs = 0.1.

The estimated area isS= s2 = 32,833.

dS
ds

= 2s= 362.4, σS =

∣∣∣∣
dS
ds

∣∣∣∣σs = (362.4)(0.1) = 36

S= 32,833±36 m2

(b) The estimated area of a semicircle isC = (πs2)/8 = 12,894.

dC
ds

= πs/4 = 142.314, σC =

∣∣∣∣
dC
ds

∣∣∣∣σs = (142.314)(0.1) = 14

C = 12,894±14 m2

(c) This is not correct. Lets denote the length of a side of the square. SinceSandC are both computed in terms
of s, they are not independent. In order to computeσA correctly, we must expressA directly in terms ofs:

A = s2 +2πs2/8 = s2(1+ π/4). SoσA =

∣∣∣∣
dA
ds

∣∣∣∣σs = 2s(1+ π/4)σs = 65 m2.
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23. (a)P1 = 8.1, σP1 = 0.1, P2 = 15.4, σP2 = 0.2, P =
√

P1P2 = 11.16871

∂P3

∂P1
=

P2

2
√

P1P2
= 0.689426

∂P3

∂P2
=

P1

2
√

P1P2
= 0.36262

σP3 =

√(
∂P3

∂P1

)2

σ2
P1

+

(
∂P3

∂P2

)2

σ2
P2

= 0.10

P3 = 11.16871±0.10 MPa

(b)
∂2P3

∂P2
1

= −(0.25)P−3/2
1 P1/2

2 = −0.042557,
∂2P3

∂P2
2

= −(0.25)P−3/2
2 P1/2

1 = −0.011773

The bias corrected estimate is

P3−
(

1
2

)[(
∂2P3

∂P2
1

)
σ2

P1
+

(
∂2P3

∂P2
2

)
σ2

P2

]
= 11.16871−(0.5)[−0.042557(0.12)−0.011773(0.22)] = 11.16916.

(c) No. The difference between the two estimates is much lessthan the uncertainty.
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Chapter 4

Section 4.1

1. (a)X ∼ Bernoulli(p), wherep = 0.4. µX = p = 0.4, σ2
X = p(1− p) = 0.24.

(b) No. A Bernoulli random variable has possible values 0 and1. The possible values ofY are 0 and 2.

(c) Y = 2X, whereX ∼ Bernoulli(p).

ThereforeµY = 2µX = 2p = 0.80, andσ2
Y = 22σ2

X = 4p(1− p) = 0.96.

3. (a) pX = 0.05

(b) pY = 0.20

(c) pZ = 0.23

(d) Yes, it is possible for there to be both discoloration anda crack.

(e) No. pZ = P(X = 1 orY = 1) 6= P(X = 1)+P(Y = 1) becauseP(X = 1 andY = 1) 6= 0.

(f) No. If the surface has both discoloration and a crack, then X = 1,Y = 1, andZ = 1, butX +Y = 2.

5. (a) pX = 1/2

(b) pY = 1/2

(c) pZ = 1/4

(d) Yes.P(X = x andY = y) = P(X = x)P(Y = y) for all values ofx andy.

(e) Yes.pZ = 1/4 = (1/2)(1/2) = pX pY.

(f) Yes. If both coins come up heads, thenX = 1,Y = 1, andZ = 1, soZ = XY. If not, thenZ = 0, and eitherX,
Y, or both are equal to 0 as well, so againZ = XY.
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7. (a) Since the possible values ofX andY are 0 and 1, the possible values of the productZ = XY are also 0 and 1.
ThereforeZ is a Bernoulli random variable.

(b) pZ = P(Z = 1) = P(XY = 1) = P(X = 1 andY = 1) = P(X = 1)P(Y = 1) = pX pY.

Section 4.2

1. (a)P(X = 1) =
7!

1!(7−1)!
(0.3)1(1−0.3)7−1 = 0.2471

(b) P(X = 2) =
7!

2!(7−2)!
(0.3)2(1−0.3)7−2 = 0.3177

(c) P(X < 1) = P(X = 0) =
7!

0!(7−0)!
(0.3)0(1−0.3)7−0 = 0.0824

(d) P(X > 4) = P(X = 5)+P(X = 6)+P(X = 7)

=
7!

5!(7−5)!
(0.3)5(1−0.3)7−5+

7!
6!(7−6)!

(0.3)6(1−0.3)7−6+
7!

7!(7−7)!
(0.3)7(1−0.3)7−7

= 0.002500+0.003572+0.0002187

= 0.0288

(e) µX = (7)(0.3) = 2.1

(f) σ2
X = (7)(0.3)(1−0.3) = 1.47

3. (a)P(X = 2) =
4!

2!(4−2)!
(0.6)2(1−0.6)4−2 = 0.3456

(b) P(X > 2) = 1−P(X ≤ 2)

= 1−P(X = 0)−P(X = 1)−P(X = 2)

= 1− 8!
0!(8−0)!

(0.2)0(1−0.2)8−0− 8!
1!(8−1)!

(0.2)1(1−0.2)8−1− 8!
2!(8−2)!

(0.2)2(1−0.2)8−2

= 0.2031
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(c) P(X ≤ 2) = P(X = 0)+P(X = 1)+P(X = 2)

=
5!

0!(5−0)!
(0.4)0(1−0.4)5−0+

5!
1!(5−1)!

(0.4)1(1−0.4)5−1+
5!

2!(5−2)!
(0.4)2(1−0.4)5−2

= 0.6826

(d) P(3≤ X ≤ 5) = P(X = 3)+P(X = 4)+P(X = 5)

=
6!

3!(6−3)!
(0.7)3(1−0.7)6−3+

6!
4!(6−4)!

(0.7)4(1−0.7)6−4+
6!

5!(6−5)!
(0.7)5(1−0.7)6−5

= 0.8119

5. LetX be the number of automobiles that violate the standard. ThenX ∼ Bin(12,0.1).

(a) P(X = 3) =
12!

3!(12−3)!
(0.1)3(1−0.1)12−3 = 0.0852

(b) P(X < 3) = P(X = 0)+P(X = 1)+P(X = 2) =
10!

0!(10−0)!
(0.75)0(1−0.75)10−0+

10!
1!(10−1)!

(0.75)1(1−

0.75)10−1+
10!

2!(10−2)!
(0.75)2(1−0.75)10−2 = 0.2824+0.3766+0.2301= 0.8891

(c) P(X = 0) =
12!

0!(12−0)!
(0.1)0(1−0.1)12−0 = 0.2824

7. LetX be the number of failures that occur in the base metal. ThenX ∼ Bin(20,0.15).

(a) P(X = 5) =
20!

5!(20−5)!
(0.15)5(1−0.15)20−5 = 0.1028

(b) P(X < 4) = P(X = 0)+P(X = 1)+P(X = 2)+P(X = 3)

=
20!

0!(20−0)!
(0.15)0(1−0.15)20−0+

20!
1!(20−1)!

(0.15)1(1−0.15)20−1+
20!

2!(20−2)!
(0.15)2(1−0.15)20−2

+
20!

3!(20−3)!
(0.15)3(1−0.15)20−3

= 0.6477
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(c) P(X = 0) =
20!

0!(20−0)!
(0.15)0(1−0.15)20−0 = 0.0388

(d) µX = (20)(0.15) = 3

(e) σX =
√

(20)(0.15)(0.85) = 1.5969

9. LetX be the number of women among the five winners. ThenX ∼ Bin(5,0.6).

(a) P(X ≤ 3)= 1−P(X > 3)= 1−P(X = 4)−P(X = 5)= 1− 5!
4!(5−4)!

(0.6)4(1−0.6)5−4− 5!
5!(5−5)!

(0.6)5(1−

0.6)5−5 = 1−0.25920−0.07776= 0.6630

(b) P(3 of one gender and 2 of another)= P(X = 2)+P(X = 3)=
5!

2!(5−2)!
(0.6)2(1−0.6)5−2+

5!
3!(5−3)!

(0.6)3(1−

0.6)5−3 = 0.2304+0.3456= 0.5760

11. LetX be the number of defective parts in the sample from vendor A, and letY be the number of defective parts
in the sample from vendor B. LetpA be the probability that a part from vendor A is defective, andlet pB be the
probability that a part from vendor B is defective. ThenX ∼ Bin(100, pA) andY ∼ Bin(200, pB). The observed
value ofX is 12 and the observed value ofY is 10.

(a) p̂A = X/100= 12/100= 0.12, σp̂A =

√
pA(1− pA)

100

ReplacingpA with p̂A = 0.12 andn with 100,σp̂A =

√
0.12(1−0.12)

100
= 0.032.

(b) p̂B = Y/200= 10/200= 0.05, σp̂B =

√
pB(1− pB)

200

ReplacingpB with p̂B = 0.05 andn with 200,σp̂B =

√
0.05(1−0.05)

200
= 0.015.

(c) The difference is estimated witĥpA− p̂B = 0.12−0.05= 0.07.

The uncertainty is
√

σ2
p̂A

+ σ2
p̂B

= 0.036.

13. (a)P(can be used) = P(meets spec)+P(long) = 0.90+0.06= 0.96.
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(b) LetX be the number of bolts out of 10 that can be used. ThenX ∼ Bin(10,0.96).

P(X < 9) = 1−P(X ≥ 9)

= 1−P(X = 9)−P(X = 10)

= 1− 10!
9!(10−9)!

(0.96)9(1−0.96)10−9− 10!
10!(10−10)!

(0.96)10(1−0.96)10−10

= 1−0.27701−0.66483

= 0.0582

15. (a) LetY be the number of lights that are green. ThenY ∼ Bin(3,0.6).

P(Y = 3) =
3!

3!(3−3)!
(0.6)3(1−0.6)3−3 = 0.216

(b) X ∼ Bin(5,0.216)

(c) P(X = 3) =
5!

3!(5−3)!
(0.216)3(1−0.216)5−3 = 0.0619

17. (a) LetX be the number of components that function. ThenX ∼ Bin(5,0.9).

P(X ≥ 3) =
5!

3!(5−3)!
(0.9)3(1−0.9)5−3+

5!
4!(5−4)!

(0.9)4(1−0.9)5−4

+
5!

5!(5−5)!
(0.9)5(1−0.9)5−5 = 0.9914

(b) We need to find the smallest value ofn so thatP(X ≤ 2) < 0.10 whenX ∼ Bin(n,0.9). Consulting Table A.1,
we find that ifn = 3, P(X ≤ 2) = 0.271, and ifn = 4, P(X ≤ 2) = 0.052. The smallest value ofn is therefore
n = 4.

19. (a)X ∼ Bin(10,0.15).

P(X ≥ 7) = P(X = 7)+P(X = 8)+P(X = 9)+P(X = 10)

=
10!

7!(10−7)!
(0.15)7(1−0.15)10−7+

10!
8!(10−8)!

(0.15)8(1−0.15)10−8

+
10!

9!(10−9)!
(0.15)9(1−0.15)10−9+

10!
10!(10−10)!

(0.15)10(1−0.15)10−10

= 1.2591×10−4+8.3326×10−6+3.2677×10−7+5.7665×10−9

= 1.346×10−4
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(b) Yes, only about 13 or 14 out of every 100,000 samples of size 10 would have 7 or more defective items.

(c) Yes, because 7 defectives in a sample of size 10 is an unusually large number for a good shipment.

(d) P(X ≥ 2) = 1−P(X < 2)

= 1−P(X = 0)−P(X = 1)

= 1− 10!
0!(10−0)!

(0.15)0(1−0.15)10−0− 10!
1!(10−1)!

(0.15)1(1−0.15)10−1

= 1−0.19687−0.34743

= 0.4557

(e) No, in about 45% of the samples of size 10, 2 or more items would be defective.

(f) No, because 2 defectives in a sample of size 10 is not an unusually large number for a good shipment.

21. (a) LetX be the number of bits that are reversed. ThenX ∼ Bin(5,0.3). The correct value is assigned ifX ≤ 2.

P(X ≤ 2) = P(X = 0)+P(X = 1)+P(X = 2) =
5!

0!(5−0)!
(0.3)0(1−0.3)5−0+

5!
1!(5−1)!

(0.3)1(1−0.3)5−1

+
5!

2!(5−2)!
(0.3)2(1−0.3)5−2 = 0.8369

(b) We need to find the smallest odd value ofn so thatP(X ≤ (n−1)/2)≥ 0.90 whenX ∼ Bin(n,0.3). Consulting
Table A.1, we find that ifn = 3, P(X ≤ 1) = 0.784, if n = 5, P(X ≤ 2) = 0.837, if n = 7, P(X ≤ 3) = 0.874,
and if n = 9, P(X ≤ 4) = 0.901. The smallest value ofn is thereforen = 9.

23. (a)Y = 10X +3(100−X) = 7X +300

(b) X ∼ Bin(100,0.9), soµX = 100(0.9) = 90.

µY = 7µX +300= 7(90)+300= $930

(c) σX =
√

100(0.9)(0.1) = 3. σY = 7σX = $21
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25. Let p be the probability that a tire has no flaw. The results of Example 4.14 show that the sample proportion
is p̂ = 93/100= 0.93 andσp̂ = 0.0255. LetX be the number of tires out of four that have no flaw. Then
X ∼ Bin(4, p). Let q be the probability that exactly one of four tires has a flaw.

Thenq = P(X = 3) =
4!

3!(4−3)!
(p)3(1− p)4−3 = 4p3(1− p) = 4p3−4p4.

The estimate ofq is q̂ = 4p̂3−4p̂4 = 4(0.93)3−4(0.93)4 = 0.225.

dq̂
dp̂

= 12p̂2−16p̂3 = 12(0.93)2−16(0.93)3 = −2.4909

σq̂ =

∣∣∣∣
dq̂
dp̂

∣∣∣∣σp̂ = (2.4909)(0.0255)= 0.064

The probability is 0.225±0.064.

Section 4.3

1. (a)P(X = 1) = e−4 41

1!
= 0.0733

(b) P(X = 0) = e−4 40

0!
= 0.0183

(c) P(X < 2) = P(X = 0)+P(X = 1) = e−440

0!
+e−441

1!
= 0.0183+0.0733= 0.0916

(d) P(X > 1) = 1−P(X ≤ 1) = 1−P(X = 0)−P(X = 1) = 1−0.0183−0.0733= 0.9084

(e) SinceX ∼ Poisson(4), µX = 4.

(f) SinceX ∼ Poisson(4), σX =
√

4 = 2.

3. Since the mean number per mile is 3, the mean number per two miles is (2)(3) = 6. ThereforeX ∼ Poisson(6),

(a) P(X = 4) = e−6 64

4!
= 0.1339

(b) P(X ≤ 1) = P(X = 0)+P(X = 1)

= e−6 60

0!
+e−661

1!
= 0.0024788+0.014873

= 0.0174
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(c) P(5≤ X < 8) = P(X = 5)+P(X = 6)+P(X = 7)

= e−6 65

5!
+e−666

6!
+e−667

7!
= 0.16062+0.16062+0.13768

= 0.4589

(d) SinceX ∼ Poisson(6), µX = 6.

(e) SinceX ∼ Poisson(6), σX =
√

6 = 2.45.

5. LetX be the number of servers that fail. ThenX is the number of successes inn = 1000 Bernoulli trials, each
of which has success probabilityp = 0.003. The mean ofX is np= (1000)(0.003) = 3. Sincen is large andp
is small,X ∼ Poisson(3) to a very close approximation.

(a) P(X = 2) = e−3 32

2!
= 0.2240

(b) The event that fewer than 998 servers function is the sameas the event that more than 2 servers fail, or equiva-
lently, thatX > 2.

P(X > 2) = 1−P(X ≤ 2) = 1−e−330

0!
−e−331

1!
−e−332

2!
= 1−0.04979−0.14936−0.22404

= 0.5768

(c) µX = 3

(d) σX =
√

3 = 1.732

7. (a) LetX be the number of hits in one minute. Since the mean rate is 4 messages per minute,X ∼ Poisson(4).

P(X = 5) = e−4 45

5!
= 0.1563

(b) LetX be the number of hits in 1.5 minutes. Since the mean rate is 4 messages per minute,X ∼ Poisson(6).

P(X = 9) = e−6 69

9!
= 0.0688

(c) LetX be the number of hits in 30 seconds. Since the mean rate is 4 messages per minute,X ∼ Poisson(2).

P(X < 3) = P(X = 0)+P(X = 1)+P(X = 2)
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= e−220

0!
+e−221

1!
+e−222

2!

= 0.13534+0.27067+0.27067

= 0.6767

9. (ii). Let X ∼ Bin(n, p) whereµX = np= 3. Thenσ2
X = np(1− p), which is less than 3 because 1− p< 1. Now

let Y have a Poisson distribution with mean 3. The variance ofY is also equal to 3, because the variance of a
Poisson random variable is always equal to its mean. ThereforeY has a larger variance thanX.

11. LetX represent the number of bacteria observed in 0.5 mL. Letλ represent the true concentration in bacteria per
mL. ThenX ∼ Poisson(0.5λ). The observed value ofX is 39. The estimated concentration isλ̂ = 39/0.5= 78.
The uncertainty isσλ̂ =

√
78/0.5= 12.49. λ = 78±12.

13. (a) LetN be the number of defective components produced. ThenN ∼ Poisson(20).

P(N = 15) = e−202015

15!
= 0.0516

(b) LetX be the number that are repairable. ThenX ∼ Bin(15,0.6).

P(X = 10) =
15!

10!(15−10)!
(0.6)10(1−0.6)15−10 = 0.1859

(c) GivenN, X ∼ Bin(N,0.6).

(d) LetN be the number of defective components, and letX be the number that are repairable.

P(N = 15∩X = 10) = P(N = 15)P(X = 10|N = 15)

=

(
e−202015

15!

)(
15!

10!(15−10)!
(0.6)10(1−0.6)15−10

)

= 0.00960

15. (a) LetX be the number of flaws in a 3-meter board. Since the mean numberof flaws is 0.45 per meter,X ∼
Poisson(1.35).

P(X = 0) = e−1.351.350

0!
, soP(X = 0) = 0.2592.
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(b) Let n be the length in meters needed so that the probability of no flaw is 0.5. ThenX ∼ Poisson(0.45n), and

P(X = 0) = e−0.45n0.45n0

0!
= 0.5. Solving forn yieldsn = 1.54.

17. Let λ1 be the mean number of chips per cookie in one of Mom’s cookies,and letλ2 be the mean number
of chips per cookie in one of Grandma’s cookies. LetX1 andX2 be the numbers of chips in two of Mom’s
cookies, and letY1 andY2 be the numbers of chips in two of Grandma’s cookies. ThenXi ∼ Poisson(λ1) and
Yi ∼ Poisson(λ2). The observed values areX1 = 14,X2 = 11,Y1 = 6, andY2 = 8.

(a) The estimate iŝλ1 = X = (14+11)/2= 12.5.

(b) The estimate iŝλ2 = Y = (6+8)/2= 7.0.

(c) σX1 = σX2 =
√

λ1. The uncertainty isσX =
√

λ1/2. Replacingλ1 with λ̂1, σX =
√

12.5/2= 2.5.

(d) σY1 = σY2 =
√

λ2. The uncertainty isσY =
√

λ2/2. Replacingλ2 with λ̂2, σY =
√

7.0/2 = 1.9.

(e) The estimate iŝλ1− λ̂2 = 12.5−7.0= 5.5.

The uncertainty isσλ̂1−λ̂2
=
√

σ2
λ̂1

+ σ2
λ̂2

=
√

6.25+3.5= 3.1.

λ1−λ2 = 5.5±3.1

19. If the mean number of particles is exactly 7 per mL, thenX ∼ Poisson(7).

(a) P(X ≤ 1) = P(X = 0)+P(X = 1) = e−770

0!
+e−771

1!
= 7.295×10−3

(b) Yes. If the mean concentration is 7 particles per mL, thenonly about 7 in every thousand 1 mL samples will
contain 1 or fewer particles.

(c) Yes, because 1 particle in a 1 mL sample is an unusually small number if the mean concentration is 7 particles
per mL.

(d) P(X ≤ 6) = ∑6
x=0P(X = x) = ∑6

x=0e−77x

x!
= 0.4497

(e) No. If the mean concentration is 7 particles per mL, then about 45% of all 1 mL samples will contain 6 or
fewer particles.

(f) No, because 6 particles in a 1 mL sample is not an unusuallysmall number if the mean concentration is 7
particles per mL.
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21. LetX be the number of flaws in a one-square-meter sheet of aluminum. Let λ be the mean number of flaws per
square meter. ThenX ∼ Poisson(λ).

Let p be the probability that a one-square-meter sheet of aluminum has exactly one flaw.

Thenp = P(X = 1) = e−λ λ1

1!
= λe−λ. From Example 4.27,̂λ = 2, andσλ̂

2 = 0.02.

Thereforep is estimated witĥp = λ̂e−λ̂ = 2e−2 = 0.271.
dp̂

dλ̂
= e−λ̂ − λ̂e−λ̂ = e−2−2e−2 = −0.135335

σp̂ =

∣∣∣∣
dp̂

dλ̂

∣∣∣∣σλ̂ = 0.135335
√

0.02= 0.019

p = 0.271±0.019

Section 4.4

1. LetX be the number of units with broken fans among the seven chosen. ThenX ∼ H(20,8,7).

P(X = 3) =

(
8
3

)(
20−8
7−3

)

(
20
7

) = 0.3576

3. LetX be the number of the day on which the computer crashes. ThenX ∼ Geom(0.1).

P(X = 12) = (0.1)(0.9)11 = 0.0314

5. (a)Y ∼ NB(3,0.4). P(Y = 7) =

(
7−1
3−1

)
(0.4)3(1−0.4)7−3 = 0.1244

(b) µY = 3/0.4 = 7.5

(c) σ2
Y = 3(1−0.4)/(0.42) = 11.25
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7. (iv). P(X = x) = p(1− p)x−1 for x≥ 1. Since 1− p < 1, this quantity is maximized whenx = 1.

9. LetX be the number of hours that have elapsed when the fault is detected.
ThenX ∼ Geom(0.8).

(a) P(X ≤ 3) = P(X = 1)+P(X = 2)+P(X = 3) = (0.8)(1−0.8)0+(0.8)(1−0.8)1+(0.8)(1−0.8)2 = 0.992

(b) P(X = 3|X > 2) =
P(X = 3∩X > 2)

P(X > 2)
=

P(X = 3)

P(X > 2)

Now P(X = 3) = 0.8(1−0.8)2 = 0.032, and
P(X > 2) = 1−P(X ≤ 2) = 1−P(X = 1)−P(X = 2) = 1−0.8−0.8(1−0.8)= 0.04.

ThereforeP(X = 3|X > 2) =
0.032
0.04

= 0.8.

(c) µX = 1/0.8= 1.25

11. (a)X ∼ H(10,3,4). P(X = 2) =

(
3
2

)(
10−3
4−2

)

(
10
4

) = 0.3

(b) µX = 4(3/10) = 1.2

(c) σX =

√

4

(
3
10

)(
7
10

)(
10−4
10−1

)
= 0.7483

13. (a)X ∼ H(60,5,10), so

P(X > 1) = 1−P(X = 0)−P(X = 1) = 1−

(
5
0

)(
60−5
10−0

)

(
60
10

) −

(
5
1

)(
60−5
10−1

)

(
60
10

) = 0.1904

(b) X ∼ H(60,10,10), so

P(X > 1) = 1−P(X = 0)−P(X = 1) = 1−

(
10
0

)(
60−10
10−0

)

(
60
10

) −

(
10
1

)(
60−10
10−1

)

(
60
10

) = 0.5314
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(c) X ∼ H(60,20,10), so

P(X > 1) = 1−P(X = 0)−P(X = 1) = 1−

(
20
0

)(
60−20
10−0

)

(
60
10

) −

(
20
1

)(
60−20
10−1

)

(
60
10

) = 0.9162

15. LetX1 denote the number of orders for a small drink, letX2 denote the number of orders for a medium drink,
let X3 denote the number of orders for a large drink.

(a) (X1,X2,X3) ∼ MN(20,0.25,0.35,0.40)

P(X1 = 5,X2 = 7,X3 = 8) =
20!

5!7!8!
(0.25)5(0.35)7(0.4)8 = 0.0411

(b) X3 ∼ Bin(20,0.4). P(X3 > 10) = ∑20
x=11

20!
x!(20−x)!

(0.4)x(1−0.4)20−x = 0.1275

Alternatively, use Table A.1 to findP(X3 ≤ 10) = 0.872. ThenP(X3 > 10) = 1−P(X ≤ 10) = 0.128

17. P(X = n) = p(1− p)n−1. P(Y = 1) =

(
n
1

)
p1(1− p)n−1 = np(1− p)n−1. SoP(X = n) = (1/n)P(Y = 1).

Section 4.5

1. (a) Using Table A.2: 1−0.1977= 0.8023

(b) Using Table A.2: 0.9032−0.6554= 0.2478

(c) Using Table A.2: 0.8159−0.3821= 0.4338

(d) Using Table A.2: 0.0668+(1−0.3264)= 0.7404

3. (a) Using Table A.2:c = 1
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(b) Using Table A.2:c = −2.00

(c) Using Table A.2:c = 1.50

(d) Using Table A.2:c = 0.83

(e) Using Table A.2:c = 1.45

5. (a)z= (19−16)/2= 1.50. The area to the right ofz= 1.50 is 0.0668.

(b) Thez-score of the 10th percentile is≈−1.28.

The 10th percentile is therefore≈ 16−1.28(2) = 13.44.

(c) z= (14.5−16)/2= −0.75. The area to the right ofz= −0.75 is 0.2266.

Therefore a lifetime of 14.5 is on the 23rd percentile, approximately.

(d) For 14.5,z= (14.5−16)/2= −0.75. For 17,z= (17−16)/2= 0.5.

The area betweenz= −0.75 andz= 0.5 is 0.6915−0.2266= 0.4649.

7. (a)z= (700−480)/90= 2.44. The area to the right ofz= 2.44 is 0.0073.

(b) Thez-score of the 25th percentile is≈−0.67.

The 25th percentile is therefore≈ 480−0.67(90)= 419.7.

(c) z= (600−480)/90= 1.33. The area to the left ofz= 1.33 is 0.9082.

Therefore a score of 600 is on the 91st percentile, approximately.

(d) For 420,z= (420−480)/90= −0.67. For 520,z= (520−480)/90= 0.44.

The area betweenz= −0.67 andz= 0.44 is 0.6700−0.2514= 0.4186.

9. (a)z= (1800−1400)/200= 2.00. The area to the right ofz= 2.00 is 0.0228.
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(b) Thez-score of the 10th percentile is≈−1.28.

The 10th percentile is therefore≈ 1400−1.28(200)= 1144.

(c) z= (1645−1400)/200= 1.23. The area to the left ofz= 1.23 is 0.8907.

Therefore a score of 1645 is on the 89th percentile, approximately.

(d) For 1350,z= (1350−1400)/200= −0.25. For 1550,z= (1550−1400)/200= 0.75.

The area betweenz= −0.25 andz= 0.75 is 0.7734−0.4013= 0.3721.

11. (a)z= (6−4.9)/0.6= 1.83. The area to the right ofz= 1.83 is 1−0.9664= 0.0336.

The process will be shut down on 3.36% of days.

(b) z= (6−5.2)/0.4= 2.00. The area to the right ofz= 2.00 is 1−0.9772= 0.0228.

Since a process with this broth will be shut down on 2.28% of days, this broth will result in fewer days of
production lost.

13. Let X be the diameter of a hole, and letY be the diameter of a piston. ThenX ∼ N(15, 0.0252), and
Y ∼ N(14.88, 0.0152). The clearance is given byC = 0.5X−0.5Y.

(a) µC = µ0.5X−0.5Y = 0.5µX −0.5µY = 0.5(15)−0.5(14.88)= 0.06 cm

(b) σC =
√

0.52σ2
X +(−0.5)2σ2

Y =
√

0.52(0.0252)+0.52(0.0152) = 0.01458 cm

(c) SinceC is a linear combination of normal random variables, it is normally distributed, withµC andσC as given
in parts (a) and (b).

Thez-score of 0.05 is(0.05−0.06)/0.01458= −0.69. The area to the left ofz= −0.69 is 0.2451.

ThereforeP(C < 0.05) = 0.2451.

(d) Thez-score of the 25th percentile is≈−0.67.

The 25th percentile is therefore≈ 0.06−0.67(0.01458)= 0.0502 cm.

(e) Thez-score of 0.05 isz= (0.05−0.06)/0.01458=−0.69. Thez-score of 0.09 isz = (0.09−0.06)/0.01458= 2.06.

The area betweenz= −0.69 andz= 2.06 is 0.9803−0.2451= 0.7352.



SECTION 4.5 89

ThereforeP(0.05< C < 0.09) = 0.7352.

(f) The probability is maximized whenµC = 0.07 cm, the midpoint between 0.05 and 0.09 cm. NowµY = 14.88,
and µX must be adjusted so thatµC = 0.5µX − 0.5µY = 0.07. SubstitutingµC = 0.07 andµY = 14.88, and
solving forµX yieldsµX = 15.02 cm.

To find the probability that the clearance will be between 0.05 and 0.09:

Thez-score of 0.05 isz= (0.05−0.07)/0.01458= −1.37.

Thez-score of 0.09 isz= (0.09−0.07)/0.01458= 1.37.

The area betweenz= −1.37 andz= 1.37 is 0.9147−0.0853= 0.8294.

ThereforeP(0.05< C < 0.09) = 0.8294.

15. (a) Thez-score of 12 is(12−12.05)/0.03= −1.67. The area to the left ofz= −1.67 is 0.0475. The proportion is
0.0475.

(b) Letµ be the required value of the mean. This value must be chosen sothat the 1st percentile of the distribution
is 12. Thez-score of the 1st percentile is approximatelyz= −2.33. Therefore−2.33= (12−µ)/0.03. Solving
for µ yieldsµ= 12.07 ounces.

(c) Let σ be the required standard deviation. The value ofσ must be chosen so that the 1st percentile of the
distribution is 12. Thez-score of the 1st percentile is approximatelyz = −2.33. Therefore−2.33 =
(12−12.05)/σ. Solving forσ yieldsσ = 0.0215 ounces.

17. (a) The proportion of strengths that are less than 65 is 0.10. Therefore 65 is the 10th percentile of strength. The
z-score of the 10th percentile is approximatelyz= −1.28. Letσ be the required standard deviation. The value
of σ must be chosen so that thez-score for 65 is−1.28. Therefore−1.28= (65−75)/σ. Solving forσ yields
σ = 7.8125 N/m2.

(b) Let σ be the required standard deviation. The value ofσ must be chosen so that the 1st percentile of the
distribution is 65. Thez-score of the 1st percentile is approximatelyz = −2.33. Therefore−2.33= (65−
75)/σ. Solving forσ yieldsσ = 4.292 N/m2.

(c) Letµ be the required value of the mean. This value must be chosen sothat the 1st percentile of the distribution
is 65. Thez-score of the 1st percentile is approximatelyz= −2.33. Therefore−2.33= (65−µ)/5. Solving
for µ yieldsµ= 76.65 N/m2.
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19. Leta = 1/σ and letb= −µ/σ. ThenZ = aX+b. Now aµ+b= (1/σ)µ−µ/σ = 0, anda2σ2 = (1/σ)2σ2 = 1.
Equation (4.25) now shows thatZ ∼ N(0, 1).

21. (a) LetD = R2−R1. The event thatR2 > R1 is the event thatD > 0.

µD = µR2 −µR1 = 120−100= 20.

SinceR1 andR2 are independent,σD =
√

σ2
R1

+ σ2
R2

=
√

52 +102 = 11.180.

SinceD is a linear combination of independent normal random variables,D is normally distributed.

Thez-score of 0 is(0−20)/11.180= −1.79. The area to the right ofz= −1.79 is 1−0.0367= 0.9633.

ThereforeP(D > 0) = 0.9633.

(b) LetD = R2−R1. The event thatR2 exceedsR1 by more than 30 is the event thatD > 30.

µD = µR2 −µR1 = 120−100= 20.

SinceR1 andR2 are independent,σD =
√

σ2
R1

+ σ2
R2

=
√

52 +102 = 11.180.

SinceD is a linear combination of independent normal random variables,D is normally distributed.

Thez-score of 30 is(30−20)/11.180= 0.89.

The area to the right ofz= 0.89 is 1−0.8133= 0.1867.

ThereforeP(D > 30) = 0.1867.

23. (a) Ifm= 0, thenX = E, soX ∼ N(0,0.25).

P(error) = P(X > 0.5). Thez-score of 0.5 is(0.5−0)/
√

0.25= 1.00.

The area to the right ofz= 1.00 is 1−0.8413= 0.1587.

ThereforeP(error) = 0.1587.

(b) If m= 0, thenX = E, soX ∼ N(0,σ2).

P(error) = P(X > 0.5) = 0.01. Thez-score of 0.5 is(0.5−0)/σ.

SinceP(X > 0.5) = 0.01, thez-score of 0.5 is 2.33.

Therefore(0.5−0)/σ = 2.33. Solving forσ yieldsσ = 0.2146, andσ2 = 0.04605.

25. (a) The sample mean is 114.8 J and the sample standard deviation is 5.006 J.

(b) Thez-score of 100 is(100−114.8)/5.006= −2.96. The area to the left ofz= −2.96 is 0.0015. Therefore
only 0.15% of bolts would have breaking torques less than 100J, so the shipment would be accepted.
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(c) The sample mean is 117.08 J; the sample standard deviation is 8.295 J. Thez-score of 100 is(100−117.08)/8.295=
−2.06. The area to the left ofz=−2.06 is 0.0197. Therefore about 2% of the bolts would have breaking torques
less than 100 J, so the shipment would not be accepted.

(d) The bolts in part (c) are stronger. In fact, the weakest bolt in part (c) is stronger than the weakest bolt in part (a),
the second-weakest bolt in part (c) is stronger than the second-weakest bolt in part (a), and so on.

(e) The method is certainly not valid for the bolts in part (c). This sample contains an outlier (140), so the normal
distribution should not be used.

Section 4.6

1. LetY be the lifetime of the component.

(a) E(Y) = eµ+σ2/2 = e1.2+(0.4)2/2 = 3.5966

(b) P(3 < Y < 6) = P(ln3 < lnY < ln6) = P(1.0986< lnY < 1.7918). lnY ∼ N(1.2,0.42).

Thez-score of 1.0986 is(1.0986−1.2)/0.4= −0.25.

Thez-score of 1.7918 is(1.7918−1.2)/0.4= 1.48.

The area betweenz= −0.25 andz= 1.48 is 0.9306−0.4013= 0.5293.

ThereforeP(3 < Y < 6) = 0.5293.

(c) Letm be the median ofY. ThenP(Y ≤ m) = P(lnY ≤ lnm) = 0.5.

Since lnY ∼ N(1.2,0.42), P(lnY < 1.2) = 0.5. Therefore lnm= 1.2, som= e1.2 = 3.3201.

(d) Lety90 be the 90th percentile ofY. ThenP(Y ≤ y90) = P(lnY ≤ lny90) = 0.90.

Thez-score of the 90th percentile is approximatelyz= 1.28.

Therefore thez-score of lny90 must be 1.28, so lny90 satisfies the equation 1.28= (lny90−1.2)/0.4.

lny90 = 1.712, soy90 = e1.712= 5.540.

3. LetY represent the BMI for a randomly chosen man aged 25–34.

(a) E(Y) = eµ+σ2/2 = e3.215+(0.157)2/2 = 25.212
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(b) V(Y) = e2µ+2σ2 −e2µ+σ2
= e2(3.215)+2(0.157)2−e2(3.215)+(0.157)2

= 15.86285.

The standard deviation is
√

V(Y) =
√

e2(3.215)+2(0.157)2−e2(3.215)+(0.157)2
=
√

15.86285= 3.9828.

(c) Letm be the median ofY. ThenP(Y ≤ m) = P(lnY ≤ lnm) = 0.5.

Since lnY ∼ N(3.215,0.1572), P(lnY < 3.215) = 0.5.

Therefore lnm= 3.215, som= e3.215= 24.903.

(d) P(Y < 22) = P(lnY < ln22) = P(lnY < 3.0910).

Thez-score of 3.0910 is(3.0910−3.215)/0.157= −0.79.

The area to the left ofz= −0.79 is 0.2148.

ThereforeP(Y < 22) = 0.2148.

(e) Lety75 be the 75th percentile ofY. ThenP(Y ≤ y75) = P(lnY ≤ lny75) = 0.75.

Thez-score of the 75th percentile is approximatelyz= 0.67.

Therefore thez-score of lny75 must be 0.67, so lny75 satisfies the equation 0.67= (lny75−3.215)/0.157.

lny75 = 3.3202, soy75 = e3.3202= 27.666.

5. (a) lnI ∼ N(1, 0.2), lnR∼ N(4, 0.1), andI andRare independent. Therefore lnV ∼ N(5,0.3).
Since lnV is normal,V is lognormal, withµV = 5 andσ2

V = 0.3.

(b) P(V < 200) = P(lnV < ln200) = P(lnV < 5.298317).

Now lnV ∼ N(5,0.3), so thez-score of 5.298317 is(5.298317−5)/
√

0.3 = 0.54.

The area to the left ofz= 0.54 is 0.7054.

ThereforeP(V < 200) = 0.7054.

(c) P(150< V < 300) = P(ln150< lnV < ln300) = P(5.010635< lnV < 5.703782).

Now lnV ∼ N(5,0.3), so thez-score of 5.010635 is(5.010635−5)/
√

0.3 = 0.02, and thez-score of 5.703782
is (5.703782−5)/

√
0.3 = 1.28.

The area betweenz= 0.02 andz= 1.28 is 0.8997−0.5080= 0.3917.

ThereforeP(150< V < 300) = 0.3917.

(d) The mean ofV is E(V) = eµ+σ2/2 = e5+0.3/2 = 172.43.

(e) Since lnV ∼ N(5,0.3), the median of lnV is 5.

Therefore the median ofV is e5 = 148.41.

(f) The standard deviation ofV is
√

e2µ+2σ2 −e2µ+σ2
=
√

e2(5)+2(0.3)−e2(5)−0.3 = 101.99.

(g) Letv10 be the 10th percentile ofV. ThenP(V ≤ v10) = P(lnV ≤ lnv10) = 0.10.
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Thez-score of the 10th percentile is approximatelyz= −1.28.

Therefore thez-score of lnv10 must be−1.28, so lnv10 satisfies the equation−1.28= ( lnv10−5)/
√

0.3.

lnv10 = 4.2989, sov10 = e4.2989= 73.619.

(h) Letv90 be the 90th percentile ofV. ThenP(V ≤ v90) = P(lnV ≤ lnv90) = 0.90.

Thez-score of the 90th percentile is approximatelyz= 1.28.

Therefore thez-score of lnv90 must be 1.28, so lnv90 satisfies the equation 1.28= ( lnv90−5)/
√

0.3.

lnv90 = 5.7011, sov90 = e5.7011= 299.19.

7. LetX represent the withdrawal strength for a randomly chosen annularly threaded nail, and letY represent the
withdrawal strength for a randomly chosen helically threaded nail.

(a) E(X) = e3.82+(0.219)2/2 = 46.711 N/mm

(b) E(Y) = e3.47+(0.272)2/2 = 33.348 N/mm

(c) First find the probability for annularly threaded nails.

P(X > 50) = P(lnX > ln50) = P(lnX > 3.9120).

Thez-score of 3.9120 is(3.9120−3.82)/0.219= 0.42.

The area to the right ofz= 0.42 is 1−0.6628= 0.3372.

Therefore the probability for annularly threaded nails is 0.3372.

Now find the probability for helically threaded nails.

P(Y > 50) = P(lnY > ln50) = P(lnY > 3.9120).

Thez-score of 3.9120 is(3.9120−3.47)/0.272= 1.63.

The area to the right ofz= 1.63 is 1−0.9484= 0.0516.

Therefore the probability for helically threaded nails is 0.0516.

Annularly threaded nails have the greater probability. Theprobability is 0.3372 vs. 0.0516 for helically threaded
nails.

(d) First find the median strength for annularly threaded nails.

Let m be the median ofX. ThenP(X ≤ m) = P(lnX ≤ lnm) = 0.5.

Since lnX ∼ N(3.82,0.2192), P(lnY < 3.82) = 0.5.

Therefore lnm= 3.82, som= e3.82.

Now P(Y > e3.82) = P(lnY > lne3.82) = P(lnY > 3.82).

Thez-score of 3.82 is(3.82−3.47)/0.272= 1.29.

The area to the right ofz= 1.29 is 1−0.9015= 0.0985. Therefore the probability is 0.0985.
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(e) The log of the withdrawal strength for this nail is ln20= 2.996.

For annularly threaded nails, thez-score of 2.996 is(2.996−3.82)/0.219= −3.76.

The area to the left ofz= −3.76 is less than 0.0001.

Therefore a strength of 20 is extremely small for an annularly threaded nail; less than one in ten thousand such
nails have strengths this low.

For helically threaded nails, thez-score of 2.996 is(2.996−3.47)/0.272= −1.74.

The area to the left ofz= −1.74 is 0.0409.

Therefore about 4.09% of helically threaded nails have strengths of 20 or below.

We can be pretty sure that it was a helically threaded nail. Only about 0.01% of annularly threaded nails have
strengths as small as 20, while about 4.09% of helically threaded nails do.

9. LetX represent the price of a share of company A one year from now. LetY represent the price of a share of
company B one year from now.

(a) E(X) = e0.05+(0.1)2/2 = $1.0565

(b) P(X > 1.20) = P(lnX > ln1.20) = P(lnX > 0.1823).

Thez-score of 0.1823 is(0.1823−0.05)/0.1= 1.32.

The area to the right ofz= 1.32 is 1−0.9066= 0.0934.

ThereforeP(X > 1.20) = 0.0934.

(c) E(Y) = e0.02+(0.2)2/2 = $1.0408

(d) P(Y > 1.20) = P(lnY > ln1.20) = P(lnY > 0.1823).

Thez-score of 0.1823 is(0.1823−0.02)/0.2= 0.81.

The area to the right ofz= 0.81 is 1−0.7910= 0.2090.

ThereforeP(Y > 1.20) = 0.2090.

11. lnX1, ..., lnXn are independent normal random variables, so lnP = a1 lnX1 + · · ·+ an lnXn is a normal random
variable. It follows thatP is lognormal.



SECTION 4.7 95

Section 4.7

1. (a)µT = 1/0.45= 2.2222

(b) σ2
T = 1/(0.452) = 4.9383

(c) P(T > 3) = 1−P(T ≤ 3) = 1− (1−e−0.45(3)) = 0.2592

(d) Letm be the median. ThenP(T ≤ m) = 0.5.

P(T ≤ m) = 1−e−0.45m = 0.5, soe−0.45m = 0.5.

Solving form yieldsm= 1.5403.

3. LetX be the diameter in microns.

(a) µX = 1/λ = 1/0.25= 4 microns

(b) σX = 1/λ = 1/0.25= 4 microns

(c) P(X < 3) = 1−e−0.25(3) = 0.5276

(d) P(X > 11) = 1− (1−e−0.25(11)) = 0.0639

(e) Letm be the median. ThenP(T ≤ m) = 0.5.

P(T ≤ m) = 1−e−0.25m = 0.5, soe−0.25m = 0.5.

Solving form yieldsm= 2.7726 microns.

(f) Let x75 be the 75th percentile, which is also the third quartile. Then P(T ≤ x75) = 0.75.

P(T ≤ x75) = 1−e−0.25x75 = 0.75, soe−0.25x75 = 0.25.

Solving forx75 yieldsx75 = 5.5452 microns.

(g) Letx99 be the 99th percentile. ThenP(T ≤ x99) = 0.75.

P(T ≤ x99) = 1−e−0.25x99 = 0.99, soe−0.25x99 = 0.01.

Solving forx99 yieldsx99 = 18.4207 microns.
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5. (a) LetX be the number of pores with diameters less than 3 microns. Theprobability that a diameter is less than 3
microns is 0.5276.

ThereforeX ∼ Bin(10,0.5276).

P(X > 7) = P(X = 8)+P(X = 9)+P(X = 10)

=
10!

8!(10−8)!
(0.5276)8(1−0.5276)10−8+

10!
9!(10−9)!

(0.5276)9(1−0.5276)10−9

= +
10!

10!(10−10)!
(0.5276)10(1−0.5276)10−10

= 0.077

(b) LetX be the number of pores with diameters greater than 11 microns. The probability that a diameter is greater
than 11 microns is 0.0639.

ThereforeX ∼ Bin(10,0.0639).

P(X = 1) =
10!

1!(10−1)!
(0.0639)1(1−0.0639)10−1 = 0.353

7. No. If the lifetimes were exponentially distributed, theproportion of used components lasting longer than 5
years would be the same as the proportion of new components lasting longer than 5 years, because of the lack
of memory property.

9. LetT be the waiting time between accidents. ThenT ∼ Exp(3).

(a) µT = 1/3 year

(b) σT = 1/3 year

(c) P(T > 1) = 1−P(T ≤ 1) = 1− (1−e−3(1)) = 0.0498

(d) P(T < 1/12) = 1−e−3(1/12) = 0.2212

(e) The probability isP(T ≤ 1.5|T > 0.5) = 1−P(T > 1.5|T > 0.5)

By the lack of memory property,P(T > 1.5|T > 0.5) = P(T > 1),

soP(T ≤ 1.5|T > 0.5) = 1−P(T > 1) = P(T ≤ 1) = 1−e−3(1) = 0.9502.
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11. X1, ...,X5 are each exponentially distributed withλ = 1/200= 0.005.

(a) P(X1 > 100) = 1−P(X1 ≤ 100) = 1− (1−e−0.005(100)) = e−0.5 = 0.6065

(b) P(X1 > 100 andX2 > 100 andX3 > 100 andX4 > 100 andX5 > 100) =
5

∏
i=1

P(Xi > 100)

= (e−0.5)5

= e−2.5

= 0.0821

(c) The time of the first replacement will be greater than 100 hours if and only if each of the bulbs lasts longer than
100 hours.

(d) Using parts (b) and (c),P(T ≤ 100) = 1−P(T > 100) = 1−0.0821= 0.9179.

(e) P(T ≤ t) = 1−P(T > t) = 1−
5

∏
i=1

P(Xi > t) = 1− (e−0.005t)5 = 1−e−0.025t

(f) Yes,T ∼ Exp(0.025)

(g) µT = 1/0.025= 40 hours

(h) T ∼ Exp(nλ)

Section 4.8

1. LetT be the waiting time.

(a) µT = (0+15)/2= 7.5 minutes.

(b) σT =

√
(15−0)2

12
= 4.3301 minutes

(c) P(5 < T < 11) =
11−5
15−0

= 0.4
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(d) The probability that the waiting time is less than 5 minutes on any given morning is(5−0)/(15−0)= 1/3.
Let X be the number of mornings on which the waiting time is less than 5 minutes. ThenX ∼ Bin(10,1/3).

P(X = 4) =
10!

4!(10−4)!
(1/3)4(1−1/3)10−4 = 0.2276.

3. (a)µT = 4/0.5 = 8

(b) σT =
√

4/0.52 = 4

(c) P(T ≤ 1) = 1−
4−1

∑
j=0

e−(0.5)(1) [(0.5)(1)] j

j!

= 1−e−(0.5)(1) [(0.5)(1)]0

0!
−e−(0.5)(1) [(0.5)(1)]1

1!
−e−(0.5)(1) [(0.5)(1)]2

2!
−e−(0.5)(1) [(0.5)(1)]3

3!
= 1−0.60653−0.30327−0.075816−0.012636

= 0.00175

(d) P(T ≥ 4) = 1−P(T ≤ 3)

= 1−
(

1−
4−1

∑
j=0

e−(0.5)(3) [(0.5)(3)] j

j!

)

= e−(0.5)(3) [(0.5)(3)]0

0!
+e−(0.5)(3) [(0.5)(3)]1

1!
+e−(0.5)(3) [(0.5)(3)]2

2!
+e−(0.5)(3) [(0.5)(3)]3

3!
= 0.22313+0.33470+0.25102+0.12551

= 0.9344

5. µT = r/λ andσ2
T = r/λ2. It follows thatλ = r/µT .

SinceµT = 8 andr = 16,λ = 2.

σ2 = 16/(22) = 4.

7. LetT be the lifetime in hours of a bearing.

(a) P(T > 1000) = 1−P(T ≤ 1000) = 1− (1−e−[(0.0004474)(1000)]2.25
) = e−[(0.0004474)(1000)]2.25

= 0.8490
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(b) P(T < 2000) = P(T ≤ 2000) = 1−e−[(0.0004474)(2000)]2.25
= 0.5410

(c) Letm be the median.

ThenP(T ≤ m) = 0.5, so 1−e−[(0.0004474)(m)]2.25
= 0.5, ande−[(0.0004474)(m)]2.25

= 0.5.

(0.0004474m)2.25 = − ln0.5 = 0.693147

0.0004474m= (0.693147)1/2.25 = 0.849681

m= 0.849681/0.0004474= 1899.2 hours

(d) h(t) = αβαtα−1 = 2.25(0.00044742.25)(20002.25−1) = 8.761×10−4

9. LetT be the lifetime of a fan.

(a) P(T > 10,000) = 1− (1−e−[(0.0001)(10,000)]1.5
) = e−[(0.0001)(10,000)]1.5

= 0.3679

(b) P(T < 5000) = P(T ≤ 5000) = 1−e−[(0.0001)(5000)]1.5
= 0.2978

(c) P(3000< T < 9000) = P(T ≤ 9000)−P(T ≤ 3000)

= (1−e−[(0.0001)(9000)]1.5
)− (1−e−[(0.0001)(3000)]1.5

)

= 0.4227

11. (a)P(X1 > 5) = 1−P(X1 ≤ 5) = 1− (1−e−[(0.2)(5)]2) = e−1 = 0.3679

(b) SinceX2 has the same distribution asX1, P(X2 > 5) = P(X1 > 5) = e−1. SinceX1 andX2 are independent,
P(X1 > 5 andX2 > 5) = P(X1 > 5)P(X2 > 5) = (e−1)2 = e−2 = 0.1353.

(c) The lifetime of the system will be greater than 5 hours if and only if the lifetimes of both components are
greater than 5 hours.

(d) P(T ≤ 5) = 1−P(T > 5) = 1−e−2 = 0.8647

(e) P(T ≤ t) = 1−P(T > t) = 1−P(X1 > t)P(X2 > t) = 1− (e−[(0.2)(t)]2)2 = 1−e−0.08t2 = 1−e−(
√

0.08t)2

(f) Yes,T ∼ Weibull(2,
√

0.08) = Weibull(2,0.2828).
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13. µX2 =

Z b

a
x2 1

b−a
dx=

a2 +ab+b2

3

Now µX =
a+b

2
, thereforeσ2

X = µX2 −µ2
X =

a2 +ab+b2

3
−
(

a+b
2

)2

=
(b−a)2

12
.

15. (a) The cumulative distribution function ofU is

FU(x) =






0 x≤ 0
x 0 < x≤ 1
1 x > 1

(b) FX(x) = P(X ≤ x) = P((b−a)U +a≤ x) = P

(
U ≤ x−a

b−a

)
= FU

(
x−a
b−a

)
=






0 x≤ a
x−a
b−a

a < x≤ b

1 x > b

(c) The cdf ofX is that of a random variable distributedU(a,b).

Section 4.9

1. iii. By definition, an estimator is unbiased if its mean is equal to the true value.

3. (a) We denote the mean ofµ̂1 by E(µ̂1) and the variance of̂µ1 byV(µ̂1).

E(µ̂1) =
µX1 +µX2

2
=

µ+µ
2

= µ.

The bias of̂µ1 is E(µ̂1)−µ= µ−µ= 0.

The variance of̂µ1 is V(µ̂1) =
σ2 + σ2

4
=

σ2

2
=

1
2

.

The mean squared error ofµ̂1 is the sum of the variance and the square of the bias, so

MSE(µ̂1) =
1
2

+02 =
1
2

.

(b) We denote the mean ofµ̂2 by E(µ̂2) and the variance of̂µ2 byV(µ̂2).

E(µ̂2) =
µX1 +2µX2

3
=

µ+2µ
3

= µ.

The bias of̂µ2 is E(µ̂2)−µ= µ−µ= 0.

The variance of̂µ2 is V(µ̂2) =
σ2 +4σ2

9
=

5σ2

9
=

5
9

.
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The mean squared error ofµ̂2 is the sum of the variance and the square of the bias, so

MSE(µ̂2) =
5
9

+02 =
5
9

.

(c) We denote the mean ofµ̂3 by E(µ̂3) and the variance of̂µ3 byV(µ̂3).

E(µ̂3) =
µX1 +µX2

4
=

µ+µ
4

=
µ
2

.

The bias of̂µ3 is E(µ̂3)−µ=
µ
2
−µ= −µ

2
.

The variance of̂µ3 is V(µ̂3) =
σ2 + σ2

16
=

σ2

8
.

The mean squared error ofµ̂3 is the sum of the variance and the square of the bias, so

MSE(µ̂3) =
σ2

8
+
(
−µ

2

)2
=

2µ2+1
8

.

(d) µ̂3 has smaller mean squared error thanµ̂1 whenever
2µ2+1

8
<

1
2

.

Solving forµ yields−1.2247< µ< 1.2247.

(e) µ̂3 has smaller mean squared error thanµ̂2 whenever
2µ2+1

8
<

5
9

.

Solving forµ yields−1.3123< µ< 1.3123.

5. The probability mass function ofX is f (x; p) = p(1− p)x−1.

The MLE is the value ofp that maximizesf (x; p), or equivalently, lnf (x; p).

d
dp

ln f (x; p) =
d

dp
[ln p+(x−1) ln(1− p)] =

1
p
− x−1

1− p
= 0.

Solving forp yields p =
1
x

. The MLE is p̂ =
1
X

.

7. (a) The probability mass function ofX is f (x; p) =
n!

x!(n−x)!
(p)x(1− p)n−x.

The MLE of p is the value ofp that maximizesf (x; p), or equivalently, lnf (x; p).

d
dp

ln f (x; p) =
d

dp
[lnn! − lnx! − ln(n−x)! +xln p+(n−x) ln(1− p)] =

x
p
− n−x

1− p
= 0.

Solving forp yields p =
x
n

. The MLE of p is p̂ =
X
n

.

The MLE of
p

1− p
is therefore

p̂
1− p̂

=
X

n−X
.
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(b) The MLE of p is p̂ =
1
X

. The MLE of
p

1− p
is therefore

p̂
1− p̂

=
1

X−1
.

(c) The MLE ofλ is λ̂ = X. The MLE ofe−λ is thereforee−λ̂ = e−X.

9. The joint probability density function ofX1, ...,Xn is

f (x1, ...,xn; σ) =
n

∏
i=1

1

σ
√

2π
e−x2

i /2σ2
= (2π)−n/2σ−ne−∑n

i=1x2
i /2σ2

.

The MLE is the value ofσ that maximizesf (x1, ...,xn; σ), or equivalently, lnf (x1, ...,xn; σ).

d
dσ

ln f (x1, ...,xn; σ) =
d

dσ

[
−(n/2) ln2π−nlnσ−

n

∑
i=1

x2
i

2σ2

]
= − n

σ
+

∑n
i=1x2

i

σ3 = 0.

Now we solve forσ:

− n
σ

+
∑n

i=1x2
i

σ3 = 0

−nσ2 + ∑n
i=1x2

i = 0

σ2 =
∑n

i=1x2
i

n

σ =

√
∑n

i=1x2
i

n

The MLE ofσ is σ̂ =

√
∑n

i=1X2
i

n
.

Section 4.10

1. (a) No

(b) No

(c) Yes
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3.

2 2.5 3 3.5 4 4.5

0.001

0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99

0.999

These data do not appear to come from an ap-
proximately normal distribution.

5.

0 5 10 15 20 25

0.001

0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99

0.999

The PM data do not appear to come from an
approximately normal distribution.

7. Yes. If the logs of the PM data come from a normal population, then the PM data come from a lognormal
population, and vice versa.
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8.

3 3.5 4 4.5 5 5.5 6

0.001

0.01 
0.05 
0.1  
0.25 
0.5  
0.75 
0.9  
0.95 
0.99 

0.999

The plot is a probability plot of the logs of
the data. The points follow a line reasonably
well, with the exception of the smallest value.
The distribution is approximately normal ex-
cept perhaps for the left tail, which may be
somewhat longer than that of a normal distri-
bution.

Section 4.11

1. (a) LetX1, ...,X144 be the volumes in the 144 bottles.

ThenX is approximately normally distributed with meanµX = 12.01 andσX = 0.2/
√

144= 0.01667.

Thez-score of 12.00 is(12.00−12.01)/0.01667= −0.60.

The area to the left ofz= −0.60 is 0.2743.

P(X < 12) = 0.2743.

(b) X is approximately normally distributed with meanµX = 12.03 andσX = 0.2/
√

144= 0.01667.

Thez-score of 12.00 is(12.00−12.03)/0.01667= −1.80.

The area to the left ofz= −1.80 is 0.0359.

P(X < 12) = 0.0359.

3. The mean number of red lights encountered per day is

µX = 0(0.1)+1(0.3)+2(0.3)+3(0.2)+4(0.1)= 1.9.

The standard deviation is
σX =

√
(0−1.9)2(0.1)+ (1−1.9)2(0.3)+ (2−1.9)2(0.3)+ (3−1.9)2(0.2)+ (4−1.9)2(0.1) = 1.1358.

Let X1, ...,X100 be the numbers of red lights encountered on 100 days. ThenX is approximately normally
distributed with meanµX = 1.9 andσX = 1.1358/

√
100= 0.11358.

Thez-score of 2 isz= (2−1.9)/0.11358= 0.88.
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The area to the right ofz= 0.88 is 1−0.8106= 0.1894.P(X > 2) = 0.1894.

5. (a) LetX1, ...,X60 be the weights of the 60 bags.

ThenX is approximately normally distributed with meanµX = 15 andσX = 5/
√

60= 0.6455.

Thez-score of 14 is(14−15)/0.6455= −1.55.

The area to the left ofz= −1.55 is 0.0606.

P(X < 14) = 0.0606.

(b) Letx70 denote the 70th percentile

Thez-score of the 70th percentile is approximatelyz= 0.52.

Thereforex70 satisfies the equation 0.52= (x70−15)/0.6455.

x70 = 15.34 kg.

(c) Letn be the necessary sample size.

ThenX is approximately normally distributed with meanµX = 15 andσX = 5/
√

n.

SinceP(X < 14) = 0.01, 14 is the 1st percentile of the distribution ofX.

Thez-score of the 1st percentile is approximatelyz= −2.33.

Therefore 14= 15−2.33(5/
√

n). Solving forn yieldsn≈ 136.

7. (a) LetX1, ...,X50 be the times taken by each of the 50 customers. LetS= X1 + · · ·+X50.

ThenS is approximately normally distributed with meanµS = 50(4) = 200 and standard deviation
σS = 2

√
50= 14.142.

Thez-score of 180 is(180−200)/14.142= −1.41.

The area to the left ofz= −1.41 is 0.0793.

P(S< 180) = 0.0793.

(b) LetX1, ...,X50 be the times taken by each of the 50 customers. LetS= X1 + · · ·+X50.

ThenS is approximately normally distributed with meanµS = 50(4) = 200 and standard deviation
σS = 2

√
50= 14.142.

Let x30 denote the 30th percentile of the total time taken by 50 customers.

Thez-score of the 30th percentile is approximatelyz= −0.52.

Thereforex30 = 200−0.52(14.142)= 192.65.

9. Letn be the required number of measurements. LetX be the average of then measurements.

Then the true value isµX, and the standard deviation isσX = σ/
√

n = 0.5/
√

n.

Now P(µX −0.10< X < µX +0.10) = 0.90. In any normal population, 90% of the population is within1.645
standard deviations of the mean.

Therefore 1.645σX = 0.1. SinceσX = 0.5/
√

n, n = 67.65. The smallest value ofn is thereforen = 68.
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11. (a) LetX represent the number of nondefective bearings in a shipment.

ThenX ∼ Bin(500,0.90), soX is approximately normal with meanµX = 500(0.90) = 450 and standard devi-
ationσX =

√
500(0.1)(0.9) = 6.7082.

To findP(X ≥ 440), use the continuity correction and find thez-score of 439.5.

Thez-score of 439.5 is(439.5−450)/6.7802= −1.57.

The area to the right ofz= −1.57 is 1−0.0582= 0.9418.

P(X ≥ 440) = 0.9418.

(b) LetY represent the number of shipments out of 300 that are acceptable.

From part (a) the probability that a shipment is acceptable is 0.9418, soY ∼ Bin(300,0.9418).

It follows that Y is approximately normal with meanµY = 300(0.9418) = 282.54 and standard deviation
σY =

√
300(0.9418)(0.0582)= 4.0551.

To findP(Y > 285), use the continuity correction and find thez-score of 285.5.

Thez-score of 285.5 is(285.5−282.54)/4.0551= 0.73.

The area to the right ofz= 0.73 is 1−0.7673= 0.2327.

P(X > 285) = 0.2327.

(c) Let p be the required proportion of defective bearings, and letX represent the number of defective bearings in a
shipment.

Then X ∼ Bin(500, p), so X is approximately normal with meanµX = 500p and standard deviation
σX =

√
500p(1− p).

The probability that a shipment is acceptable isP(X ≥ 440) = 0.99.

Using the continuity correction, 439.5 is the 1st percentile of the distribution ofX.

Thez-score of the 1st percentile is approximatelyz= −2.33.

Thez-score can be expressed in terms ofp by−2.33= (439.5−500p)/
√

500p(1− p).

This equation can be rewritten as 252,714.45p2−442,214.45p+193160.25= 0.

Solving forp yields p = 0.909. (0.841 is a spurious root.)

13. (a) LetX be the number of particles emitted by mass A and letY be the number of particles emitted by mass B in
a five-minute time period. ThenX ∼ Poisson(100) andY ∼ Poisson(125).

Now X is approximately normal with mean 100 and variance 100, andY is approximately normal with mean
125 and variance 125.

The number of particles emitted by both masses together isS= X +Y.

SinceX andY are independent, and both approximately normal,S is approximately normal as well, with mean
µS = 100+125= 225 and standard deviationσS =

√
100+125= 15.

Thez-score of 200 is(200−225)/15= −1.67. The area to the left ofz= −1.67 is 0.0475.

P(S< 200) = 0.0475.

(b) Let X be the number of particles emitted by mass A and letY be the number of particles emitted by mass B in
a two-minute time period. ThenX ∼ Poisson(40) andY ∼ Poisson(50).
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Now X is approximately normal with mean 40 and variance 40, andY is approximately normal with mean 50
and variance 50.

The difference between the numbers of particles emitted by the two masses isD = Y−X.

Mass B emits more particles than mass A ifD > 0.

SinceX andY are independent, and both approximately normal,D is approximately normal as well, with mean
µD = 50−40= 10 and standard deviationσD =

√
50+40= 9.486833.

Thez-score of 0 is(0−10)/9.486833= −1.05. The area to the right ofz= −1.05 is 1−0.1469= 0.8531.

P(D > 0) = 0.8531.

15. (a) LetX be the number of particles withdrawn in a 5 mL volume.

Then the mean ofX is 50(5) = 250, soX ∼ Poisson(250), andX is approximately normal with meanµX = 250
and standard deviationσX =

√
250= 15.8114.

Thez-score of 235 is(235−250)/15.8114= −0.95, and thez-score of 265 is(265−250)/15.8114= 0.95.

The area betweenz= −0.95 andz= 0.95 is 0.8289−0.1711= 0.6578.

The probability is 0.6578.

(b) Since the withdrawn sample contains 5 mL, the average number of particles per mL will be between 48 and 52
if the total number of particles is between 5(48) = 240 and 5(52) = 260.

From part (a),X is approximately normal with meanµX = 250 and standard deviationσX =
√

250= 15.8114.

Thez-score of 240 is(240−250)/15.8114= −0.63, and thez-score of 260 is(260−250)/15.8114= 0.63.

The area betweenz= −0.63 andz= 0.63 is 0.7357−0.2643= 0.4714.

The probability is 0.4714.

(c) LetX be the number of particles withdrawn in a 10 mL volume.

Then the mean ofX is 50(10)= 500, soX ∼Poisson(500), andX is approximately normal with meanµX = 500
and standard deviationσX =

√
500= 22.3607.

The average number of particles per mL will be between 48 and 52 if the total number of particles is between
10(48) = 480 and 10(52) = 520.

Thez-score of 480 is(480−500)/22.3607= −0.89, and thez-score of 520 is(520−500)/22.3607= 0.89.

The area betweenz= −0.89 andz= 0.89 is 0.8133−0.1867= 0.6266.

The probability is 0.6266.

(d) Letv be the required volume. LetX be the number of particles withdrawn in a volume ofv mL.

ThenX ∼Poisson(50v), soX is approximately normal with meanµX = 50v and standard deviationσX =
√

50v.

The average number of particles per mL will be between 48 and 52 if the total number of particlesX is between
48v and 52v.

SinceµX = 50v, P(48v < X < 52v) = 0.95 if thez-score of 48v is−1.96 and thez-score of 52v is 1.96.

Thez-score of 1.96 therefore satisfies the equation 1.96= (52v−50v)/
√

50v, or equivalently,
√

v= 1.96
√

50/2.

Solving forv yieldsv = 48.02 ml.
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17. (a) If the claim is true, thenX ∼ Bin(1000,0.05), soX is approximately normal with meanµX = 1000(0.05) = 50
andσX =

√
1000(0.05)(0.95)= 6.89202.

To findP(X ≥ 75), use the continuity correction and find thez-score of 74.5.

Thez-score of 74.5 is(74.5−50)/6.89202= 3.55.

The area to the right ofz= 3.55 is 1−0.9998= 0.0002.

P(X ≥ 75) = 0.0002.

(b) Yes. Only about 2 in 10,000 samples of size 1000 will have 75 or more nonconforming tiles if the goal has
been reached.

(c) No, because 75 nonconforming tiles in a sample of 1000 is an unusually large number if the goal has been
reached.

(d) If the claim is true, thenX ∼ Bin(1000,0.05), soX is approximately normal with meanµX = 1000(0.05) = 50
andσX =

√
1000(0.05)(0.95)= 6.89202.

To findP(X ≥ 53), use the continuity correction and find thez-score of 52.5.

Thez-score of 52.5 is(52.5−50)/6.89202= 0.36.

The area to the right ofz= 0.36 is 1−0.6406= 0.3594.

P(X ≥ 53) = 0.3594.

(e) No. More than 1/3 of the samples of size 1000 will have 53 ormore nonconforming tiles if the goal has been
reached.

(f) Yes, because 53 nonconforming tiles in a sample of 1000 isnot an unusually large number if the goal has been
reached.

19. LetX be the number of rivets from vendor A that meet the specification, and letY be the number of rivets from
vendor B that meet the specification.

ThenX ∼ Bin(500,0.7), andY ∼ Bin(500,0.8).

It follows thatX is approximately normal with meanµX = 500(0.7) = 350 and varianceσ2
X = 500(0.7)(0.3)=

105, andY is approximately normal with meanµY = 500(0.8) = 400 and varianceσ2
X = 500(0.8)(0.2) = 80.

Let T = X +Y be the total number of rivets that meet the specification.

ThenT is approximately normal with meanµT = µX + µY = 350+ 400= 750, and standard deviationσT =√
σ2

X + σ2
Y =

√
105+80= 13.601471.

To findP(T > 775), use the continuity correction and find thez-score of 775.5.

Thez-score of 775.5 is(775.5−750)/13.601471= 1.87.

The area to the right ofz= 1.87 is 1−0.9693= 0.0307.

P(T > 775) = 0.0307.
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Section 4.12

1. (a)X ∼ Bin(100,0.03), Y ∼ Bin(100,0.05)

(b) Answers will vary.

(c) ≈ 0.72

(d) ≈ 0.18

(e) The distribution deviates somewhat from the normal.

3. (a)µA = 6 exactly (simulation results will be approximate),σ2
A ≈ 0.25.

(b) ≈ 0.16

(c) The distribution is approximately normal.

5. (a)≈ 0.25

(b) ≈ 0.25

(c) ≈ 0.61

7. (a–c) Answers will vary.

(d) ≈ 0.025

9. (a) Answers will vary.

(b) ≈ 2.7

(c) ≈ 0.34

(d) ≈ 1.6

(e) System lifetime is not approximately normally distributed.



110 CHAPTER 4

(f) Skewed to the right.

11. (a) Answers will vary.

(b) ≈ 10,090

(c) ≈ 1250

(d) ≈ 0.58

(e)≈ 0.095

(f) The distribution differs somewhat from normal.

13. (a)λ̂ = 0.25616

(b–d) Answers will vary.

(e) Bias≈ 0.037, σλ̂ ≈ 0.12

Supplementary Exercises for Chapter 4

1. LetX be the number of people out of 105 who appear for the flight.

ThenX ∼Bin(105,0.9), soX is approximately normal with meanµX = 105(0.9)= 94.5 and standard deviation
σX =

√
105(0.9)(0.1) = 3.0741.

To findP(X ≤ 100), use the continuity correction and find thez-score for 100.5.

Thez-score of 100.5 is(100.5−94.5)/3.0741= 1.95.

The area to the left ofz= 1.95 is 0.9744.

P(X ≤ 100) = 0.9744.

3. (a) LetX be the number of plants out of 10 that have green seeds. ThenX ∼ Bin(10,0.25).

P(X = 3) =
10!

3!(10−3)!
(0.25)3(1−0.25)10−3 = 0.2503.
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(b) P(X > 2) = 1−P(X ≤ 2)

= 1−P(X = 0)−P(X = 1)−P(X = 2)

= 1− 10!
0!(10−0)!

(0.25)0(1−0.25)10−0− 10!
1!(10−1)!

(0.25)1(1−0.25)10−1

− 10!
2!(10−2)!

(0.25)2(1−0.25)10−2

= 0.4744

(c) LetY be the number of plants out of 100 that have green seeds.

ThenY ∼ Bin(100,0.25) soY is approximately normal with meanµY = 100(0.25)= 25 and standard deviation
σY =

√
100(0.25)(0.75) = 4.3301.

To findP(Y > 30), use the continuity correction and find thez-score for 30.5.

Thez-score of 30.5 is(30.5−25)/4.3301= 1.27.

The area to the right ofz= 1.27 is 1−0.8980= 0.1020.

P(Y > 30) = 0.1020.

(d) To findP(30≤Y ≤ 35), use the continuity correction and find thez-scores for 29.5 and 35.5.

Thez-score of 29.5 is(29.5−25)/4.3301= 1.04.

Thez-score of 35.5 is(35.5−25)/4.3301= 2.42.

The area to betweenz= 1.04 andz= 2.42 is 0.9922−0.8508= 0.1414.

P(30≤Y ≤ 35) = 0.1414.

(e) Fewer than 80 have yellow seeds if more than 20 have green seeds.

To findP(Y > 20), use the continuity correction and find thez-score for 20.5.

Thez-score of 20.5 is(20.5−25)/4.3301= −1.04.

The area to the right ofz= −1.04 is 1−0.1492= 0.8508.

P(Y > 20) = 0.8508.

5. LetX denote the number of devices that fail. ThenX ∼ Bin(10,0.01).

(a) P(X = 0) =
10!

0!(10−0)!
(0.01)0(1−0.01)10−0 = 0.9910 = 0.9044

(b) P(X ≥ 2) = 1−P(X ≤ 1)

= 1−P(X = 0)−P(X = 1)

= 1− 10!
0!(10−0)!

(0.01)0(1−0.01)10−0− 10!
1!(10−1)!

(0.01)1(1−0.01)10−1

= 0.00427
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(c) Let p be the required probability. ThenX ∼ Bin(10, p).

P(X = 0) =
10!

0!(10−0)!
p0(1− p)10−0 = (1− p)10 = 0.95.

Solving forp yields p = 0.00512.

7. (a) The probability that a normal random variable is within one standard deviation of its mean is the area under the
normal curve betweenz= −1 andz= 1. This area is 0.8413−0.1587= 0.6826.

(b) The quantityµ+zσ is the 90th percentile of the distribution ofX. The 90th percentile of a normal distribution
is 1.28 standard deviations above the mean. Thereforez= 1.28.

(c) Thez-score of 15 is(15−10)/
√

2.6 = 3.10.

The area to the right ofz= 3.10 is 1−0.9990= 0.0010.

P(X > 15) = 0.0010.

9. (a) Thez-score of 215 is(215−200)/10= 1.5.

The area to the right ofz= 1.5 is 1−0.9332= 0.0668.

The probability that the clearance is greater than 215µm is 0.0668.

(b) Thez-score of 180 is(180−200)/10= −2.00.

Thez-score of 205 is(205−200)/10= 0.50.

The area betweenz= −2.00 andz= 0.50 is 0.6915−0.0228= 0.6687.

The probability that the clearance is between 180 and 205µm is 0.6687.

(c) LetX be the number of valves whose clearances are greater than 215µm.

From part (a), the probability that a valve has a clearance greater than 215µm is 0.0668, so
X ∼ Bin(6,0.0668).

P(X = 2) =
6!

2!(6−2)!
(0.0668)2(1−0.0668)6−2 = 0.0508.

11. (a) LetX be the number of components in a sample of 250 that are defective.

ThenX ∼ Bin(250,0.07), soX is approximately normal with meanµX = 250(0.07) = 17.5 and standard devi-
ationσX =

√
250(0.07)(0.93) = 4.0342.

To findP(X < 20), use the continuity correction and find thez-score of 19.5.

Thez-score of 19.5 is(19.5−17.5)/4.0342= 0.50.

The area to the left ofz= 0.50 is 0.6915.

P(X < 20) = 0.6915.
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(b) LetY be the number of components in a sample of 10 that are defective. ThenX ∼ Bin(10,0.07).

P(X ≥ 1) = 1−P(X = 0) = 1− 10!
0!(10−0)!

(0.07)0(1−0.07)10−0 = 0.5160.

(c) Let p be the required probability, and letX represent the number of components in a sample of 250 that are
defective.

Then X ∼ Bin(250, p), so X is approximately normal with meanµX = 250p and standard deviation
σX =

√
250p(1− p).

P(X ≥ 20) = 0.01.

Using the continuity correction, 19.5 is the 1st percentileof the distribution ofX.

Thez-score of the 1st percentile is approximatelyz= −2.33.

Thez-score can be expressed in terms ofp by−2.33= (19.5−250p)/
√

250p(1− p).

This equation can be rewritten as 62,635.7225p2−11,107.225p+380.25= 0.

Solving forp yields p = 0.04686. (0.1271 is a spurious root.)

13. (a) Letλ be the true concentration. Thenλ̂ = 56/2 = 28.

The uncertainty isσλ̂ =
√

λ/2. Substitutinĝλ for λ, σλ̂ =
√

28/2= 3.7.

λ = 28.0±3.7.

(b) Letv be the required volume, in mL. Thenσλ̂ =
√

λ/v= 1.

Substitutinĝλ = 28 forλ and solving forv yieldsv = 28 mL.

15. (a) LetX1,X2,X3 be the three thicknesses. LetS= X1 +X2 +X3 be the thickness of the stack. ThenS is normally
distributed with meanµS = 3(1.5) = 4.5 and standard deviation 0.2

√
3 = 0.34641.

Thez-score of 5 is(5−4.5)/0.34641= 1.44.

The area to the right ofz= 1.44 is 1−0.9251= 0.0749.

P(S> 5) = 0.0749.

(b) Letx80 denote the 80th percentile. Thez-score of the 80th percentile is approximatelyz= 0.84.

Thereforex80 satisfies the equation 0.84= (x80−4.5)/0.34641.

Solving forx80 yieldsx80 = 4.7910 cm.

(c) Letn be the required number. ThenµS = 1.5n andσS = 0.2
√

n.

P(S> 5) ≥ 0.99, so 5 is less than or equal to the 1st percentile of the distribution ofS.

Thez-score of the 1st percentile isz= −2.33.

Thereforen satisfies the inequality−2.33≥ (5−1.5n)/(0.2
√

n).

The smallest value of n satisfying this inequality is the solution to the equation
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−2.33= (5−1.5n)/(0.2
√

n).

This equation can be rewritten 1.5n−0.466
√

n−5 = 0.

Solving for
√

n with the quadratic formula yields
√

n = 1.9877, son = 3.95. The smallest integer value ofn is
thereforen = 4.

17. (a) LetT represent the lifetime of a bearing.

P(T > 1) = 1−P(T ≤ 1) = 1− (1−e−[(0.8)(1)]1.5
) = 0.4889

(b) P(T ≤ 2) = 1−e−[(0.8)(2)]1.5
= 0.8679

19. (a)S is approximately normal with meanµS = 75(12.2) = 915 andσS = 0.1
√

75= 0.86603.

Thez-score of 914.8 is(914.8−915)/0.86603= −0.23.

The area to the left ofz= −0.23 is 0.4090.

P(S< 914.8) = 0.4090.

(b) No. More than 40% of the samples will have a total weight of914.8 ounces or less if the claim is true.

(c) No, because a total weight of 914.8 ounces is not unusually small if the claim is true.

(d) S is approximately normal with meanµS = 75(12.2) = 915 andσS = 0.1
√

75= 0.86603.

Thez-score of 910.3 is(910.3−915)/0.86603= −5.43.

The area to the left ofz= −5.43 is negligible.

P(S< 910.3)≈ 0.

(e) Yes. Almost none of the samples will have a total weight of910.3 ounces or less if the claim is true.

(f) Yes, because a total weight of 910.3 ounces is unusually small if the claim is true.

21. (a)P(X ≤ 0) = F(0) = e−e−0
= e−1

(b) P(X > ln2) = 1−P(X ≤ ln2) = 1−F(ln2) = 1−e−e− ln2
= 1−e−1/2

(c) Letxm be the median ofX. ThenF(xm) = e−e−xm
= 0.5.

Solving forxm yieldse−xm = − ln0.5 = ln2, soxm = − ln(ln2) = 0.3665.
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23. (a) fX(x) = F ′(x) =
e−(x−α)/β

β[1+e−(x−α)/β]2

(b) fX(α−x) = fX(α+x) =
ex/β

β[1+ex/β]2

(c) SincefX(x) is symmetric aroundα, its center of mass is atx = α.

25. (a)P(X > s) = P(First s trials are failures) = (1− p)s

(b) P(X > s+ t |X > s) = P(X > s+ t andX > s)/P(X > s)

= P(X > s+ t)/P(X > s)

= (1− p)s+t/(1− p)s

= (1− p)t

= P(X > t)

Note that ifX > s+ t, it must be the case thatX > s, which is the reason that
P(X > s+ t andX > s) = P(X > s+ t).

(c) LetX be the number of tosses of the penny needed to obtain the first head.

ThenP(X > 5|X > 3) = P(X > 2) = 1/4.

The probability that the nickel comes up tails twice is also 1/4.

27. (a)FY(y) = P(Y ≤ y) = P(7X ≤ y) = P(X ≤ y/7).

SinceX ∼ Exp(λ), P(X ≤ y/7) = 1−e−λy/7.

(b) fY(y) = F ′
Y(y) = (λ/7)e−λy/7

29. (a)
P(X = x)

P(X = x−1)
=

e−λλx/x!

e−λλx−1/(x−1)!
=

e−λλx(x−1)!

e−λλx−1x!
=

λ
x

(b) P(X = x) ≥ P(X = x−1) if and only if
λ
x
≥ 1 if and only ifx≤ λ.
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Chapter 5

Section 5.1

1. (a) 1.96

(b) 2.33

(c) 2.57 or 2.58

(d) 1.28

3. The level is the proportion of samples for which the confidence interval will cover the true value. Therefore as
the level goes up, the reliability goes up. This increase in reliability is obtained by increasing the width of the
confidence interval. Therefore as the level goes up the precision goes down.

5. (a)X = 50,s= 2, n = 100,z.025 = 1.96.

The confidence interval is 50±1.96(2/
√

100), or (49.608, 50.392).

(b) X = 50,s= 2, n = 100,z.005 = 2.58.

The confidence interval is 50±2.58(2/
√

100), or (49.484, 50.516).

(c) X = 50,s= 2, n = 100, so the upper confidence bound 50.3 satisfies 50.3 = 50+zα/2(2/
√

100).

Solving forzα/2 yieldszα/2 = 1.50.

The area to the right ofz= 1.50 is 1−0.9332= 0.0668, soα/2 = 0.0668.

The level is 1−α = 1−2(0.0668)= 0.8664, or 86.64%.

(d) z.025 = 1.96. 1.96(2/
√

n) = 0.3, son = 171.

(e) z.005 = 2.58. 2.58(2/
√

n) = 0.3, son = 296.

7. (a)X = 178,s= 14,n = 120,z.025 = 1.96.

The confidence interval is 178±1.96(14/
√

120), or (175.495, 180.505).

(b) X = 178,s= 14,n = 120,z.005 = 2.58.

The confidence interval is 178±2.58(14/
√

120), or (174.703, 181.297).
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(c) X = 178,s= 14,n = 120, so the upper confidence bound 180 satisfies 180= 178+zα/2(14/
√

120).

Solving forzα/2 yieldszα/2 = 1.56.

The area to the right ofz= 1.56 is 1−0.9406= 0.0594, soα/2 = 0.0594.

The level is 1−α = 1−2(0.0594)= 0.8812, or 88.12%.

(d) z.025 = 1.96. 1.96(14/
√

n) = 2, son = 189.

(e) z.005 = 2.58. 2.58(14/
√

n) = 2, son = 327.

9. (a)X = 1.56,s= 0.1, n = 80,z.025 = 1.96.

The confidence interval is 1.56±1.96(0.1/
√

80), or (1.5381, 1.5819).

(b) X = 1.56,s= 0.1, n = 80,z.01 = 2.33.

The confidence interval is 1.56±2.33(0.1/
√

80), or (1.5339, 1.5861).

(c) X = 1.56,s= 0.1, n = 80, so the upper confidence bound 1.58 satisfies 1.58= 1.56+zα/2(0.1/
√

80).

Solving forzα/2 yieldszα/2 = 1.79.

The area to the right ofz= 1.79 is 1−0.9633= 0.0367, soα/2 = 0.0367.

The level is 1−α = 1−2(0.0367)= 0.9266, or 92.66%.

(d) z.025 = 1.96. 1.96(0.1/
√

n) = 0.01, son = 385.

(e) z.01 = 2.33. 2.33(0.1/
√

n) = 0.01, son = 543.

11. (a)X = 11.9, s= 1.1, n = 140,z.025 = 1.96.

The confidence interval is 11.9±1.96(1.1/
√

140), or (11.718, 12.082).

(b) X = 11.9, s= 1.1, n = 140,z.005 = 2.58.

The confidence interval is 11.9±2.58(1.1/
√

140), or (11.660, 12.140).

(c) X = 11.9, s= 1.1, n = 140, so the upper confidence bound 11.99 satisfies 11.99= 11.9+zα/2(1.1/
√

140).

Solving forzα/2 yieldszα/2 = 0.97.

The area to the right ofz= 0.97 is 1−0.8340= 0.1660, soα/2 = 0.1660.

The level is 1−α = 1−2(0.1660)= 0.6680, or 66.80%.
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(d) z.025 = 1.96. 1.96(1.1/
√

n) = 0.1, son = 465.

(e) z.005 = 2.58. 2.58(1.1/
√

n) = 0.1, son = 806.

13. (a)X = 136.9, s= 22.6, n = 123,z.02 = 2.05.

The lower confidence bound is 136.9−2.05(22.6/
√

123) = 132.72.

(b) The lower confidence bound 134.3 satisfies 134.3= 136.9−zα(22.6/
√

123).

Solving forzα yieldszα = −1.28.

The area to the right ofz= −1.28 is 1−α = 0.8997.

The level is 0.8997, or 89.97%.

15. (a)X = 348.2, s= 5.1, n = 67,z.01 = 2.33.

The upper confidence bound is 348.2+2.33(5.1/
√

67) = 349.651.

(b) The upper confidence bound 349.5 satisfies 349.5 = 348.2+zα(5.1/
√

67).

Solving forzα yieldszα = 2.09.

The area to the left ofz= 2.09 is 1−α = 0.9817.

The level is 0.9817, or 98.17%.

17. (a)X = 85,s= 2, n = 60,z.02 = 2.05.

The lower confidence bound is 85−2.05(2/
√

60) = 84.471.

(b) The lower confidence bound 11.7 satisfies 11.7 = 85−zα(2/
√

60).

Solving forzα yieldszα = 1.55.

The area to the left ofz= 1.55 is 1−α = 0.9394.

The level is 0.9394, or 93.94%.

19. With a sample size of 70, the standard deviation ofX is σ/
√

70. To make the interval half as wide, the standard
deviation ofX will have to beσ/(2

√
70) = σ/

√
280. The sample size needs to be 280.

21. The sample meanX is the midpoint of the interval, soX = 0.227. The upper confidence bound 0.241 satisfies
0.241= 0.227+1.96(s/

√
n).

Therefores/
√

n= 0.00714286. A 90% confidence interval is 0.227±1.645(s/
√

n)= 0.227±1.645(0.00714286),
or (0.21525, 0.23875).
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23. (a) False. The confidence interval is for the population mean, not the sample mean. The sample mean is known,
so there is no need to construct a confidence interval for it.

(b) True. This results from the expressionX±1.96(s/
√

n), which is a 95% confidence interval for the population
mean.

(c) False. The standard deviation of the mean involves the square root of the sample size, not of the population
size.

25. The supervisor is underestimating the confidence. The statement that the mean cost is less than $160 is a
one-sided upper confidence bound with confidence level 97.5%.

Section 5.2

1. (a) 28/70= 0.4, or 40%.

(b) X = 28,n = 70, p̃ = (28+2)/(70+4)= 0.405405,z.025 = 1.96.

The confidence interval is 0.405405±1.96
√

0.405405(1−0.405405)/(70+4), or (0.294, 0.517).

(c) X = 28,n = 70, p̃ = (28+2)/(70+4)= 0.405405,z.01 = 2.33.

The confidence interval is 0.405405±2.33
√

0.405405(1−0.405405)/(70+4), or (0.272, 0.538).

(d) Letn be the required sample size.

Thenn satisfies the equation 0.1 = 1.96
√

p̃(1− p̃)/(n+4).

Replacing ˜p with 0.405405 and solving forn yieldsn = 89.

(e) Letn be the required sample size.

Thenn satisfies the equation 0.10= 2.33
√

p̃(1− p̃)/(n+4).

Replacing ˜p with 0.405405 and solving forn yieldsn = 127.

(f) The upper confidence bound 0.5 satisfies the equation 0.5= 0.405405+zα
√

0.405405(1−0.405405)/(70+4)

Solving forzα yieldszα = 1.66. The area to the left ofz= 1.66 is 1−α = 0.9515.

The level is 0.9515, or 95.15%.
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3. (a)X = 52,n = 70, p̃ = (52+2)/(70+4)= 0.72973,z.025 = 1.96.

The confidence interval is 0.72973±1.96
√

0.72973(1−0.72973)/(70+4), or (0.629, 0.831).

(b) X = 52,n = 70, p̃ = (52+2)/(70+4)= 0.72973,z.05 = 1.645.

The confidence interval is 0.72973±1.645
√

0.72973(1−0.72973)/(70+4), or (0.645, 0.815).

(c) Letn be the required sample size.

Thenn satisfies the equation 0.05= 1.96
√

p̃(1− p̃)/(n+4).

Replacing ˜p with 0.72973 and solving forn yieldsn = 300.

(d) Letn be the required sample size.

Thenn satisfies the equation 0.05= 1.645
√

p̃(1− p̃)/(n+4).

Replacing ˜p with 0.72973 and solving forn yieldsn = 210.

(e) LetX be the number of 90% confidence intervals that cover the true proportion.

Then X ∼ Bin(300,0.90), so X is approximately normal with meanµX = 300(0.90) = 270 and standard
deviation

√
300(0.90)(0.10) = 5.196152.

To findP(X > 280), use the continuity correction and find thez-score of 280.5.

Thez-score of 280.5 is(280.5−270)/5.196152= 2.02.

The area to the right ofz= 2.02 is 1−0.9783= 0.0217.

P(X > 280) = 0.0217.

5. (a)X = 859,n = 10501,p̃ = (859+2)/(10501+4)= 0.081961,z.025 = 1.96.

The confidence interval is 0.081961±1.96
√

0.081961(1−0.081961)/(10501+4), or (0.0767, 0.0872).

(b) X = 859,n = 10501,p̃ = (859+2)/(10501+4)= 0.081961,z.005 = 2.58.

The confidence interval is 0.081961±2.58
√

0.081961(1−0.081961)/(10501+4), or (0.0751, 0.0889).

(c) The upper confidence bound 0.085 satisfies the equation 0.085= 0.081961+zα
√

0.081961(1−0.081961)/(10501+4)

Solving forzα yieldszα = 1.14. The area to the left ofz= 1.14 is 1−α = 0.8729.

The level is 0.8729, or 87.29%.

7. X = 73,n = 100, p̃ = (73+2)/(100+4)= 0.72115,z.02 = 2.05.

The upper confidence bound is 0.72115+2.05
√

0.72115(1−0.72115)/(100+4), or 0.811.
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9. (a)X = 30,n = 400, p̃ = (30+2)/(400+4)= 0.079208,z.025 = 1.96.

The confidence interval is 0.079208±1.96
√

0.079208(1−0.079208)/(400+4), or (0.0529, 0.1055).

(b) Letn be the required sample size.

Thenn satisfies the equation 0.02= 1.96
√

p̃(1− p̃)/(n+4).

Replacing ˜p with 0.079208 and solving forn yieldsn = 697.

(c) LetX be the number of defective components in a lot of 200.

Let p be the population proportion of components that are defective. ThenX ∼ Bin(200, p), soX is approxi-
mately normally distributed with meanµX = 200p andσX =

√
200p(1− p).

Let r represent the proportion of lots that are returned.

Using the continuity correction,r = P(X > 20.5).

To find a 95% confidence interval forr, express thez-score ofP(X > 20.5) as a function ofp and substitute the
upper and lower confidence limits forp.

Thez-score of 20.5 is(20.5−200p)/
√

200p(1− p). Now find a 95% confidence interval forzby substituting
the upper and lower confidence limits forp.

From part (a), the 95% confidence interval forp is (0.052873, 0.10554). Extra precision is used for this confi-
dence interval to get good precision in the final answer.

Substituting 0.052873 forp yieldsz= 3.14. Substituting 0.10554 forp yieldsz= −0.14.

Since we are 95% confident that 0.052873< p < 0.10554, we are 95% confident that−0.14< z< 3.14.

The area to the right ofz= −0.14 is 1−0.4443= 0.5557. The area to the right ofz= 3.14 is 1−0.9992=
0.0008.

Therefore we are 95% confident that 0.0008< r < 0.5557.

The confidence interval is (0.0008, 0.5557).

11. (a)X = 89,n = 710, p̃ = (89+2)/(710+4)= 0.12745,z.05 = 1.645.

The confidence interval is 0.12745±1.645
√

0.12745(1−0.12745)/(710+4), or (0.107, 0.148).

(b) X = 89,n = 710, p̃ = (89+2)/(710+4)= 0.12745,z.025 = 1.96.

The confidence interval is 0.12745±1.96
√

0.12745(1−0.12745)/(710+4), or (0.103, 0.152).

(c) X = 89,n = 710, p̃ = (89+2)/(710+4)= 0.12745,z.005 = 2.58.

The confidence interval is 0.12745±2.58
√

0.12745(1−0.12745)/(710+4), or (0.095, 0.160).

13. (a) Letn be the required sample size.

Thenn satisfies the equation 0.05= 1.96
√

p̃(1− p̃)/(n+4).

Since there is no preliminary estimate of ˜p available, replace ˜p with 0.5.

Solving forn yieldsn = 381.
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(b) X = 20,n = 100, p̃ = (20+2)/(100+4)= 0.21154,z.025 = 1.96.

The confidence interval is 0.21154±1.96
√

0.21154(1−0.21154)/(100+4), or (0.133, 0.290).

(c) Letn be the required sample size.

Thenn satisfies the equation 0.05= 1.96
√

p̃(1− p̃)/(n+4).

Replacing ˜p with 0.21154 and solving forn yieldsn = 253.

15. (a)X = 293,n = 335, p̃ = (293+2)/(335+4)= 0.87021,z.05 = 1.645.

The confidence interval is 0.87021±1.645
√

0.87021(1−0.87021)/(293+4), or (0.840, 0.900).

(b) Letn be the required sample size. Thenn satisfies the equation 0.025= 1.645
√

p̃(1− p̃)/(n+4).

Replacing ˜p with 0.87021 and solving forn yieldsn = 486.

(c) Letn be the required sample size. Thenn satisfies the equation 0.03= 1.645
√

p̃(1− p̃)/(n+4).

Since there is no preliminary estimate of ˜p available, replace ˜p with 0.5.

The equation becomes 0.03= 1.645
√

0.5(1−0.5)/(n+4). Solving forn yieldsn = 748.

Section 5.3

1. (a) 1.796

(b) 2.447

(c) 63.657

(d) 2.048

3. (a) 95%

(b) 98%

(c) 99%

(d) 80%

(e) 90%
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5. X = 2.938,s= 0.47199,n = 5, t5−1,.025= 2.938.

The confidence interval is 2.938±2.938(0.47199/
√

5), or (2.352, 3.524).

7. Yes it is appropriate, since there are no outliers.

X = 205.1267,s= 1.7174,n = 9, t9−1,.025= 2.306.

The confidence interval is 205.1267±2.306(1.7174/
√

9), or (203.81, 206.45).

9. (a)
1.3 1.305 1.31 1.315 1.32 1.325

(b) Yes, there are no outliers.X = 1.3115,s= 0.00628490,n = 6, t6−1,.005= 4.032.

The confidence interval is 1.3115±4.032(0.00628490/
√

6), or (1.3012, 1.3218).

(c)
1.3 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39

(d) No, the data set contains an outlier.

11. X = 2.03,s= 0.090,n = 6, t6−1,.05 = 2.015.

The confidence interval is 2.03±2.015(0.090/
√

6), or (1.956, 2.104).

13. X = 0.242,s= 0.031,n = 10,t10−1,.025= 2.262.

The confidence interval is 0.242±2.262(0.031/
√

12), or (0.2198, 0.2642).

15. (a) SE Mean is StDev/
√

N, so 0.52640 = StDev/
√

20, so StDev = 2.3541.

(b) X = 2.39374,s= 2.3541,n = 20,t20−1,.005= 2.861.

The lower limit of the 99% confidence interval is 2.39374−2.861(2.3541/
√

20) = 0.888.

Alternatively, one may compute 2.39374−2.861(0.52640).

(c) X = 2.39374,s= 2.3541,n = 20,t20−1,.005= 2.861.

The upper limit of the 99% confidence interval is 2.39374+2.861(2.3541/
√

20) = 3.900.

Alternatively, one may compute 2.39374+2.861(0.52640).
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17. (a)X = 21.7, s= 9.4, n = 5, t5−1,.025= 2.776.

The confidence interval is 21.7±2.776(9.4/
√

5), or (10.030, 33.370).

(b) No. The minimum possible value is 0, which is less than twosample standard deviations below the sample
mean. Therefore it is impossible to observe a value that is two or more sample standard deviations below the
sample mean. This suggests that the sample may not come from anormal population.

Section 5.4

1. X = 620,sX = 20,nX = 80,Y = 750,sY = 30,nY = 95,z.025 = 1.96.

The confidence interval is 750−620±1.96
√

202/80+302/95, or (122.54, 137.46).

3. X = 30.4, sX = 0.6, nX = 1559,Y = 31.1, sY = 0.2, nY = 1924,z.005 = 2.58.

The confidence interval is 31.1−30.4±2.58
√

0.62/1559+0.22/1924, or (0.6591, 0.7409).

5. X = 3.64,sX = 0.23,nX = 40,Y = 3.40,sY = 0.28,nY = 43,z.025 = 1.96.

The confidence interval is 3.64−3.40±1.96
√

0.232/40+0.282/43, or (0.1301, 0.3499).

7. X = 105,sX = 20,nX = 49,Y = 117,sY = 15,nY = 35,z.01 = 2.33.

The confidence interval is 117−105±2.33
√

202/49+152/35, or (3.100, 20.900).

9. X = 242,sX = 20,nX = 47,Y = 220,sY = 31,nY = 42,z.025 = 1.96.

The confidence interval is 242−220±1.96
√

202/47+312/42, or (11.018, 32.982).

11. (a)X = 91.1, sX = 6.23,nX = 50,Y = 90.7, sY = 4.34,nY = 40,z.025 = 1.96.

The confidence interval is 91.1−90.7±1.96
√

6.232/50+4.342/40, or(−1.789,2.589).

(b) No. Since 0 is in the confidence interval, it may be regarded as being a plausible value for the mean difference
in hardness.

13. It is not possible. The amounts of time spent in bed and spent asleep in bed are not independent.
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Section 5.5

1. X = 20,nX = 100, p̃X = (20+1)/(100+2)= 0.205882,
Y = 10,nY = 150, p̃Y = (10+1)/(150+2)= 0.072368,z.05 = 1.645.

The confidence interval is 0.205882−0.072368± 1.645

√
0.205882(1−0.205882)

100+2
+

0.072368(1−0.072368)
150+2

,

or (0.0591, 0.208).

3. (a)X = 841,nX = 5320,p̃X = (841+1)/(5320+2)= 0.158211,
Y = 134,nY = 1120,p̃Y = (134+1)/(1120+2)= 0.120321,z.01 = 2.33.

The confidence interval is 0.158211−0.120321± 2.33

√
0.158211(1−0.158211)

5320+2
+

0.120321(1−0.120321)
1120+2

,

or (0.0124,0.0633).

(b) The standard deviation of the difference between the proportions is
√

pX(1− pX)/(nX +2)+ pY(1− pY)/(nY +2).

EstimatepX ≈ p̃X = 0.120321 andpY ≈ p̃Y = 0.158211.

If 1000 additional patients are treated with bare metal stents, the standard deviation of the difference be-
tween the proportions is then

√
0.120321(1−0.120321)/(1120+2)+0.158211(1−0.158211)/(6320+2)=

0.01074.

The width of the 98% confidence interval will be±2.33(0.01074)= 0.0250.

If 500 additional patients are treated with drug-coated stents, the standard deviation of the difference be-
tween the proportions is then

√
0.120321(1−0.120321)/(1620+2)+0.158211(1−0.158211)/(5320+2)=

0.009502.

The width of the 98% confidence interval will be±2.33(0.009502)= 0.0221.

If 500 additional patients are treated with bare metal stents and 250 additional patients are treated with drug-
coated stents, the standard deviation of the difference between the proportions is then√

0.120321(1−0.120321)/(1370+2)+0.158211(1−0.158211)/(5820+2)= 0.01000.

The width of the 98% confidence interval will be±2.33(0.01000)= 0.0233.

Therefore the confidence interval would be most precise if 500 new patients are treated with drug-coated stents.

5. X = 8, nX = 12, p̃X = (8+1)/(12+2)= 0.642857,
Y = 5, nY = 15, p̃Y = (5+1)/(15+2)= 0.352941,z.025 = 1.96.

The confidence interval is 0.642857−0.352941± 1.96

√
0.642857(1−0.642857)

12+2
+

0.352941(1−0.352941)
15+2

,

or (−0.04862,0.6285).

7. No. The sample proportions come from the same sample rather than from two independent samples.
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9. X = 30,nX = 164, p̃X = (30+1)/(164+2)= 0.186747,
Y = 19,nY = 185, p̃Y = (19+1)/(185+2)= 0.106952,z.005 = 2.58.

The confidence interval is 0.186747−0.106952± 2.58

√
0.186747(1−0.186747)

164+2
+

0.106952(1−0.106952)
185+2

,

or (−0.0176,0.1772).

11. No, these are not simple random samples.

Section 5.6

1. X = 1.5, sX = 0.25,nX = 7, Y = 1.0, sY = 0.15,nY = 5.

The number of degrees of freedom is

ν =

[
0.252

7
+

0.152

5

]2

(0.252/7)2

7−1
+

(0.152/5)2

5−1

= 9, rounded down to the nearest integer.

t9,.005 = 3.250, so the confidence interval is 1.5−1.0± 3.250

√
0.252

7
+

0.152

5
,

or (0.1234,0.8766).

3. X = 59.6, sX = 5.295701,nX = 10, Y = 50.9, sY = 5.321863,nY = 10.

The number of degrees of freedom is

ν =

[
5.2957012

10
+

5.3218632

10

]2

(5.2957012/10)2

10−1
+

(5.3218632/10)2

10−1

= 17, rounded down to the nearest integer.

t17,.005 = 2.898, so the confidence interval is 59.6−50.9± 2.898

√
5.2957012

10
+

5.3218632

10
,

or (1.8197,15.5803).

5. X = 73.1, sX = 9.1, nX = 10, Y = 53.9, sY = 10.7, nY = 10.

The number of degrees of freedom is

ν =

[
9.12

10
+

10.72

10

]2

(9.12/10)2

10−1
+

(10.72/10)2

10−1

= 17, rounded down to the nearest integer.

t17,.01 = 2.567, so the confidence interval is 73.1−53.9± 2.567

√
9.12

10
+

10.72

10
, or (7.798, 30.602).
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7. X = 33.8, sX = 0.5, nX = 4, Y = 10.7, sY = 3.3, nY = 8.

The number of degrees of freedom is

ν =

[
0.52

4
+

3.32

8

]2

(0.52/4)2

4−1
+

(3.32/8)2

8−1

= 7, rounded down to the nearest integer.

t7,.025 = 2.365, so the confidence interval is 33.8−10.7± 2.365

√
0.52

4
+

3.32

8
, or (20.278, 25.922).

9. X = 4.8, sX = 1.9, nX = 24, Y = 2.8, sY = 1.0, nY = 24.

The number of degrees of freedom is

ν =

[
1.92

24
+

1.02

24

]2

(1.92/24)2

24−1
+

(1.02/24)2

24−1

= 34, rounded down to the nearest integer.

t34,.025 = 2.032, so the confidence interval is 4.8−2.8± 2.032

√
1.92

24
+

1.02

24
, or (1.1093, 2.8907).

11. X = 36.893077,sX = 3.221054,nX = 13, Y = 33.000000,sY = 2.544882,nY = 9.

The number of degrees of freedom is

ν =

[
3.2210542

13
+

2.5448822

9

]2

(3.2210542/13)2

13−1
+

(2.5448822/9)2

9−1

= 19, rounded down to the nearest integer.

t19,.01 = 2.539, so the confidence interval is 36.893077−33.000000± 2.539

√
3.2210542

13
+

2.5448822

9
,

or (0.7646, 7.0216).

13. X = 229.54286,sX = 14.16885,nX = 7, Y = 143.95556,sY = 59.75699,nY = 9.

The number of degrees of freedom is

ν =

[
14.168852

7
+

59.756992

9

]2

(14.168852/7)2

7−1
+

(59.756992/9)2

9−1

= 9, rounded down to the nearest integer.

t9,.025 = 2.262, so the confidence interval is 229.54286−143.95556± 2.262

√
14.168852

7
+

59.756992

9
,

or (38.931, 132.244).
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15. X = 4500.8,sX = 271.6,nX = 5, Y = 1299.8,sY = 329.8, nY = 5.

The number of degrees of freedom is

ν =

[
271.62

5
+

329.82

5

]2

(271.62/5)2

5−1
+

(329.82/5)2

5−1

= 7, rounded down to the nearest integer.

t7,.01 = 2.998, so the confidence interval is 4500.8−1299.8± 2.998

√
271.62

5
+

329.82

5
, or (2628.179, 3773.821).

Section 5.7

1. D = 6.736667,sD = 6.045556,n = 9, t9−1,.025= 2.306.

The confidence interval is 6.736667±2.306(6.045556/
√

9), or (2.090, 11.384).

3. The differences are: 9, 7, 5, 9, 10, 9, 2, 8, 8, 10.

D = 7.7, sD = 2.496664,n = 10,t10−1,.01 = 2.821.

The confidence interval is 7.7±2.821(2.496664/
√

10), or (5.473, 9.927).

5. The differences are: 25, 32, 39, 23, 38.

D = 31.4, sD = 7.300685,n = 5, t5−1,.05 = 2.132.

The confidence interval is 31.4±2.132(7.300685/
√

5), or (24.4391, 38.3609).

7. The differences are: 8.4,8.6,10.5,9.6,10.7,10.8,10.7,11.3,10.7.

D = 10.144444,sD = 1.033333,n = 9, t9−1,.025= 2.306.

The confidence interval is 10.144444±2.306(1.033333/
√

9), or (9.350, 10.939).

9. (a) The differences are: 3.8,2.6,2.0,2.9,2.2,−0.2,0.5,1.3,1.3,2.1,4.8,1.5,3.4,1.4,1.1,1.9,−0.9,−0.3.

D = 1.74444,sD = 1.46095,n = 18,t18−1,.005= 2.898.

The confidence interval is 1.74444±2.898(1.46095/
√

18), or (0.747, 2.742).

(b) The level 100(1−α)% can be determined from the equationt17,α/2(1.46095/
√

18) = 0.5.

From this equation,t17,α/2 = 1.452. Thet table indicates that the value ofα/2 is between 0.05 and 0.10, and
closer to 0.10. Therefore the level 100(1−α)% is closest to 80%.
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Section 5.8

1. (a)χ2
12,.025= 23.337

(b) χ2
12,.975= 4.404

(c) χ2
5,.005 = 16.750

(d) χ2
5,.995 = 0.412

(e) χ2
22,.1 = 30.813

(f) χ2
22,.9 = 14.041

3. s= 7.5, n = 8, α = 0.01. χ2
7,.005 = 20.278,χ2

7,.995= 0.989.

A 99% confidence interval forσ is

(√
7(7.52)

20.278
,

√
7(7.52)

0.989

)
, or (4.41, 19.95).

5. s= 8, n = 18,α = 0.05. χ2
17,.025= 30.191,χ2

17,.975= 7.564.

A 95% confidence interval forσ2 is

(
17(82)

30.191
,
17(82)

7.564

)
, or (36.04, 143.84).

7. (a)s= 0.0614

(b) s= 0.0614,n = 12,α = 0.08. χ2
11,.01 = 24.725,χ2

11,.99 = 3.053.

A 95% confidence interval forσ is

(√
11(0.06412)

24.725
,

√
11(0.06412)

3.053

)
, or (0.041, 0.117).

9. s= 0.08841,n = 12,α = 0.05. χ2
11,.025= 21.920,χ2

11,.975= 3.816.

A 95% confidence interval forσ2 is

(
11(0.088412)

21.920
,
11(0.088412)

3.816

)
, or (0.00392, 0.0225).

11. s= 40 and the number of degrees of freedom isk = 100.

We therefore approximate theχ2
100 distribution with theN(100,200) distribution.

Thezscore for the 2.5 percentile of the normal distribution isz= −1.96.

We therefore estimateχ2
100,.025= 100−1.96

√
(200) = 72.281.

Thezscore for the 97.5 percentile of the normal distribution isz= 1.96.

We therefore estimateχ2
100,.975= 100+1.96

√
(200) = 127.719.

A 95% confidence interval forσ is

(√
100(402)

127.719
,

√
100(402)

72.281

)
, or (35.394, 47.049).
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Section 5.9

1. (a)X = 101.4, s= 2.3, n = 25,t25−1,.025= 2.064.

The prediction interval is 101.4±2.064(2.3
√

1+1/25), or (96.559, 106.241).

(b) X = 101.4, s= 2.3, n = 25,k25,.05,.10 = 2.2083

The tolerance interval is 101.4±2.2083(2.3), or (96.321,106.479).

3. (a)X = 5.9, s= 0.56921,n = 6, t6−1,.01 = 3.365.

The prediction interval is 5.9±3.365(0.56921
√

1+1/6), or (3.8311, 7.9689).

(b) X = 5.9, s= 0.56921,n = 6, k6,.05,.05 = 4.4140

The tolerance interval is 5.9±4.4140(0.56921), or (3.3875,8.4125).

5. (a)X = 86.56,s= 1.02127,n = 5, t5−1,.025= 2.776.

The prediction interval is 86.56±2.776(1.02127
√

1+1/5), or (83.454, 89.666).

(b) X = 86.56,s= 1.02127,n = 5, k5,.01,.10 = 6.6118

The tolerance interval is 86.56±6.6118(1.02127), or (79.808,93.312).

Section 5.10

1. (a)X∗ ∼ N(8.5, 0.22), Y∗ ∼ N(21.2, 0.32)

(b) Answers will vary.

(c) Answers will vary.

(d) Yes,P is approximately normally distributed.

(e) Answers will vary.

3. (a) Yes,A is approximately normally distributed.
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(b) Answers will vary.

(c) Answers will vary.

5. (a)N(0.27, 0.402/349) andN(1.62, 1.702/143). Since the values 0.27 and 1.62 are sample means, their variances
are equal to the population variances divided by the sample sizes.

(b) No,R is not approximately normally distributed.

(c) Answers will vary.

(d) It is not appropriate, sinceR is not approximately normally distributed.

7. (a,b,c) Answers will vary.

9. (a) Coverage probability for traditional interval is≈ 0.89, mean length is≈ 0.585.

Coverage probability for the Agresti-Coull interval is≈ 0.98, mean length is≈ 0.51.

(b) Coverage probability for traditional interval is≈ 0.95, mean length is≈ 0.46.

Coverage probability for the Agresti-Coull interval is≈ 0.95, mean length is≈ 0.42.

(c) Coverage probability for traditional interval is≈ 0.92, mean length is≈ 0.305.

Coverage probability for the Agresti-Coull interval is≈ 0.96, mean length is≈ 0.29.

(d) The traditional method has coverage probability close to 0.95 forn= 17, but less than 0.95 for bothn = 10 and
n = 40.

(e) The Agresti-Coull interval has greater coverage probability for sample sizes 10 and 40, and nearly equal for
17.

(f) The Agresti-Coull method does.

Supplementary Exercises for Chapter 5

1. The differences are 21,18,5,13,−2,10.

D = 10.833,sD = 8.471521,n = 6, t6−1,.025= 2.571.
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The confidence interval is 10.833±2.571(8.471521/
√

6), or (1.942, 19.725).

3. X = 1919,nX = 1985,p̃X = (1919+1)/(1985+2)= 0.966281,
Y = 4561,nY = 4988,p̃Y = (4561+1)/(4988+2)= 0.914228,z.005 = 2.58.

The confidence interval is 0.966281−0.914228± 2.58

√
0.966281(1−0.966281)

1985+2
+

0.914228(1−0.914228)
4988+2

,

or (0.0374, 0.0667).

5. X = 6.1, sX = 0.7, nX = 125,Y = 5.8, sY = 1.0, nY = 75,z.05 = 1.645.

The confidence interval is 6.1−5.8±1.645
√

0.72/125+1.02/75, or (0.084, 0.516).

7. (a)X = 13,n = 87, p̃ = (13+2)/(87+4)= 0.16484,z.025 = 1.96.

The confidence interval is 0.16484±1.96
√

0.16484(1−0.16484)/(87+4), or (0.0886, 0.241).

(b) Letn be the required sample size.

Thenn satisfies the equation 0.03= 1.96
√

p̃(1− p̃)/(n+4).

Replacing ˜p with 0.16484 and solving forn yieldsn = 584.

9. The higher the level, the wider the confidence interval. Therefore the narrowest interval, (4.20, 5.83), is the
90% confidence interval, the widest interval, (3.57, 6.46),is the 99% confidence interval, and (4.01, 6.02) is
the 95% confidence interval.

11. X = 7.909091,sX = 0.359039,nX = 11, Y = 8.00000,sY = 0.154919,nY = 6.

The number of degrees of freedom is

ν =

[
0.3590392

11
+

0.1549192

6

]2

(0.3590392/11)2

11−1
+

(0.1549192/6)2

6−1

= 14, rounded down to the nearest integer.

t14,.01 = 2.624, so the confidence interval is 7.909091−8.00000± 2.624

√
0.3590392

11
+

0.1549192

6
,

or (−0.420,0.238).

13. Letn be the required sample size.

The 99% confidence interval based on 64 observations has width±1.2.
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Therefore 1.2 = 2.58σ/
√

64, so 2.58σ = 9.6.

Now n satisfies the equation 1.0 = 2.58σ/
√

n = 9.6/
√

n. Solving forn yieldsn = 93.

15. (a) False. This a specific confidence interval that has already been computed. The notion of probability does not
apply.

(b) False. The confidence interval specifies the location of the population mean. It does not specify the location of
a sample mean.

(c) True. This says that the method used to compute a 95% confidence interval succeeds in covering the true mean
95% of the time.

(d) False. The confidence interval specifies the location of the population mean. It does not specify the location of
a future measurement.

17. (a)X = 37, and the uncertainty isσX = s/
√

n = 0.1. A 95% confidence interval is 37±1.96(0.1),
or (36.804, 37.196).

(b) Sinces/
√

n = 0.1, this confidence interval is of the formX±1(s/
√

n). The area to the left ofz= 1 is approxi-
mately 0.1587. Thereforeα/2 = 0.1587, so the level is 1−α = 0.6826, or approximately 68%.

(c) The measurements come from a normal population.

(d) t9,.025 = 2.262. A 95% confidence interval is therefore 37±2.262(s/
√

n) = 37±2.262(0.1),
or (36.774, 37.226).

19. (a) SinceX is normally distributed with meannλ, it follows that for a proportion 1−α of all possible samples,
−zα/2σX < X−nλ < zα/2σX.

Multiplying by −1 and addingX across the inequality yieldsX − zα/2σX < nλ < X + zα/2σX, which is the
desired result.

(b) Sincen is a constant,σX/n = σX/n =
√

nλ/n =
√

λ/n.

Thereforeσλ̂ = σX/n.

(c) Divide the inequality in part (a) byn.



134 CHAPTER 5

(d) Substitute
√

λ̂/n for σλ̂ in part (c) to show that for a proportion 1−α of all possible samples,

λ̂−zα/2

√
λ̂/n < λ < λ̂+zα/2

√
λ̂/n.

The interval̂λ±zα/2

√
λ̂/n is therefore a level 1−α confidence interval forλ.

(e) n= 5, λ̂ = 300/5= 60,σλ̂ =
√

60/5= 3.4641. A 95% confidence interval forλ is therefore 60±1.96(3.4641),
or (53.210, 66.790).

21. (a)µ= 1.6, σµ = 0.05,h = 15,σh = 1.0, τ = 25,στ = 1.0. V = τh/µ= 234.375

∂V
∂µ

= −τh/µ2 = −146.484375,
∂V
∂h

= τ/µ= 15.625,
∂V
∂τ

= h/µ= 9.375

σV =

√(
∂V
∂µ

)2

σ2
µ +

(
∂V
∂h

)2

σ2
h +

(
∂V
∂τ

)2

σ2
τ = 19.63862

(b) If the estimate ofV is normally distributed, then a 95% confidence interval forV is 234.375±1.96(19.63862)
or (195.883, 272.867).

(c) The confidence interval is valid. The estimate ofV is approximately normal.

23. (a)X = 8.95,s= 0.5682,n6, t8−1,.01 = 2.998.

The prediction interval is 8.95±2.998(0.5682
√

1+1/8), or (7.143,10.757).

(b) X = 8.95,s= 0.5682,n6, k8,.05,.01 = 4.8907.

The tolerance interval is 8.95±4.8907(0.5682), or (6.171,11.729).

25. It is not appropriate. The sample contains an outlier, which suggests that the population is not normal.

27. (a) Answers may vary somewhat from the 0.5 and 99.5 percentiles in Exercise 26 parts (c) and (d).

(b) Answers may vary somewhat from the answer to Exercise 26 part (c).

(c) Answers may vary somewhat from the answer to Exercise 26 part (d).
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Chapter 6

Section 6.1

1. (a)X = 783,s= 120,n = 73. The null and alternate hypotheses areH0 : µ≤ 750 versusH1 : µ> 750.

z= (783−750)/(120/
√

73) = 2.35. Since the alternate hypothesis is of the formµ > µ0, theP-value is the
area to the right ofz= 2.35.

ThusP = 0.0094.

(b) TheP-value is 0.0094, so ifH0 is true then the sample is in the most extreme 0.94% of its distribution.

3. (a)X = 231.7, s= 2.19,n = 66. The null and alternate hypotheses areH0 : µ= 232 versusH1 : µ 6= 232.

z= (231.7−232)/(2.19/
√

66) = −1.11. Since the alternate hypothesis is of the formµ 6= µ0, theP-value is
the sum of the areas to the right ofz= 1.11 and to the left ofz= −1.11.

ThusP = 0.1335+0.1335= 0.2670.

(b) TheP-value is 0.2670, so ifH0 is true then the sample is in the most extreme 26.70% of its distribution.

5. (a)X = 4.5, s= 2.7, n = 80. The null and alternate hypotheses areH0 : µ≥ 5.4 versusH1 : µ< 5.4.

z= (4.5−5.4)/(2.7/
√

80) = −2.98. Since the alternate hypothesis is of the formµ < µ0, theP-value is the
area to the left ofz= −2.98.

ThusP = 0.0014.

(b) If the mean number of sick days were 5.4, the probability of observing a sample mean less than or equal to the
observed value of 4.5 would be 0.0014. Since 0.0014 is a smallprobability, we are convinced that the mean
number of sick days is less than 5.4.

7. (a)X = 715,s= 24,n = 60. The null and alternate hypotheses areH0 : µ≥ 740 versusH1 : µ< 740.

z= (715−740)/(24/
√

60) = −8.07. Since the alternate hypothesis is of the formµ < µ0, theP-value is the
area to the left ofz= −8.07.

ThusP≈ 0.

(b) If the mean daily output were 740 tons or more, the probability of observing a sample mean as small as the
value of 715 that was actually observed would be nearly 0. Therefore we are convinced that the mean daily
output is not 740 tons or more, but is instead less than 740 tons.
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9. (a)X = 8.24,s= 16.33,n = 126. The null and alternate hypotheses areH0 : µ≥ 10 versusH1 : µ< 10.

z= (8.24−10)/(16.33/
√

126) = −1.21. Since the alternate hypothesis is of the formµ < µ0, theP-value is
the area to the left ofz= −1.21.

ThusP = 0.1131.

(b) If the mean profit margin were 10%, the probability of observing a sample mean less than or equal to the
observed value of 8.24 would be 0.1131. Since 0.1131 is not a small probability, it is plausible that the mean is
10% or more.

11. (ii) 5. The null distribution specifies that the population mean, which is also the mean ofX, is the value on the
boundary between the null and alternate hypotheses.

13. X = 5.2 andσX = σ/
√

n = 0.1. The null and alternate hypotheses areH0 : µ= 5.0 versusH1 : µ 6= 5.0.

z= (5.2−5.0)/0.1= 2.00. Since the alternate hypothesis is of the formµ 6= µ0, theP-value is the sum of the
areas to the right ofz= 2.00 and to the left ofz= −2.00.

ThusP = 0.0228+0.0228= 0.0456.

15. (a) SE Mean =s/
√

n = 2.00819/
√

87= 0.2153.

(b) X = 4.07114. From part (a),s/
√

n = 0.2153. The null and alternate hypotheses areH0 : µ ≤ 3.5 versus
H1 : µ> 3.5.

z= (4.07114−3.5)/0.2153= 2.65.

(c) Since the alternate hypothesis is of the formµ> µ0, theP-value is the area to the right ofz= 2.65.

ThusP = 0.0040.

Section 6.2

1. P = 0.5. The larger theP-value, the more plausible the null hypothesis.

3. (iv). A P-value of 0.01 means that ifH0 is true, then the observed value of the test statistic was in the most
extreme 1% of its distribution. This is unlikely, but not impossible.



SECTION 6.2 137

5. (a) True. The result is statistically significant at any level greater than or equal to 2%.

(b) False.P > 0.01, so the result is not statistically significant at the 1% level.

(c) True. The null hypothesis is rejected at any level greater than or equal to 2%.

(d) False.P > 0.01, so the null hypothesis is not rejected at the 1% level.

7. (iii). Since the decrease is statistically significant, it is reasonable to conclude that the homicide rate did actually
decrease. However, we cannot determine what caused the decrease.

9. (a)H0 : µ≤ 8. If H0 is rejected, we can conclude thatµ> 8, and that the new battery should be used.

(b) H0 : µ≤ 60,000. If H0 is rejected, we can conclude thatµ> 60,000, and that the new material should be used.

(c) H0 : µ= 10. If H0 is rejected, we can conclude thatµ 6= 10, and that the flow meter should be recalibrated.

11. (a) (ii) The scale is out of calibration. IfH0 is rejected, we conclude thatH0 is false, soµ 6= 10.

(b) (iii) The scale might be in calibration. IfH0 is not rejected, we conclude thatH0 is plausible, soµ might be
equal to 10.

(c) No. The scale is in calibration only ifµ = 10. The strongest evidence in favor of this hypothesis wouldoccur
if X = 10. But since there is uncertainty inX, we cannot be sure even then thatµ= 10.

13. No, she cannot conclude that the null hypothesis is true,only that it is plausible.

15. (i) H0 : µ= 1.2. For either of the other two hypotheses, theP-value would be 0.025.

17. (a) Yes. The value 3.5 is greater than the upper confidencebound of 3.45. Quantities greater than the upper
confidence bound will haveP-values less than 0.05. ThereforeP < 0.05.

(b) No, we would need to know the 99% upper confidence bound to determine whetherP < 0.01.

19. Yes, we can compute theP-value exactly. Since the 95% upper confidence bound is 3.45,we know that
3.40+ 1.645s/

√
n = 3.45. Therefores/

√
n = 0.0304. Thez-score is(3.40− 3.50)/0.0304= −3.29. The

P-value is 0.0005, which is less than 0.01.
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Section 6.3

1. X = 35,n = 1000,p̂ = 35/1000= 0.035.

The null and alternate hypotheses areH0 : p≥ 0.05 versusH1 : p < 0.05.

z= (0.035−0.05)/
√

0.05(1−0.05)/1000= −2.18.

Since the alternate hypothesis is of the formp < p0, theP-value is the area to the left ofz= −2.18,

soP = 0.0146. We can conclude that the goal has been met.

3. X = 29,n = 50, p̂ = 29/50= 0.58.

The null and alternate hypotheses areH0 : p≤ 0.50 versusH1 : p > 0.50.

z= (0.58−0.50)/
√

0.50(1−0.50)/50= 1.13.

Since the alternate hypothesis is of the formp > p0, theP-value is the area to the right ofz= 1.13,

soP = 0.1292. We cannot conclude that more than half of bathroom scales underestimate weight.

5. X = 274,n = 500, p̂ = 274/500= 0.548.

The null and alternate hypotheses areH0 : p≤ 0.50 versusH1 : p > 0.50.

z= (0.548−0.50)/
√

0.50(1−0.50)/500= 2.15.

Since the alternate hypothesis is of the formp > p0, theP-value is the area to the right ofz= 2.15,

soP = 0.0158. We can conclude that more than half of residents are opposed to building a new shopping mall.

7. X = 110,n = 150, p̂ = 110/150= 0.733.

The null and alternate hypotheses areH0 : p≤ 0.70 versusH1 : p > 0.70.

z= (0.733−0.70)/
√

0.70(1−0.70)/150= 0.89.

Since the alternate hypothesis is of the formp > p0, theP-value is the area to the right ofz= 0.89,

soP = 0.1867. We cannot conclude that more than 70% of the householdshave high-speed Internet access.

9. X = 42,n = 300, p̂ = 42/300= 0.14.

The null and alternate hypotheses areH0 : p = 0.12 versusH1 : p 6= 0.12.

z= (0.14−0.12)/
√

0.12(1−0.12)/300= 1.07.

Since the alternate hypothesis is of the formp = p0, theP-value is the sum of the areas to the right ofz= 1.07
and to the left ofz = −1.07, soP = 0.2846. We cannot conclude that the locus is not in Hardy-Weinberg
equilibrium.

11. X = 73,n = 100, p̂ = 73/100= 0.73.

The null and alternate hypotheses areH0 : p≤ 0.60 versusH1 : p > 0.60.

z= (0.73−0.60)/
√

0.60(1−0.60)/100= 2.65.
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Since the alternate hypothesis is of the formp > p0, theP-value is the area to the right ofz= 2.65,

soP = 0.0040. We can conclude that more than 60% of the residences have reduced their water consumption.

13. (a) Sample p =̂p = 345/500= 0.690.

(b) The null and alternate hypotheses areH0 : p ≥ 0.7 versusH1 : µ < 0.7. n = 500. From part (a),̂p = 0.690.
z= (0.690−0.700)/

√
0.7(1−0.7)/500= −0.49.

(c) Since the alternate hypothesis is of the formp < p0, theP-value is the area to the left ofz= −0.49.

ThusP = 0.3121.

Section 6.4

1. (a)X = 100.01,s= 0.0264575,n = 3. There are 3−1= 2 degrees of freedom.

The null and alternate hypotheses areH0 : µ= 100 versusH1 : µ 6= 100.

t = (100.01−100)/(0.0264575/
√

3) = 0.6547.

Since the alternate hypothesis is of the formµ 6= µ0, theP-value is the sum of the areas to the right oft = 0.6547
and to the left oft = −0.6547.

From thet table, 0.50< P < 0.80. A computer package givesP = 0.580.

We conclude that the scale may well be calibrated correctly.

(b) Thet-test cannot be performed, because the sample standard deviation cannot be computed from a sample of
size 1.

3. (a)H0 : µ≤ 5 versusH1 : µ> 5

(b) X = 6.5, s= 1.9, n = 8. There are 8−1= 7 degrees of freedom.

From part (a), the null and alternate hypotheses areH0 : µ≤ 5 versusH1 : µ> 5.

t = (6.5−5)/(1.9/
√

8) = 2.233.

Since the alternate hypothesis is of the formµ> µ0, theP-value is the area to the right oft = 2.233.

From thet table, 0.025< P < 0.050. A computer package givesP = 0.030.

(c) Yes, theP-value is small, so we conclude thatµ> 5.

5. (a)X = 6.7, s= 3.9, n = 20. There are 20−1= 19 degrees of freedom.

The null and alternate hypotheses areH0 : µ≥ 10 versusH1 : µ< 10.
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t = (6.7−10)/(3.9/
√

20) = −3.784.

Since the alternate hypothesis is of the formµ< µ0, theP-value is the area to the left oft = −3.784.

From thet table, 0.0005< P < 0.001. A computer package givesP = 0.0006.

We can conclude that the system meet this guideline.

(b) X = 6.7, s= 3.9, n = 20. There are 20−1= 19 degrees of freedom.

The null and alternate hypotheses areH0 : µ≥ 7.5 versusH1 : µ< 7.5.

t = (6.7−7.5)/(3.9/
√

19) = −0.917.

Since the alternate hypothesis is of the formµ< µ0, theP-value is the area to the left oft = −0.917.

From thet table, 0.10< P < 0.25. A computer package givesP = 0.1852.

We cannot conclude that the system meet this guideline.

7. (a)
3.8 4 4.2

(b) Yes, the sample contains no outliers.

X = 4.032857,s= 0.061244,n = 7. There are 7−1= 6 degrees of freedom.

The null and alternate hypotheses areH0 : µ= 4 versusH1 : µ 6= 4.

t = (4.032857−4)/(0.061244/
√

7) = 1.419.

Since the alternate hypothesis is of the formµ 6= µ0, theP-value is the sum of the areas to the right oft = 1.419
and to the left oft = −1.419.

From thet table, 0.20< P < 0.50. A computer package givesP = 0.2056.

It cannot be concluded that the mean thickness differs from 4mils.

(c)
3.9 4 4.1 4.2 4.3

(d) No, the sample contains an outlier.

9. X = 457.8, s= 317.7,n = 18. There are 18−1= 17 degrees of freedom.

The null and alternate hypotheses areH0 : µ= 10 versusH1 : µ 6= 0.

t = (457.8−0)/(317.7/
√

18) = 6.114.

Since the alternate hypothesis is of the formµ> µ0, theP-value is is the sum of the areas to the right oft = 6.114
and to the left oft = −6.114. From thet table,P < 0.001. A computer package givesP = 1.1474×10−4.

We cannot conclude that the mean reduction is greater than 10%.

11. X = 0.242,s= 0.031,n = 10. There are 10−1= 9 degrees of freedom.

The null and alternate hypotheses areH0 : µ≥ 0.3 versusH1 : µ< 0.3.
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t = (0.242−0.3)/(0.031/
√

10) = −5.9165.

Since the alternate hypothesis is of the formµ< µ0, theP-value is the area to the left oft = −5.9165.

From thet table,P < 0.0005. A computer package givesP = 0.000112.

We can conclude that the concentration is less than 0.3 ppm.

13. (a) StDev = (SE Mean)
√

N = 1.8389
√

11= 6.0989.

(b) t10,.025 = 2.228. The lower 95% confidence bound is 13.2874−2.228(1.8389)= 9.190.

(c) t10,.025 = 2.228. The upper 95% confidence bound is 13.2874+2.228(1.8389)= 17.384.

(d) t = (13.2874−16)/1.8389= −1.475.

Section 6.5

1. X = 8.5, sX = 1.9, nX = 58,Y = 11.9, sY = 3.6, nY = 58.

The null and alternate hypotheses areH0 : µX −µY ≥ 0 versusH1 : µX −µY < 0.

z= (8.5−11.9−0)/
√

1.92/58+3.62/58= −6.36. Since the alternate hypothesis is of the formµX −µY < ∆,
theP-value is the area to the left ofz= −6.36.

ThusP≈ 0.

We can conclude that the mean hospital stay is shorter for patients receiving C4A-rich plasma.

3. X = 5.92,sX = 0.15,nX = 42,Y = 6.05,sY = 0.16,nY = 37.

The null and alternate hypotheses areH0 : µX −µY = 0 versusH1 : µX −µY 6= 0.

z= (5.92−6.05−0)/
√

0.152/42+0.162/37=−3.71. Since the alternate hypothesis is of the formµX −µY 6= ∆,
theP-value is the sum of the areas to the right ofz= 3.71 and to the left ofz= −3.71.

ThusP = 0.0001+0.0001= 0.0002.

We can conclude that the mean dielectric constant differs between the two types of asphalt.

5. X = 40,sX = 12,nX = 75,Y = 42,sY = 15,nY = 100.

The null and alternate hypotheses areH0 : µX −µY > 0 versusH1 : µX −µY ≤ 0.

z= (40−42−0)/
√

122/75+152/100= −0.98. Since the alternate hypothesis is of the formµX −µY ≤ ∆,
theP-value is the area to the left ofz= −0.98.

ThusP = 0.1635.

We cannot conclude that the mean reduction from drug B is greater than the mean reduction from drug A.
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7. (a)X = 7.79,sX = 1.06,nX = 80,Y = 7.64,sY = 1.31,nY = 80.

Hereµ1 = µX andµ2 = µY. The null and alternate hypotheses areH0 : µX −µY ≤ 0 versusH1 : µX −µY > 0.

z= (7.79−7.64−0)/
√

1.062/80+1.312/80= 0.80. Since the alternate hypothesis is of the formµX−µY > ∆,
theP-value is the area to the right ofz= 0.80.

ThusP = 0.2119.

We cannot conclude that the mean score on one-tailed questions is greater.

(b) The null and alternate hypotheses areH0 : µX −µY = 0 versusH1 : µX −µY 6= 0.

Thez-score is computed as in part (a):z= 0.80.

Since the alternate hypothesis is of the formµX −µY 6= ∆, theP-value is the sum of the areas to the right of
z= 0.80 and to the left ofz= 0.80.

ThusP = 0.2119+0.2119= 0.4238.

We cannot conclude that the mean score on one-tailed questions differs from the mean score on two-tailed
questions.

9. (a)X = 4.7, sX = 7.2, nX = 77,Y = 2.6, sY = 5.9, nY = 79.

The null and alternate hypotheses areH0 : µX −µY ≤ 0 versusH1 : µX −µY > 0.

z= (4.7− 2.6− 0)/
√

7.22/77+2.62/79= 1.99. Since the alternate hypothesis is of the formµX −µY > ∆,
theP-value is the area to the right ofz= 1.99.

ThusP = 0.0233.

We can conclude that the mean weight loss is greater for thoseon the low-carbohydrate diet.

(b) X = 4.7, sX = 7.2, nX = 77,Y = 2.6, sY = 5.9, nY = 79.

The null and alternate hypotheses areH0 : µX −µY ≤ 1 versusH1 : µX −µY > 1.

z= (4.7− 2.6− 1)/
√

7.22/77+2.62/79= 1.04. Since the alternate hypothesis is of the formµX −µY > ∆,
theP-value is the area to the right ofz= 1.04.

ThusP = 0.1492.

We cannot conclude that the mean weight loss on the low-carbohydrate diet is more than 1 kg greater than that
of the low-fat diet.

11. X = 7.38,sX = 12.83,nX = 92,Y = 8.20,sY = 9.84,nY = 123.

The null and alternate hypotheses areH0 : µX −µY ≥ 0 versusH1 : µX −µY < 0.

z= (7.38−8.20−0)/
√

12.832/92+9.842/123=−0.51. Since the alternate hypothesis is of the formµX −µY < ∆,
theP-value is the area to the left ofz= −0.51.

ThusP = 0.3050.

We cannot conclude that the mean number of hours per week increased between 2002 and 2004.

13. (a) (i) StDev = (SE Mean)
√

N = 1.26
√

78= 11.128.

(ii) SE Mean = StDev/
√

N = 3.02/
√

63= 0.380484.
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(b) z= (23.3−20.63−0)/
√

1.262+0.3804842 = 2.03. Since the alternate hypothesis is of the formµX −µY 6= ∆,
theP-value is the sum of the areas to the right ofz= 2.03 and to the left ofz= −2.03.

ThusP = 0.0212+0.0212= 0.0424, and the result is similar to that of thet test.

(c) X = 23.3, sX/
√

nX = 1.26,Y = 20.63,sY/
√

nY = 0.380484,z.01 = 2.33.

The confidence interval is 23.3−20.63±2.33
√

1.262+0.3804842, or (−0.3967,5.7367).

Section 6.6

1. (a)H0 : pX − pY ≥ 0 versusH1 : pX − pY < 0

(b) X = 960, nX = 1000, p̂X = 960/1000= 0.960, Y = 582, nY = 600, p̂Y = 582/600= 0.970,

p̂ = (960+582)/(1000+600)= 0.96375.

The null and alternate hypotheses areH0 : pX − pY ≥ 0 versusH1 : pX − pY < 0.

z=
0.960−0.970√

0.96375(1−0.96375)(1/1000+1/600)
= −1.04.

Since the alternate hypothesis is of the formpX − pY < 0, theP-value is the area to the left ofz= −1.04.

ThusP = 0.1492.

(c) SinceP = 0.1492, we cannot conclude that machine 2 is better. Thereforemachine 1 should be used.

3. X = 245, nX = 307, p̂X = 245/307= 0.7980, Y = 304, nY = 347, p̂Y = 304/347= 0.8761,

p̂ = (245+304)/(307+347)= 0.8394.

The null and alternate hypotheses areH0 : pX − pY ≥ 0 versusH1 : pX − pY < 0.

z=
0.7980−0.8761√

0.8394(1−0.8394)(1/307+1/347)
= −2.71.

Since the alternate hypothesis is of the formpX − pY < 0, theP-value is the area to the left ofz= −2.71.

ThusP = 0.0034.

We can conclude that the method is more accurate for new age songs. firms.

5. X = 102, nX = 230, p̂X = 102/230= 0.443478, Y = 20, nY = 72, p̂Y = 20/72= 0.277778,

p̂ = (102+20)/(230+72)= 0.403974.

The null and alternate hypotheses areH0 : pX − pY ≤ 0 versusH1 : pX − pY > 0.

z=
0.443478−0.277778√

0.403974(1−0.403974)(1/230+1/72)
= 2.50. Since the alternate hypothesis is of the formpX − pY >

0, theP-value is the area to the right ofz= 2.50.
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ThusP = 0.0062.

We can conclude that the proportion of patch users is greateramong European-Americans.

7. X = 20, nX = 1200, p̂X = 20/1200= 0.016667, Y = 15, nY = 1500, p̂Y = 15/1500= 0.01,

p̂ = (20+15)/(1200+1500)= 0.012963.

The null and alternate hypotheses areH0 : pX − pY ≤ 0 versusH1 : pX − pY > 0.

z=
0.016667−0.01√

0.012963(1−0.012963)(1/1200+1/1500)
= 1.52.

Since the alternate hypothesis is of the formpX − pY > 0, theP-value is the area to the right ofz= 1.52.

ThusP = 0.0643.

The evidence suggests that heavy packaging reduces the proportion of damaged shipments, but may not be
conclusive.

9. X = 76, nX = 164, p̂X = 76/164= 0.46341, Y = 48, nY = 96, p̂Y = 48/96= 0.5,

p̂ = (76+48)/(164+96)= 0.47692.

The null and alternate hypotheses areH0 : pX − pY ≥ 0 versusH1 : pX − pY < 0.

z=
0.46341−0.5√

0.47692(1−0.47692)(1/164+1/96)
= −0.57.

Since the alternate hypothesis is of the formpX − pY < 0, theP-value is the area to the right ofz= −0.57.

ThusP = 0.2843.

We cannot conclude that the proportion of patients who fall is less for those who exercise.

11. X = 195, nX = 5320, p̂X = 195/5320= 0.036654, Y = 33, nY = 1120, p̂Y = 33/1120= 0.029463,

p̂ = (195+33)/(5320+1120)= 0.035403.

The null and alternate hypotheses areH0 : pX − pY = 0 versusH1 : pX − pY 6= 0.

z=
0.036654−0.029463√

0.035403(1−0.035403)(1/5320+1/1120)
= 1.18.

Since the alternate hypothesis is of the formpX − pY 6= 0, theP-value is the sum of the areas to the right of
z= 1.18 and to the left ofz= −1.18.

ThusP = 0.1190+0.1190= 0.2380.

We cannot conclude that the proportions differ between the two groups.

13. No, because the two samples are not independent.

15. (a) 101/153= 0.660131.
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(b) 90(0.544444) = 49.

(c) X1 = 101, n1 = 153, p̂1 = 101/153= 0.660131, X2 = 49, n2 = 90, p̂2 = 49/90= 0.544444,

p̂ = (101+49)/(153+90)= 0.617284.

z=
0.660131−0.544444√

0.617284(1−0.617284)(1/153+1/90)
= 1.79.

(d) Since the alternate hypothesis is of the formpX − pY 6= 0, theP-value is the sum of the areas to the right of
z= 1.79 and to the left ofz= −1.79.

ThusP = 0.0367+0.0367= 0.0734.

Section 6.7

1. (a)X = 3.05,sX = 0.34157,nX = 4, Y = 1.8, sY = 0.90921,nY = 4.

The number of degrees of freedom is

ν =

[
0.341572

4
+

0.909212

4

]2

(0.341572/4)2

4−1
+

(0.909212/4)2

4−1

= 3, rounded down to the nearest integer.

t3 = (3.05−1.8−0)/
√

0.341572/4+0.909212/4 = 2.574.

The null and alternate hypotheses areH0 : µX −µY ≤ 0 versusH1 : µX −µY > 0.

Since the alternate hypothesis is of the formµX −µY > ∆, theP-value is the area to the right oft = 2.574.

From thet table, 0.025< P < 0.050. A computer package givesP = 0.041.

We can conclude that the mean strength of crayons made with dye B is greater than that made with dye A.

(b) X = 3.05,sX = 0.34157,nX = 4, Y = 1.8, sY = 0.90921,nY = 4.

The number of degrees of freedom is

ν =

[
0.341572

4
+

0.909212

4

]2

(0.341572/4)2

4−1
+

(0.909212/4)2

4−1

= 3, rounded down to the nearest integer.

t3 = (3.05−1.8−1)/
√

0.341572/4+0.909212/4 = 0.5148.

The null and alternate hypotheses areH0 : µX −µY ≤ 1 versusH1 : µX −µY > 1.

Since the alternate hypothesis is of the formµX −µY > ∆, theP-value is the area to the right oft = 0.5148.

From thet table, 0.25< P < 0.40. A computer package givesP = 0.321.

We cannot conclude that the mean strength of crayons made with dye B exceeds that of those made with dye A
by more than 1 J.
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3. X = 2.31,sX = 0.89,nX = 15, Y = 2.8, sY = 1.1, nY = 15.

The number of degrees of freedom is

ν =

[
0.892

15
+

1.12

15

]2

(0.892/15)2

15−1
+

(1.12/15)2

15−1

= 26, rounded down to the nearest integer.

t26 = (2.31−2.8−0)/
√

0.892/15+1.12/15= −1.341.

The null and alternate hypotheses areH0 : µX −µY = 0 versusH1 : µX −µY 6= 0.

Since the alternate hypothesis is of the formµX −µY 6= ∆, theP-value is the sum of the areas to the right of
t = 1.341 and to the left oft = −1.341.

From thet table, 0.10< P < 0.20. A computer package givesP = 0.191.

We cannot conclude that the penetration resistance differsbetween the two depths.

5. X = 24.8, sX = 0.91043,nX = 10, Y = 19.5, sY = 1.3106,nY = 10.

The number of degrees of freedom is

ν =

[
0.910432

10
+

1.31062

10

]2

(0.910432/10)2

10−1
+

(1.31062/10)2

10−1

= 16, rounded down to the nearest integer.

t16 = (24.8−19.5−0)/
√

0.910432/10+1.31062/10= 10.502.

The null and alternate hypotheses areH0 : µX −µY ≤ 0 versusH1 : µX −µY > 0.

Since the alternate hypothesis is of the formµX −µY > ∆, theP-value is the area to the right oft = 10.502.

From thet table,P < 0.0005. A computer package givesP = 6.914×10−9.

We can conclude that the mean height of plants grown with slow-release fertilizer is greater.

7. X = 53.0, sX = 1.41421,nX = 6, Y = 54.5, sY = 3.88587,nY = 6.

The number of degrees of freedom is

ν =

[
1.414212

6
+

3.885872

6

]2

(1.414212/6)2

6−1
+

(3.885872/6)2

6−1

= 6, rounded down to the nearest integer.

t6 = (53.0−54.5−0)/
√

1.414212/6+3.885872/6 = −0.889.

The null and alternate hypotheses areH0 : µX −µY ≥ 0 versusH1 : µX −µY < 0.

Since the alternate hypothesis is of the formµX −µY < ∆, theP-value is the area to the left oft = −0.889.

From thet table, 0.10< P < 0.25. A computer package givesP = 0.204.

We cannot conclude that the mean cost of the new method is lessthan that of the old method.
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9. X = 8.38,sX = 0.96,nX = 15, Y = 9.83,sY = 1.02,nY = 15.

The number of degrees of freedom is

ν =

[
0.962

15
+

1.022

15

]2

(0.962/15)2

15−1
+

(1.022/15)2

15−1

= 27, rounded down to the nearest integer.

t27 = (8.38−9.83−0)/
√

0.962/15+1.022/15= −4.009.

The null and alternate hypotheses areH0 : µX −µY ≥ 0 versusH1 : µX −µY < 0.

Since the alternate hypothesis is of the formµX −µY < ∆, theP-value is the area to the left oft = −4.009.

From thet table,P < 0.0005. A computer package givesP = 0.000216..

We can conclude that 6” spacing provides a higher mean failure pressure.

11. X = 36.893,sX = 3.2211,nX = 13, Y = 33.000,sY = 2.5449,nY = 9.

The number of degrees of freedom is

ν =

[
3.22112

13
+

2.54492

9

]2

(3.22112/13)2

13−1
+

(2.54492/9)2

9−1

= 19, rounded down to the nearest integer.

t19 = (36.893−33.000−0)/
√

3.22112/13+2.54492/9 = 3.1601.

The null and alternate hypotheses areH0 : µX −µY ≤ 0 versusH1 : µX −µY > 0.

Since the alternate hypothesis is of the formµX −µY > ∆, theP-value is the area to the right oft = 3.1601.

From thet table, 0.001< P < 0.005. A computer package givesP = 0.0025774.

We can conclude that the mean sodium content is higher for brand B.

13. (a)X = 27.3, sX = 5.2, nX = 12, Y = 32.7, sY = 4.1, nY = 14.

The number of degrees of freedom is

ν =

[
5.22

12
+

4.12

14

]2

(5.22/12)2

12−1
+

(4.12/14)2

14−1

= 20, rounded down to the nearest integer.

t20 = (27.3−32.7−0)/
√

5.22/12+4.12/14= −2.9056.

The null and alternate hypotheses areH0 : µX −µY ≥ 0 versusH1 : µX −µY < 0.

Since the alternate hypothesis is of the formµX −µY < ∆, theP-value is the area to the left oft = −2.9056.

From thet table, 0.001< P < 0.005. A computer package givesP = 0.0043724.

We can conclude that the mean time to sleep is less for the new drug.
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15. X = 62.714,sX = 3.8607,nX = 7, Y = 60.4, sY = 5.461,nY = 10.

The number of degrees of freedom is

ν =

[
3.86072

7
+

5.4612

10

]2

(3.86072/7)2

7−1
+

(5.4612/10)2

10−1

= 14, rounded down to the nearest integer.

t14 = (62.714−60.4−0)/
√

3.86072/7+5.4612/10= 1.024.

The null and alternate hypotheses areH0 : µX −µY = 0 versusH1 : µX −µY 6= 0.

Since the alternate hypothesis is of the formµX −µY 6= ∆, theP-value is the sum of the areas to the right of
t = 1.024 and to the left oft = −1.024.

From thet table, 0.20< P < 0.50. A computer package givesP = 0.323.

We cannot conclude that the mean permeability coefficient at60◦C differs from that at 61◦C.

17. (a) SE Mean = StDev/
√

N = 0.482/
√

6 = 0.197.

(b) StDev = (SE Mean)
√

N = 0.094
√

13= 0.339.

(c) X−Y = 1.755−3.239= −1.484.

(d) t =
1.755−3.239√

0.4822/6+0.0942
= −6.805.

Section 6.8

1. D = 0.17214,sD = 0.44316,n = 14. There are 14−1= 13 degrees of freedom.

The null and alternate hypotheses areH0 : µD = 0 versusH1 : µD 6= 0.

t = (.17214−0)/(0.44316/
√

14) = 1.459.

Since the alternate hypothesis is of the formµD 6= ∆, theP-value is the sum of the areas to the right oft = 1.459
and to the left oft = −1.459.

From thet table, 0.10< P < 0.20. A computer package givesP = 0.16821.

We cannot conclude that the mean amount absorbed differs between the brand name and the generic drug.

3. The differences are 4,−1,0,7,3,4,−1,5,−1,5.

D = 2.5, sD = 2.9907,n = 10. There are 10−1= 9 degrees of freedom.

The null and alternate hypotheses areH0 : µD = 0 versusH1 : µD 6= 0.

t = (2.5−0)/(2.9907/
√

10) = 2.643.

Since the alternate hypothesis is of the formµD 6= ∆, theP-value is the sum of the areas to the right oft = 2.643
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and to the left oft = −2.643.

From thet table, 0.02< P < 0.05. A computer package givesP = 0.027.

We can conclude that the etch rates differ between center andedge.

5. The differences are−7,−21,4,−16,2,−9,−20,−13.

D = −10,sD = 9.3808,n = 8. There are 8−1= 7 degrees of freedom.

The null and alternate hypotheses areH0 : µD = 0 versusH1 : µD 6= 0.

t = (−10−0)/(9.3808/
√

8) = −3.015.

Since the alternate hypothesis is of the formµD 6= ∆, theP-value is the sum of the areas to the right oft = 3.015
and to the left oft = −3.015.

From thet table, 0.01< P < 0.02. A computer package givesP = 0.0195.

We can conclude that the mean amount of corrosion differs between the two formulations.

7. The differences are 35,57,14,29,31.

D = 33.2, sD = 15.498,n = 5.

There are 5−1= 4 degrees of freedom.

The null and alternate hypotheses areH0 : µD ≤ 0 versusH1 : µD > 0.

t = (33.2−0)/(15.498/
√

5) = 4.790.

Since the alternate hypothesis is of the formµD > ∆, theP-value is the area to the right oft = 4.790.

From thet table, 0.001< P < 0.005. A computer package givesP = 0.0044.

We can conclude that the mean strength after 6 days is greaterthan the mean strength after 3 days.

9. The differences are 1,2,−1,0,2,−1,2.

D = 0.714286,sD = 1.38013,n = 7. There are 7−1= 6 degrees of freedom.

The null and alternate hypotheses areH0 : µD = 0 versusH1 : µD 6= 0.

t = (0.714286−0)/(1.38013/
√

7) = 1.3693.

Since the alternate hypothesis is of the formµD 6= ∆, theP-value is the sum of the areas to the right oft = 1.3693
and to the left oft = −1.3693.

From thet table, 0.20< P < 0.50. A computer package givesP = 0.220.

We cannot conclude that the mean response differs between the two drugs.

11. (a) The differences are 5.0,4.6,1.9,2.6,4.4,3.2,3.2,2.8,1.6,2.8.

Let µR be the mean number of miles per gallon for taxis using radial tires, and letµB be the mean number of
miles per gallon for taxis using bias tires. The appropriatenull and alternate hypotheses areH0 : µR−µB ≤ 0
versusH1 : µR−µB > 0.

D = 3.21sD = 1.1338,n = 10. There are 10−1= 9 degrees of freedom.
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t = (3.21−0)/(1.1338/
√

10) = 8.953.

Since the alternate hypothesis is of the formµD > ∆, theP-value is the area to the right oft = 8.953.

From thet table,P < 0.0050. A computer package givesP = 4.5×10−6.

We can conclude that the mean number of miles per gallon is higher with radial tires.

(b) The appropriate null and alternate hypotheses areH0 : µR−µB ≤ 2 vs.H1 : µR−µB > 2.

D = 3.21sD = 1.1338,n = 10. There are 10−1= 9 degrees of freedom.

t = (3.21−2)/(1.1338/
√

10) = 3.375.

Since the alternate hypothesis is of the formµD > ∆, theP-value is the area to the right oft = 3.375.

From thet table, 0.001< P < 0.005. A computer package givesP = 0.0041. We can conclude that the mean
mileage with radial tires is more than 2 miles per gallon higher than with bias tires.

13. (a) SE Mean = StDev/
√

N = 2.9235/
√

7 = 1.1050.

(b) StDev = (SE Mean)
√

N = 1.0764
√

7 = 2.8479.

(c) µD = µX −µY = 12.4141−8.3476= 4.0665.

(d) t = (4.0665−0)/1.19723= 3.40.

Section 6.9

1. (a) The signed ranks are Signed
x x−14 Rank

20 6 1
21 7 2
5 −9 −3

24 10 4
25 11 5
32 18 6
43 29 7

The null and alternate hypotheses areH0 : µ≤ 14 versusH1 : µ> 14.

The sum of the positive signed ranks isS+ = 25. n = 7.

Since the alternate hypothesis is of the formµ > µ0, theP-value is the area under the signed rank probability
mass function corresponding toS+ ≥ 25.

From the signed-rank table,P = 0.0391.

We can conclude that the mean concentration is greater than 14 g/L.
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(b) The signed ranks are Signed
x x−30 Rank

32 2 1
25 −5 −2
24 −6 −3
21 −9 −4
20 −10 −5
43 13 6
5 −25 −7

The null and alternate hypotheses areH0 : µ≥ 14 versusH1 : µ< 30.

The sum of the positive signed ranks isS+ = 7. n = 7.

Since the alternate hypothesis is of the formµ < µ0, theP-value is the area under the signed rank probability
mass function corresponding toS+ ≤ 7.

From the signed-rank table,P > 0.1094.

We cannot conclude that the mean concentration is less than 30 g/L.

(c) The signed ranks are Signed
x x−18 Rank

20 2 1
21 3 2
24 6 3
25 7 4
5 −13 −5

32 14 6
43 25 7

The null and alternate hypotheses areH0 : µ= 18 versusH1 : µ 6= 18.

The sum of the positive signed ranks isS+ = 23. n = 7.

Since the alternate hypothesis is of the formµ 6= µ0, theP-value is twice the area under the signed rank proba-
bility mass function corresponding toS+ ≥ 23.

From the signed-rank table,P = 2(0.0781) = 0.1562.

We cannot conclude that the mean concentration differs from18 g/L.
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3. (a) The signed ranks are Signed
x x−45 Rank

41.1 −3.9 −1
41.0 −4.0 −2
40.0 −5.0 −3
38.1 −6.9 −4
52.3 7.3 5
37.3 −7.7 −6
36.2 −8.8 −7
34.6 −10.4 −8
33.6 −11.4 −9
33.4 −11.6 −10
59.4 14.4 11
30.3 −14.7 −12
30.1 −14.9 −13
28.8 −16.2 −14
63.0 18.0 15
26.8 −18.2 −16
67.8 22.8 17
19.0 −26.0 −18
72.3 27.3 19
14.3 −30.7 −20
78.6 33.6 21
80.8 35.8 22
9.1 −35.9 −23

81.2 36.2 24

The null and alternate hypotheses areH0 : µ≥ 45 versusH1 : µ< 45.

The sum of the positive signed ranks isS+ = 134.n = 24.

Sincen > 20, compute thez-score ofS+ and use thez table.

z=
S+−n(n+1)/4√

n(n+1)(2n+1)/24
= −0.46.

Since the alternate hypothesis is of the formµ< µ0, theP-value is the area to the left ofz= −0.46. From thez
table,P = 0.3228.

We cannot conclude that the mean conversion is less than 45.
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(b) The signed ranks are Signed
x x−30 Rank

30.1 0.1 1
30.3 0.3 2
28.8 −1.2 −3
26.8 −3.2 −4
33.4 3.4 5
33.6 3.6 6
34.6 4.6 7
36.2 6.2 8
37.3 7.3 9
38.1 8.1 10
40.0 10.0 11
19.0 −11.0 −12.5
41.0 11.0 12.5
41.1 11.1 14
14.3 −15.7 −15
9.1 −20.9 −16

52.3 22.3 17
59.4 29.4 18
63.0 33.0 19
67.8 37.8 20
72.3 42.3 21
78.6 48.6 22
80.8 50.8 23
81.2 51.2 24

The null and alternate hypotheses areH0 : µ≤ 30 versusH1 : µ> 30.

The sum of the positive signed ranks isS+ = 249.5. n = 24.

Sincen > 20, compute thez-score ofS+ and use thez table.

z=
S+−n(n+1)/4√

n(n+1)(2n+1)/24
= 2.84.

Since the alternate hypothesis is of the formµ > µ0, theP-value is the area to the right ofz= 2.84. From thez
table,P = 0.0023.

We can conclude that the mean conversion is greater than 30.
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(c) The signed ranks are Signed
x x−55 Rank

52.3 −2.7 −1
59.4 4.4 2
63.0 8.0 3
67.8 12.8 4
41.1 −13.9 −5
41.0 −14.0 −6
40.0 −15.0 −7
38.1 −16.9 −8
72.3 17.3 9
37.3 −17.7 −10
36.2 −18.8 −11
34.6 −20.4 −12
33.6 −21.4 −13
33.4 −21.6 −14
78.6 23.6 15
30.3 −24.7 −16
30.1 −24.9 −17
80.8 25.8 18
28.8 −26.2 −19.5
81.2 26.2 19.5
26.8 −28.2 −21
19.0 −36.0 −22
14.3 −40.7 −23
9.1 −45.9 −24

The null and alternate hypotheses areH0 : µ= 55 versusH1 : µ 6= 55.

The sum of the positive signed ranks isS+ = 70.5. n = 24.

Sincen > 20, compute thez-score ofS+ and use thez table.

z=
S+−n(n+1)/4√

n(n+1)(2n+1)/24
= −2.27.

Since the alternate hypothesis is of the formµ 6= µ0, theP-value is the sum of the areas to the right ofz= 2.27
and to the left ofz= −2.27.

From thez table,P = 0.0116+0.0116= 0.0232.

We can conclude that the mean conversion differs from 55.
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5. The signed ranks are Signed
x x−0 Rank

0.01 0.01 2
0.01 0.01 2

−0.01 −0.01 −2
0.03 0.03 4
0.05 0.05 5.5

−0.05 −0.05 −5.5
−0.07 −0.07 −7
−0.11 −0.11 −8
−0.13 −0.13 −9

0.15 0.15 10

The null and alternate hypotheses areH0 : µ= 0 versusH1 : µ 6= 0.

The sum of the positive signed ranks isS+ = 23.5. n = 10.

Since the alternate hypothesis is of the formµ 6= µ0, theP-value is twice the area under the signed rank proba-
bility mass function corresponding toS+ ≤ 23.5.

From the signed-rank table,P > 2(0.1162) = 0.2324.

We cannot conclude that the gauges differ.

7. The ranks of the combined samples are Value Rank Sample
12 1 X
13 2 X
15 3 X
18 4 Y
19 5 X
20 6 X
21 7 X
23 8 Y
24 9 Y
27 10 X
30 11 Y
32 12 Y
35 13 Y
40 14 Y

The null and alternate hypotheses areH0 : µX −µY = 0 versusH1 : µX −µY 6= 0.

The test statisticW is the sum of the ranks corresponding to theX sample.

W = 34. The sample sizes arem= 7 andn = 7.

Since the alternate hypothesis is of the formµX − µY 6= ∆, theP-value is twice the area under the rank-sum
probability mass function corresponding toW ≤ 34.

From the rank-sum table,P = 2(0.0087) = 0.0174.

We can conclude that the mean recovery times differ.
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9. The ranks of the combined samples are Value Rank Sample
51 1 Y
59 2 Y
64 4 X
64 4 Y
64 4 Y
66 6 X
69 7 X
72 8 X
74 9.5 X
74 9.5 Y
75 11.5 X
75 11.5 Y
77 14 X
77 14 X
77 14 Y
80 16.5 Y
80 16.5 Y
81 18.5 Y
81 18.5 Y
83 20.5 X
83 20.5 Y
85 22.5 X
85 22.5 Y
86 24 Y
88 25 X
91 26 X

The null and alternate hypotheses areH0 : µX −µY = 0 versusH1 : µX −µY 6= 0.

The test statisticW is the sum of the ranks corresponding to theX sample.

W = 168. The sample sizes arem= 12 andn = 14.

Sincen andmare both greater than 8, compute thez-score ofW and use thez table.

z=
W−m(m+n+1)/2√

mn(m+n+1)/12
= 0.31.

Since the alternate hypothesis is of the formµX −µY 6= ∆, theP-value is the sum of the areas to the right of
z= 0.31 and to the left ofz= −0.31. From thez table,P = 0.3783+0.3783= 0.7566.

We cannot conclude that the mean scores differ.

Section 6.10

1. (a) Letp1 represent the probability that a randomly chosen fastener is conforming, letp2 represent the probability
that it is downgraded, and letp3 represent the probability that it is scrap. Then the null hypothesis isH0 : p1 =
0.85, p2 = 0.10, p3 = 0.05
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(b) The total number of observation isn = 500. The expected values arenp1, np2 andnp3, or 425, 50, and 25.

(c) The observed values are 405, 55, and 40.

χ2 = (405−450)2/450+(55−50)2/50+(40−25)2/25= 10.4412.

(d) There are 3− 1 = 2 degrees of freedom. From theχ2 table, 0.005< P < 0.01. A computer package gives
P = 0.00540.

The true percentages differ from 85%, 10%, and 5%.

3. The row totals areO.1 = 1603 andO.2 = 2036. The column totals areO1. = 504, O2. = 229, O3. = 686,
O4. = 1105,O5. = 1115.

The grand total isO.. = 3639.

The expected values areEi j = Oi.O. j/O.., as shown in the following table.

Near Low Middle High
Poor Poor Income Income Income

Men 222.01 100.88 302.19 486.76 491.16
Women 281.99 128.12 383.81 618.24 623.84

There are(2−1)(5−1)= 4 degrees of freedom.

χ2 = ∑2
i=1∑5

j=1(Oi j −Ei j )
2/Ei j = 108.35.

From theχ2 table,P < 0.005. A computer package givesP≈ 0.

We can conclude that the proportions in the various income categories differ between men and women.

5. The row totals areO1. = 41,O2. = 39, andO3. = 412. The column totals areO.1 = 89,O.2 = 163,O.3 = 240.
The grand total isO.. = 492.

The expected values areEi j = Oi.O. j/O.., as shown in the following table.

< 1 1 to< 5 ≥ 5
Diseased 7.4167 13.583 20.000

Sensitized 7.0549 12.921 19.024
Normal 74.528 136.50 200.98

There are(3−1)(3−1)= 4 degrees of freedom.

χ2 = ∑3
i=1∑3

j=1(Oi j −Ei j )
2/Ei j = 10.829.

From theχ2 table, 0.025< P < 0.05. A computer package givesP = 0.0286.

There is some evidence that the proportions of workers in thevarious disease categories differ among exposure
levels.

7. (a) The row totals areO1. = 37,O2. = 25, andO3. = 35. The column totals areO.1 = 27,O.2 = 35,O.3 = 35. The
grand total isO.. = 97.
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The expected values areEi j = Oi.O. j/O.., as shown in the following table.

10.2990 13.3505 13.3505
6.9588 9.0206 9.0206
9.7423 12.6289 12.6289

(b) Theχ2 test is appropriate here, since all the expected values are greater than 5.

There are(3−1)(3−1)= 4 degrees of freedom.

χ2 = ∑3
i=1∑3

j=1(Oi j −Ei j )
2/Ei j = 6.4808.

From theχ2 table,P > 0.10. A computer package givesP = 0.166.

There is no evidence that the rows and columns are not independent.

9. (iii) Both row totals and column totals in the observed table must be the same as the row and column totals,
respectively, in the expected table.

11. Let p1 represent the probability that a randomly chosen plate is classifed as premium, letp2 represent the
probability that it is conforming, letp3 represent the probability that it is downgraded, and letp4 represent the
probability that it is unacceptable. Then the null hypothesis isH0 : p1 = 0.10, p2 = 0.70, p3 = 0.15, p4 = 0.05

The total number of observation isn = 200. The expected values arenp1, np2, np3, andnp4, or 20, 140, 30,
and 10.

The observed values are 19, 133, 35, and 13.

χ2 = (19−20)2/20+(133−140)2/140+(35−30)2/30+(13−10)2/10= 2.133.

There are 4− 1 = 3 degrees of freedom. From theχ2 table, P > 0.10. A computer package gives
P = 0.545.

We cannot conclude that the engineer’s claim is incorrect.

13. The row totals areO1. = 217 andO2. = 210. The column totals areO.1 = 32, O.2 = 15, O.3 = 37, O.4 = 38,
O.5 = 45,O.6 = 48,O.7 = 46,O.8 = 42,O.9 = 34,O.10 = 36,O.11 = 28,O.12 = 26. The grand total isO.. = 427.

The expected values areEi j = Oi.O. j/O.., as shown in the following table.

Month
1 2 3 4 5 6 7 8 9 10 11 12

Known 16.26 7.62 18.80 19.31 22.87 24.39 23.38 21.34 17.28 18.30 14.23 13.21
Unknown 15.74 7.38 18.20 18.69 22.13 23.61 22.62 20.66 16.72 17.70 13.77 12.79

There are(2−1)(12−1)= 11 degrees of freedom.

χ2 = ∑2
i=1∑12

j=1(Oi j −Ei j )
2/Ei j = 41.33.

From theχ2 table,P < 0.005. A computer package givesP = 2.1×10−5.

We can conclude that the proportion of false alarms whose cause is known differs from month to month.
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Section 6.11

1. s2 = 96,n = 11. The null and alternate hypotheses areH0 : σ2 ≤ 50,H1 : σ2 > 50.

The test statistic is(11−1)(96)/50= 19.2. There are 11−1= 10 degrees of freedom.

Since the alternate hypothesis is of the formσ2 > σ2
0, theP-value is the area to the right ofχ2

10 = 19.2.

From theχ2 table, 0.025< P < 0.05. A computer package givesP = 0.0378.

There is reasonably strong evidence thatσ2 > 50.

3. s2 = 64,n = 25. The null and alternate hypotheses areH0 : σ2 = 225,H1 : σ2 6= 225.

The test statistic is(25−1)(64)/225= 6.8267. There are 25−1= 24 degrees of freedom.

Since the alternate hypothesis is of the formσ2 6= σ2
0, theP-value is twice the area to the left ofχ2

24 = 6.8267.

From theχ2 table,P < 0.01. A computer package givesP = 0.000463.

There is sufficient evidence to contradict the claim.

5. s2 = 18.49,n = 25. The null and alternate hypotheses areH0 : σ2 ≥ 25,H1 : σ2 < 25.

The test statistic is(25−1)(18.49)/25= 17.750. There are 25−1= 24 degrees of freedom.

Since the alternate hypothesis is of the formσ2 < σ2
0, theP-value is the area to the left ofχ2

24 = 17.750.

From theχ2 table,P > 0.10. A computer package givesP = 0.185.

We cannot conclude that the pediatrician’s claim is true.

7. s2 = 7569,n = 20. The null and alternate hypotheses areH0 : σ2 = 10,000,H1 : σ2 6= 10,000.

The test statistic is(20−1)(7569)/10,000= 14.381. There are 20−1= 19 degrees of freedom.

Since the alternate hypothesis is of the formσ2 6= σ2
0, theP-value is twice the area to the left ofχ2

19 = 14.381.

From theχ2 table,P > 0.20. A computer package givesP = 0.478.

There is not sufficient evidence to contradict the claim.

9. ν1 = 7, ν2 = 20. From theF table, the upper 5% point is 2.51.

11. (a) The upper 1% point of theF5,7 distribution is 7.46. Therefore theP-value is 0.01.

(b) TheP-value for a two-tailed test is twice the value for the corresponding one-tailed test.

ThereforeP = 0.02.

13. The sample variance of the sodium contents for the brand Ais s2
1 = 6.4764. The sample size isn1 = 9.

The sample variance of the sodium contents for brand B iss2
2 = 10.3572. The sample size isn2 = 13.

The null and alternate hypotheses areH0 : σ2
1/σ2

2 = 1 versusH1 : σ2
1/σ2

2 6= 1.

The test statistic isF = s2
2/s2

1 = 1.6020. The numbers of degrees of freedom are 12 and 8.

Since this is a two-tailed test, theP-value is twice the area to the right of 1.6020 under theF12,8 probability
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density function.

From theF table,P > 0.2. A computer package givesP = 0.513.

We cannot conclude that the variance of the sodium content differs between the brands.

Section 6.12

1. (a) True.H0 is rejected at any level greater than or equal to 0.03.

(b) False. 2% is less than 0.03.

(c) False. 10% is greater than 0.03.

3. (a)H0 : µ≥ 90 versusH1 : µ< 90

(b) LetX be the sample mean of the 150 times.

UnderH0, the population mean isµ= 90, and the population standard deviation isσ = 5.

The null distribution ofX is therefore normal with mean 90 and standard deviation 5/
√

150= 0.408248.

Since the alternate hypothesis is of the formµ< µ0, the rejection region for a 5% level test consists of the lower
5% of the null distribution.

Thez-score corresponding to the lower 5% of the normal distribution isz= −1.645.

Therefore the rejection region consists of all values ofX less than or equal to 90−1.645(0.408248)= 89.3284.

H0 will be rejected ifX < 89.3284.

(c) This is not an appropriate rejection region. The rejection region should consist of values forX that will make
theP-value of the test less than or equal to a chosen threshold level. Therefore the rejection region must be of
the formX ≤ x0. This rejection region is of the formX ≥ x0, and so it consists of values for which theP-value
will be greater than some level.

(d) This is an appropriate rejection region.

UnderH0, thez-score of 89.4 is(89.4−90)/0.408248= −1.47.

Since the alternate hypothesis is of the formµ< µ0, the level is the area to the left ofz= −1.47.

Therefore the level isα = 0.0708.

(e) This is not an appropriate rejection region. The rejection region should consist of values forX that will make
theP-value of the test less than a chosen threshold level. This rejection region contains values ofX greater than
90.6, for which theP-value will be large.
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5. (a)H0 says that the claim is true. ThereforeH0 is true, so rejecting it is a type I error.

(b) Correct decision.H0 is false and was rejected.

(c) Correct decision.H0 is true and was not rejected.

(d) Type II error.H0 is false and was not rejected.

7. The 1% level. The error in question is rejectingH0 when true, which is a type I error. When the level is smaller,
it is less likely to rejectH0, and thus less likely to make a type I error.

Section 6.13

1. (a) True. This is the definition of power.

(b) True. WhenH0 is false, making a correct decision means rejectingH0.

(c) False. The power is 0.90, not 0.10.

(d) False. The power is not the probability thatH0 is true.

3. increase. If the level increases, the probability of rejecting H0 increases, so in particular, the probability of
rejectingH0 when it is false increases.

5. (a)H0 : µ≥ 50,000 versusH1 : µ< 50,000.H1 is true, since the true value ofµ is 49,500.

(b) The level is the probability of rejectingH0 when it is true.

Under H0, X is approximately normally distributed with mean 50,000 andstandard deviation
σX = 5000/

√
100= 500.

The probability of rejectingH0 is P(X ≤ 49,400).

UnderH0, thez-score of 49,400 isz= (49,400−50,000)/500= −1.20.
The level of the test is the area under the normal curve to the left of z= −1.20.

Therefore the level is 0.1151.
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The power is the probability of rejectingH0 whenµ= 49,500.

X is approximately normally distributed with mean 49,500 andstandard deviation
σX = 5000/

√
100= 500.

The probability of rejectingH0 is P(X ≤ 49,400).

Thez-score of 49,400 isz= (49,400−49,500)/500= −0.20.
The power of the test is thus the area under the normal curve tothe left ofz= −0.20.

Therefore the power is 0.4207.

(c) Since the alternate hypothesis is of the formµ < µ0, the 5% rejection region will be the regionX ≤ x5, where
x5 is the 5th percentile of the null distribution.

Thez-score corresponding to the 5th percentile isz= −1.645.

Thereforex5 = 50,000−1.645(500)= 49,177.5.

The rejection region isX ≤ 49,177.5.

The power is thereforeP(X ≤ 49,177.5) whenµ= 49,500.

Thez-score of 49,177.5 isz= (49,177.5−49,500)/500= −0.645. We will usez= −0.65.

The power is therefore the area to the left ofz= −0.65.

Thus the power is 0.2578.

(d) For the power to be 0.80, the rejection region must beX ≤ x0 whereP(X ≤ x0) = 0.80 whenµ= 49,500.

Thereforex0 is the 80th percentile of the normal curve whenµ = 49,500. Thez-score corresponding to the
80th percentile isz= 0.84.

Thereforex0 = 49,500+0.84(500)= 49,920.

Now compute the level of the test whose rejection region isX ≤ 49,920.

The level isP(X ≤ 49,920) whenµ= 50,000.

Thez-score of 49,920 isz= (49,920−50,000)/500= −0.16.

The level is the area under the normal curve to the left ofz= −0.16.

Therefore the level is 0.4364.

(e) Letn be the required number of tires.

The null distribution is normal withµ= 50,000 andσX = 5000/
√

n. The alternate distribution is normal with
µ= 49,500 andσX = 5000/

√
n.

Let x0 denote the boundary of the rejection region.

Since the level is 5%, thez-score ofx0 is z= −1.645 under the null distribution.

Thereforex0 = 50,000−1.645(5000/
√

n).

Since the power is 0.80, thez-score ofx0 is z= 0.84 under the alternate distribution.

Thereforex0 = 49,500+0.84(5000/
√

n).

It follows that 50,000−1.645(5000/
√

n) = 49,500+0.84(5000/
√

n).

Solving forn yieldsn = 618.
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7. (ii). Since 7 is farther from the null mean of 10 than 8 is, the power against the alternativeµ = 7 will be
greater than the power against the alternativeµ= 8.

9. (a) Two-tailed. The alternate hypothesis is of the formp 6= p0.

(b) p = 0.5

(c) p = 0.4

(d) Less than 0.7. The power for a sample size of 150 is 0.691332, and the power for a smaller sample size of 100
would be less than this.

(e) Greater than 0.6. The power for a sample size of 150 is 0.691332, and the power for a larger sample size of
200 would be greater than this.

(f) Greater than 0.65. The power against the alternativep = 0.4 is 0.691332, and the alternativep = 0.3 is farther
from the null thanp = 0.4. So the power against the alternativep = 0.3 is greater than 0.691332.

(g) It’s impossible to tell from the output. The power against the alternativep = 0.45 will be less than the power
againstp = 0.4, which is 0.691332. But we cannot tell without calculatingwhether the power will be less than
0.65.

11. (a) Two-tailed. The alternate hypothesis is of the formµ1−µ2 6= ∆.

(b) Less than 0.9. The sample size of 60 is the smallest that will produce power greater than or equal to the target
power of 0.9.

(c) Greater than 0.9. The power is greater than 0.9 against a difference of 3, so it will be greater than 0.9 against
any difference greater than 3.

Section 6.14

1. Several tests have been performed, so we cannot interpretthe P-values in the way that we do when only one
test is performed.

3. (a) There are six tests, so the Bonferroni-adjusted P-values are found by multiplying the original P-values by 6.
For the setting whose original P-value is 0.002, the Bonferroni-adjusted P-value is therefore 0.012. Since this
value is small, we can conclude that this setting reduces theproportion of defective parts.
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(b) The Bonferroni-adjusted P-value is 6(0.03) = 0.18. Since this value is not so small, we cannot conclude that
this setting reduces the proportion of defective parts.

5. The originalP-value must be 0.05/20= 0.0025.

7. (a) No. LetX represent the number of times in 200 days thatH0 is rejected. If the mean burn-out amperage is
equal to 15 A every day, the probability of rejectingH0 is 0.05 each day, soX ∼ Bin(200,0.05).

The probability of rejectingH0 10 or more times in 200 days is thenP(X ≥ 10), which is approximately equal
to 0.5636. So it would not be unusual to rejectH0 10 or more times in 200 trials ifH0 is always true.

Alternatively, note that if the probability of rejectingH0 is 0.05 each day, the mean number of times thatH0

will be rejected in 200 days is(200)(0.05) = 10. Therefore observing 10 rejections in 200 days is consistent
with the hypothesis that the mean burn-out amperage is equalto 15 A every day.

(b) Yes. LetX represent the number of times in 200 days thatH0 is rejected. If the mean burn-out amperage is
equal to 15 A every day, the probability of rejectingH0 is 0.05 each day, soX ∼ Bin(200,0.05).

The probability of rejectingH0 20 or more times in 200 days is thenP(X ≥ 20) which is approximately equal
to 0.0010.

So it would be quite unusual to rejectH0 20 times in 200 trials ifH0 is always true.

We can conclude that the mean burn-out amperage differed from 15 A on at least some of the days.

Section 6.15

1. (a) Using Method 1, the limits of the 95% confidence interval are the 2.5 and 97.5 percentiles of the bootstrap
means,X.025 andX.975.

The 2.5 percentile is(Y25+Y26)/2 = 38.3818, and the 97.5 percentile is(Y975+Y976)/2 = 38.53865.

The confidence interval is (38.3818, 38.53865). Values outside this interval can be rejected at the 5% level.

Therefore null hypotheses (ii) and (iv) can be rejected.

(b) Using Method 1, the limits of the 90% confidence interval are the 5th and 95th percentiles of the bootstrap
means,X.05 andX.95.

The 5th percentile is(Y50+Y51)/2 = 38.39135, and the 95th percentile is(Y950+Y951)/2 = 38.5227.

The confidence interval is (38.39135, 38.5227). Values outside this interval can be rejected at the 10% level.

Therefore null hypotheses (i), (ii), and (iv) can be rejected.
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3. No, the value 103 is an outlier.

5. (a)s2
A = 200.28,s2

B = 39.833,s2
A/s2

B = 5.02.

(b) No, theF-test requires the assumption that the data are normally distributed. These data contain an outlier
(103), so theF-test should not be used.

(c) P≈ 0.37

7. (a) The test statistic ist =
X−7

s/
√

7
. H0 will be rejected if|t| > 2.447.

(b) The power is approximately 0.60.

9. (a)X = 22.10,σX = 0.34,Y = 14.30,σY = 0.32,V =
√

X2 +Y2 = 26.323.
∂V
∂X

= X/
√

X2 +Y2 = 0.83957,
∂V
∂Y

= Y/
√

X2+Y2 = 0.54325,

σV =

√(
∂V
∂X

)2

σ2
X +

(
∂V
∂Y

)2

σ2
Y = 0.3342.

V = 26.323,σV = 0.3342

(b) V = 26.323,σV = 0.3342. The null and alternate hypotheses areH0 : µV ≤ 25 versusH1 : µV > 25.

z= (26.323−25)/0.3342= 3.96.

Since the alternate hypothesis is of the formµ> µ0, theP-value is the area to the right ofz= 3.96.

ThusP≈ 0.

(c) Yes,V is approximately normally distributed.

Supplementary Exercises for Chapter 6

1. This requires a test for the difference between two means.The data are unpaired. Letµ1 represent the pop-
ulation mean annual cost for cars using regular fuel, and letµ2 represent the population mean annual cost
for cars using premium fuel. Then the appropriate null and alternate hypotheses areH0 : µ1− µ2 ≥ 0 versus
H1 : µ1− µ2 < 0. The test statistic is the difference between the sample mean costs between the two groups.
Thez table should be used to find theP-value.
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3. This requires a test for a population proportion. Letp represent the population proportion of defective parts
under the new program. The appropriate null and alternate hypotheses areH0 : p≥ 0.10 versusH1 : p < 0.10.
The test statistic is the sample proportion of defective parts. Thez table should be used to find theP-value.

5. (a)H0 : µ≥ 16 versusH1 : µ< 16

(b) X = 15.887,s= 0.13047,n = 10. There are 10−1= 9 degrees of freedom.

The null and alternate hypotheses areH0 : µ≥ 16 versusH1 : µ< 16.

t = (15.887−16)/(0.13047/
√

10) = −2.739.

(c) Since the alternate hypothesis is of the formµ< µ0, theP-value is the area to the left oft = −2.739.

From thet table, 0.01< P < 0.025. A computer package givesP = 0.011.

We conclude that the mean fill weight is less than 16 oz.

7. (a)H0 : µ1−µ2 = 0 versusH1 : µ1−µ2 6= 0

(b) D = 1608.143,sD = 2008.147,n = 7. There are 7−1= 6 degrees of freedom. The null and alternate hypothe-
ses areH0 : µD = 0 versusH1 : µD 6= 0.

t = (1608.143−0)/(2008.147/
√

7) = 2.119.

(c) Since the alternate hypothesis is of the formµD 6= µ0, theP-value is the sum of the areas to the right oft = 2.119
and to the left oft = −2.119.

From thet table, 0.05< P < 0.010. A computer package givesP = 0.078.

The null hypothesis is suspect, but one would most likely notfirmly conclude that it is false.

9. X = 5.6, s= 1.2, n = 85. The null and alternate hypotheses areH0 : µ≤ 5 versusH1 : µ> 5.

z= (5.6−5)/(1.2/
√

85) = 4.61.

Since the alternate hypothesis is of the formµ> µ0, theP-value is the area to the right ofz= 4.61.

ThusP≈ 0.

11. (a) The null distribution ofX is normal with meanµ= 100 and standard deviationσX = 0.1/
√

100 = 0.01.

Since the alternate hypothesis is of the formµ 6= µ0, the rejection region will consist of both the upper and
lower 2.5% of the null distribution.

Thez-scores corresponding to the boundaries of upper and lower 2.5% arez= 1.96 andz=−1.96, respectively.
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Therefore the boundaries are 100+1.96(0.01)= 100.0196 and 100−1.96(0.01)= 99.9804.

RejectH0 if X ≥ 100.0196 or ifX ≤ 99.9804.

(b) The null distribution ofX is normal with meanµ= 100 and standard deviationσX = 0.1/
√

100 = 0.01.

Since the alternate hypothesis is of the formµ 6= µ0, the rejection region will consist of both the upper and
lower 5% of the null distribution.

Thez-scores corresponding to the boundaries of upper and lower 5% arez= 1.645 andz= −1.645, respec-
tively.

Therefore the boundaries are 100+1.645(0.01)= 100.01645 and 100−1.645(0.01)= 99.98355.

RejectH0 if X ≥ 100.01645 or ifX ≤ 99.98355.

(c) Yes

(d) No

(e) Since this is a two-tailed test, there are two critical points, equidistant from the null mean of 100. Since one
critical point is 100.015, the other is 99.985.

The level of the test is the sumP(X ≤ 99.985) + P(X ≥ 100.015), computed under the null distribution.

The null distribution is normal with meanµ= 100 and standard deviationσX = 0.01.

Thez-score of 100.015 is(100.015−100)/0.01= 1.5. Thez-score of 99.985 is(99.985−100)/0.01= −1.5.

The level of the test is therefore 0.0668+0.0668= 0.1336, or 13.36%.

13. (a) The null hypothesis specifies a single value for the mean: µ = 3. The level, which is 5%, is therefore the
probability that the null hypothesis will be rejected whenµ= 3. The machine is shut down ifH0 is rejected at
the 5% level. Therefore the probability that the machine will be shut down whenµ= 3 is 0.05.

(b) First find the rejection region.

The null distribution ofX is normal with meanµ= 3 and standard deviationσX = 0.10/
√

50= 0.014142.

Since the alternate hypothesis is of the formµ 6= µ0, the rejection region will consist of both the upper and
lower 2.5% of the null distribution.

The z-scores corresponding to the boundaries of upper and lower 2.5% arez= 1.96 andz= −1.96, respec-
tively.

Therefore the boundaries are 3+1.96(0.014142)= 3.0277 and 3−1.96(0.014142)= 2.9723.

H0 will be rejected ifX ≥ 3.0277 or ifX ≤ 2.9723.

The probability that the equipment will be recalibrated is therefore equal toP(X ≥ 3.0277) +
P(X ≤ 2.9723), computed under the assumption thatµ= 3.01.

Thez-score of 3.0277 is(3.0277−3.01)/0.014142= 1.25.

Thez-score of 2.9723 is(2.9723−3.01)/0.014142= −2.67.

ThereforeP(X ≥ 3.0277) = 0.1056, andP(X ≤ 2.9723) = 0.0038.

The probability that the equipment will be recalibrated is equal to 0.1056 + 0.0038 = 0.1094.



168 CHAPTER 6

15. X = 37,n = 37+458= 495, p̂ = 37/495= 0.074747.

The null and alternate hypotheses areH0 : p≥ 0.10 versusH1 : p < 0.10.

z= (0.074747−0.10)/
√

0.10(1−0.10)/495= −1.87.

Since the alternate hypothesis is of the formp < p0, the P-value is the area to the left ofz = −1.87, so
P = 0.0307.

Since there are four samples altogether, the Bonferroni-adjustedP-value is 4(0.0307) = 0.1228.

We cannot conclude that the failure rate on line 3 is less than0.10.

17. (a) Both samples have a median of 20.

(b) The ranks of the combined samples are Value Rank Sample
−10 1 Y
−9 2 Y
−8 3 Y
−7 4 Y
−6 5 Y
−5 6 Y
−4 7 Y

1 8 X
2 9 X
3 10 X
4 11 X
5 12 X
6 13 X
7 14 X

20 15.5 X
20 15.5 Y
21 17 Y
22 18 Y
23 19 Y
24 20 Y
25 21 Y
26 22 Y
27 23 Y
40 24 X
50 25 X
60 26 X
70 27 X
80 28 X
90 29 X

100 30 X

The null and alternate hypotheses areH0 : median ofX − median ofY = 0 versusH1 : median ofX − median ofY 6= 0.

The test statisticW is the sum of the ranks corresponding to theX sample.

W = 281.5. The sample sizes arem= 15 andn = 15.

Sincen andmare both greater than 8, compute thez-score ofW and use thez table.



SUPPLEMENTARY EXERCISES FOR CHAPTER 6 169

z=
W−m(m+n+1)/2√

mn(m+n+1)/12
= 2.03.

Since the alternate hypothesis is of the form median ofX−median ofY 6= ∆, theP-value is the sum of the areas
to the right ofz= 2.03 and to the left ofz= −2.03.

From thez table,P = 0.0212+0.0212= 0.0424.

The P-value is fairly small, and so it provides reasonably strongevidence that the population medians are
different.

(c) No, theX sample is heavily skewed to the right, while theY sample is strongly bimodal. It does not seem
reasonable to assume that these samples came from populations of the same shape.

19. (a) LetµA be the mean thrust/weight ratio for Fuel A, and letµB be the mean thrust/weight ratio for Fuel B. The
appropriate null and alternate hypotheses areH0 : µA−µB ≤ 0 versusH1 : µA−µB > 0.

(b) A = 54.919,sA = 2.5522,nA = 16, B = 53.019,sB = 2.7294,nB = 16.

The number of degrees of freedom is

ν =

[
2.55222

16
+

2.72942

16

]2

(2.55222/16)2

16−1
+

(2.72942/16)2

16−1

= 29, rounded down to the nearest integer.

t29 = (54.919−53.019−0)/
√

2.55222/16+2.72942/16= 2.0339.

The null and alternate hypotheses areH0 : µA−µB ≤ 0 versusH1 : µA−µB > 0.

Since the alternate hypothesis is of the formµA−µB > ∆, theP-value is the area to the right oft = 2.0339.

From thet table, 0.025< P < 0.05. A computer package givesP = 0.026.

SinceP≤ 0.05, we can conclude at the 5% level that the means are different.

21. (a) Yes.

(b) The conclusion is not justified. The engineer is concluding thatH0 is true because the test failed to reject.

23. The row totals areO1. = 214 andO2. = 216. The column totals areO.1 = 65,O.2 = 121,O.3 = 244. The grand
total isO.. = 430.

The expected values areEi j = Oi.O. j/O.., as shown in the following table.

Numbers of Skeletons
Site 0–4 years 5–19 years 20 years or more

Casa da Moura 32.349 60.219 121.43
Wandersleben 32.651 60.781 122.57

There are(2−1)(3−1)= 2 degrees of freedom.
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χ2 = ∑2
i=1∑3

j=1(Oi j −Ei j )
2/Ei j = 2.1228.

From theχ2 table,P > 0.10. A computer package givesP = 0.346.

We cannot conclude that the age distributions differ between the two sites.
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Chapter 7

Section 7.1

1. x = y = 4, ∑n
i=1(xi −x)2 = 28, ∑n

i=1(yi −y)2 = 28, ∑n
i=1(xi −x)(yi −y) = 23.

r =
∑n

i=1(xi −x)(yi −y)√
∑n

i=1(xi −x)2
√

∑n
i=1(yi −y)2

= 0.8214.

3. (a) The correlation coefficient is appropriate. The points are approximately clustered around a line.

(b) The correlation coefficient is not appropriate. The relationship is curved, not linear.

(c) The correlation coefficient is not appropriate. The plotcontains outliers.

5.

The heights and weights for the men (dots) are on the
whole greater than those for the women (xs). There-
fore the scatterplot for the men is shifted up and to
the right. The overall plot exhibits a higher correlation
than either plot separately. The correlation between
heights and weights for men and women taken together
will be more than 0.6.

7. (a) Letx represent temperature,y represent stirring rate, andz represent yield.

Thenx = 119.875, y = 45, z= 75.590625, ∑n
i=1(xi −x)2 = 1845.75,

∑n
i=1(yi −y)2 = 1360, ∑n

i=1(zi −z)2 = 234.349694, ∑n
i=1(xi −x)(yi −y) = 1436,

∑n
i=1(xi −x)(zi −z) = 481.63125, ∑n

i=1(yi −y)(zi −z) = 424.15.

The correlation coefficient between temperature and yield is

r =
∑n

i=1(xi −x)(zi −z)√
∑n

i=1(xi −x)2
√

∑n
i=1(zi −z)2

= 0.7323.

The correlation coefficient between stirring rate and yieldis
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r =
∑n

i=1(yi −y)(zi −z)√
∑n

i=1(yi −y)2
√

∑n
i=1(zi −z)2

= 0.7513.

The correlation coefficient between temperature and stirring rate is

r =
∑n

i=1(xi −x)(yi −y)√
∑n

i=1(xi −x)2
√

∑n
i=1(yi −y)2

= 0.9064.

(b) No, the result might be due to confounding, since the correlation between temperature and stirring rate is far
from 0.

(c) No, the result might be due to confounding, since the correlation between temperature and stirring rate is far
from 0.

9. (a)x = 201.3, y = 202.2, ∑n
i=1(xi −x)2 = 2164.1, ∑n

i=1(yi −y)2 = 1571.6,

∑n
i=1(xi −x)(yi −y) = 1716.4, n = 10.

r =
∑n

i=1(xi −x)(yi −y)√
∑n

i=1(xi −x)2
√

∑n
i=1(yi −y)2

= 0.930698.

W =
1
2

ln
1+ r
1− r

= 1.663582,σW =
√

1/(10−3) = 0.377964.

A 95% confidence interval forµW is W±1.96σW, or (0.92279,2.40438).

A 95% confidence interval forρ is

(
e2(0.92279)−1

e2(0.92279) +1
,

e2(2.40438)−1

e2(2.40438) +1

)
, or (0.7272, 0.9838).

(b) The null and alternate hypotheses areH0 : ρ ≥ 0.9 versusH1 : ρ < 0.9.

r = 0.930698, W =
1
2

ln
1+ r
1− r

= 1.663582, σW =
√

1/(10−3) = 0.377964.

UnderH0, takeρ = 0.9, soµW =
1
2

ln
1+0.9
1−0.9

= 1.47222.

The null distribution ofW is therefore normal with mean 1.47222 and standard deviation 0.377964.

The z-score of 1.663582 is(1.663582− 1.47222)/0.377964= 0.51. Since the alternate hypothesis is of the
form ρ > ρ0, theP-value is the area to the right ofz= 0.51.

ThusP = 0.3050.

We cannot conclude thatρ > 0.9.

(c) r = 0.930698,n = 10,U = r
√

n−2/
√

1− r2 = 7.1965.

UnderH0, U has a Student’st distribution with 10−2= 8 degrees of freedom.

Since the alternate hypothesis is of the formρ > ρ0, theP-value is the area to the right oft = 7.1965.

From thet table,P < 0.001. A computer package givesP = 4.64×10−5.

We conclude thatρ > 0.
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11. r = −0.9515,W =
1
2

ln
1+ r
1− r

= −1.847395,σW =
√

1/(30000−3)= 0.00577379.

A 95% confidence interval forµW is W±1.96σW, or (−1.85871,−1.83608).

A 95% confidence interval forρ is

(
e2(−1.85871)−1

e2(−1.85871) +1
,

e2(−1.83608)−1

e2(−1.83608) +1

)
, or (−0.9526,−0.9504).

13. r = −0.509,n = 23,U = r
√

n−2/
√

1− r2 = −2.7098.

UnderH0, U has a Student’st distribution with 23−2= 21 degrees of freedom.

Since the alternate hypothesis isH1 : ρ 6= 0, theP-value is the sum of the areas to the right oft = 2.7098 and to
the left oft = −2.7098.

From thet table, 0.01< P < 0.02. A computer package givesP = 0.0131.

We conclude thatρ 6= 0.

Section 7.2

1. (a) 245.82+1.13(65)= 319.27 pounds

(b) The difference iny predicted from a one-unit change inx is the slopêβ1 = 1.13. Therefore the change in the
number of lbs of steam predicted from a change of 5◦C is 1.13(5) = 5.65 pounds.

3. r2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi −y)2 = 1− 1450

9615
= 0.8492.

5. (a)−0.2967+0.2738(70)= 18.869 in.

(b) Letx be the required height. Then 19= −0.2967+0.2738x, sox = 70.477 in.

(c) No, some of the men whose points lie below the least-squares line will have shorter arms.

7. β̂1 = rsy/sx = (0.85)(1.9)/1.2= 1.3458.β̂0 = y− β̂1x = 30.4−1.3458(8.1)= 19.499.

The equation of the least-squares line isy = 19.499+1.3458x.
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9. (a)
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(b) x = 0.527778, y = 1.752778, ∑n
i=1(xi −x)2 = 0.476111, ∑n

i=1(yi −y)2 = 13.672761,
∑n

i=1(xi −x)(yi −y) = −2.335389.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = −4.905134 and̂β0 = y− β̂1x = 4.341599.

The equation of the least-squares line isy = 4.341599−4.905134x.

(c) By 4.905134(0.2) = 0.9810 Hz.

(d) 4.341599−4.905134(0.75)= 0.6627

(e) No, values greater than 1 are outside the range of the data.

(f) Let x be the required damping ratio. Then 2.0 = 4.341599−4.905134x, sox = 0.47738.

11. (a)
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The linear model is appropriate.

(b) x = 5.342857, y = 1847.285714, ∑n
i=1(xi − x)2 = 1.577143, ∑n

i=1(yi − y)2 = 1398177.429, ∑n
i=1(xi −

x)(yi −y) = 1162.514286.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = 737.101449 and̂β0 = y− β̂1x = −2090.942029.
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The equation of the least-squares line isy = −2090.942029+737.101449x.

(c) The fitted values are the valuesŷi = β̂0 + β̂1xi , and the residuals are the valuesei = yi − ŷi , for each valuexi .
They are shown in the following table.

Fitted Value Residual

x y ŷ = β̂0 + β̂1x e= y− ŷ
4.6 1056 1299.7 −243.72
4.8 1833 1447.1 385.86
5.2 1629 1742.0 −112.99
5.4 1852 1889.4 −37.41
5.6 1783 2036.8 −253.83
5.8 2647 2184.2 −462.75
6.0 2131 2331.7 −200.67

(d) 737.101449(0.1)= 73.71. Increase by 73.71 pounds per acre.

(e)−2090.942029+737.10144(5.5)= 1963.1 hours.

(f) No, because 7 is outside the range of the pH values presentin the data.

(g) Letx be the required pH. Then 1500= −2090.942029+737.10144x, sox = 4.872.

13. β̂1 = rsy/sx = 0.5(10/0.5) = 10. β̂0 = y− β̂1x = 50−10(3) = 20.

The equation of the least-squares line isy = 20+10x.

15. (iii) equal to $34,900. Since 70 inches is equal tox, the predictedy value,ŷ will be equal toy = 34,900.

To see this, note that̂y = β̂0 + β̂1x = (y− β̂1x)+ β̂1x = y.

Section 7.3

1. (a)x = 65.0, y = 29.05, ∑n
i=1(xi − x)2 = 6032.0, ∑n

i=1(yi − y)2 = 835.42, ∑n
i=1(xi − x)(yi − y) = 1988.4,

n = 12.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = 0.329642 and̂β0 = y− β̂1x = 7.623276.
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(b) r2 =
[∑n

i=1(xi −x)(yi −y)]2

∑n
i=1(xi −x)2 ∑n

i=1(yi −y)2 = 0.784587. s2 =
(1− r2)∑n

i=1(yi −y)2

n−2
= 17.996003.

(c) s=
√

17.996003= 4.242170. ŝβ0
= s

√
1
n

+
x2

∑n
i=1(xi −x)2 = 3.755613.

ŝβ1
=

s√
∑n

i=1(xi −x)2
= 0.0546207.

There aren−2 = 10 degrees of freedom.t10,.025= 2.228.

Therefore a 95% confidence interval forβ0 is 7.623276±2.228(3.755613), or (−0.744,15.991).

The 95% confidence interval forβ1 is 0.329642±2.228(0.0546207), or (0.208, 0.451).

(d) β̂1 = 0.329642, ŝβ1
= 0.0546207, n = 12. There are 12−2= 10 degrees of freedom.

The null and alternate hypotheses areH0 : β1 ≥ 0.5 versusH1 : β1 < 0.5.

t = (0.329642−0.5)/0.0546207= −3.119.

Since the alternate hypothesis is of the formβ1 < b, theP-value is the area to the left oft = −3.119.

From thet table, 0.005< P < 0.01. A computer package givesP = 0.00545.

We can conclude that the claim is false.

(e) x = 40, ŷ = 7.623276+0.329642(40)= 20.808952.

ŝy = s

√
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 1.834204. There are 10 degrees of freedom.t10,.025= 2.228.

Therefore a 95% confidence interval for the mean response is 20.808952±2.228(1.834204),
or (16.722, 24.896).

(f) x = 40, ŷ = 7.623276+0.329642(40)= 20.808952.

spred = s

√

1+
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 4.621721. There are 10 degrees of freedom.t10,.025= 2.228.

Therefore a 95% prediction interval is 20.808952±2.228(4.621721),
or (10.512, 31.106).

3. (a) The slope is−0.7524; the intercept is 88.761.

(b) Yes, theP-value for the slope is≈ 0, so ozone level is related to humidity.

(c) 88.761−0.7524(50)= 51.141 ppb.

(d) Sincêβ1 < 0, r < 0. Sor = −
√

r2 = −
√

0.220= −0.469.
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(e) Sincen = 120 is large, use thez table to construct a confidence interval.

z.05 = 1.645, so a 90% confidence interval is 43.62±1.645(1.20), or (41.65, 45.59).

(f) No. A reasonable range of predicted values is given by the95% prediction interval,
which is (20.86, 66.37).

5. (a)H0 : βA−βB = 0

(b) β̂A andβ̂B are independent and normally distributed with meansβA andβB, respectively, and estimated standard
deviationsŝβA

= 0.13024 andŝβB
= 0.03798.

Sincen = 120 is large, the estimated standard deviations can be treated as good approximations to the true
standard deviations.

β̂A = −0.7524 and̂βB = −0.13468.

The test statistic isz= (β̂A− β̂B)/
√

s2
β̂A

+s2
β̂B

= −4.55.

Since the alternate hypothesis is of the formβA− βB 6= 0, theP-value is the sum of the areas to the right of
z= 4.55 and to the left ofz= −4.55.

ThusP≈ 0+0= 0.

We can conclude that the effect of humidity differs between the two cities.

7. (a)x = 1.547286, y = 0.728571, ∑n
i=1(xi −x)2 = 0.141471, ∑n

i=1(yi −y)2 = 0.0246857,
∑n

i=1(xi −x)(yi −y) = 0.0561429, n = 7.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = 0.396849 and̂β0 = y− β̂1x = 0.114532.

The least-squares line isy = 0.114532+0.396849x

(b) r2 =
[∑n

i=1(xi −x)(yi −y)]2

∑n
i=1(xi −x)2 ∑n

i=1(yi −y)2 = 0.902557, s=

√
(1− r2)∑n

i=1(yi −y)2

n−2
= 0.0219338,

(c) ŝβ1
=

s√
∑n

i=1(xi −x)2
= 0.058315.

There are 7−2= 5 degrees of freedom.t5,.025 = 2.571.

Therefore a 95% confidence interval forβ1 is 0.396849±2.571(0.058315), or (0.247,0.547).

(d) ŷ = 0.709806, ŝy = s

√
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 0.00873675.

t5,.025 = 2.571. A 95% confidence interval is 0.709806±2.571(0.00873675) or (0.687, 0.732).

(e) Lety1.5 = β0 + β1(1.5) denote the mean COA of bricks whose pore volume is 1.5.
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The null and alternate hypotheses areH0 : y1.5 ≥ 0.75 versusH1 : y1.5 < 0.75.

ŷ = β̂0 + β̂1(1.5) = 0.709806, ŝy = s

√
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 0.00873675.

t = (0.709806−0.75)/0.00873675= −4.601. There are 7−2= 5 degrees of freedom.

Since the alternate hypothesis isy1.5 < 0.75, theP-value is the area to the left oft = −4.601.

From thet table, 0.001< P < 0.005. A computer package givesP = 0.00292.

We may conclude that the mean COA of bricks whose pore volume is 1.5 is less than 0.75 volts.

(f) ŷ = 0.709806, spred = s

√

1+
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 0.0236098.

t5,.025 = 2.571. A 95% prediction interval is 0.709806±2.571(0.0236098) or (0.649, 0.770).

9. (a)x = 21.5075 y = 4.48, ∑n
i=1(xi −x)2 = 1072.52775, ∑n

i=1(yi −y)2 = 112.624,
∑n

i=1(xi −x)(yi −y) = 239.656, n = 40.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = 0.223450 and̂β0 = y− β̂1x = −0.325844.

The least-squares line isy = −0.325844+0.223450x

(b) r2 =
[∑n

i=1(xi −x)(yi −y)]2

∑n
i=1(xi −x)2 ∑n

i=1(yi −y)2 = 0.475485, s=

√
(1− r2)∑n

i=1(yi −y)2

n−2
= 1.246816,

ŝβ0
= s

√
1
n

+
x2

∑n
i=1(xi −x)2 = 0.842217, ŝβ1

=
s√

∑n
i=1(xi −x)2

= 0.0380713.

There are 40−2= 38 degrees of freedom.t38,.025≈ 2.024.

Therefore a 95% confidence interval forβ0 is−0.325844±2.024(0.842217), or (−2.031,1.379).

The 95% confidence interval forβ1 is 0.223450±2.024(0.0380713), or (0.146,0.301).

(c) The prediction iŝβ0 + β̂1(20) = −0.325844+0.223450(20)= 4.143150.

(d) ŷ = 4.14350,ŝy = s

√
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 0.205323.

t38,.025≈ 2.024. A 95% confidence interval is 4.14350±2.024(0.205323) or (3.727, 4.559).

(e) ŷ = 4.14350,spred = s

√

1+
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 1.263609.

t38,.025≈ 2.024. A 95% prediction interval is 4.14350±2.024(1.263609) or (1.585, 6.701).
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11. The width of a confidence interval is proportional toŝy = s

√
1
n

+
(x−x)2

∑n
i=1(xi −x)2 .

Sinces, n, x, and∑n
i=1(xi −x)2 are the same for each confidence interval, the width of the confidence interval

is an increasing function of the differencex−x.

x = 21.7548. The value 20 is closest tox and the value 15 is the farthest fromx.

Therefore the confidence interval at 20 would be the shortest, and the confidence interval at 15 would be the
longest.

13. s2 = (1− r2)∑n
i=1(yi −y)2/(n−2) = (1−0.9111)(234.19)/(17−2)= 1.388.

15. (a)t = 1.71348/6.69327= 0.256.

(b) n = 25, so there aren−2 = 23 degrees of freedom. TheP-value is for a two-tailed test, so it is equal to the
sum of the areas to the right oft = 0.256 and to the left oft = −0.256.

ThusP = 0.40+0.40= 0.80.

(c) ŝβ1
satisfies the equation 3.768= 4.27473/ŝβ1

, soŝβ1
= 1.13448.

(d) n = 25, so there aren−2 = 23 degrees of freedom. TheP-value is for a two-tailed test, so it is equal to the
sum of the areas to the right oft = 3.768 and to the left oft = −3.768.

ThusP = 0.0005+0.0005= 0.001.

17. (a)ŷ = 106.11+0.1119(4000)= 553.71.

(b) ŷ = 106.11+0.1119(500)= 162.06.

(c) Below. For values ofx near 500, there are more points below the least squares estimate than above it.

(d) There is a greater amount of vertical spread on the right side of the plot than on the left.

Section 7.4

1. (a) lny = −0.4442+0.79833lnx
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(b) ŷ = eln ŷ = e−0.4442+0.79833(ln2500) = 330.95.

(c) ŷ = eln ŷ = e−0.4442+0.79833(ln1600) = 231.76.

(d) The 95% prediction interval for lny is given as (3.9738, 6.9176).

The 95% prediction interval fory is therefore(e3.9738,e6.9176), or (53.19, 1009.89).

3. (a)y = 20.162+1.269x

(b)
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There is no apparent pattern to the residual plot. The linear
model looks fine.

(c)
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The residuals increase over time. The linear model is not ap-
propriate as is. Time, or other variables related to time, must be
included in the model.

5. (a)y = −235.32+0.695x.
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(b)
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The residual plot shows a pattern, with positive residuals at the
higher and lower fitted values, and negative residuals in themid-
dle. The model is not appropriate.

(c) lny = −0.0745+0.925lnx.

(d)
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The residual plot shows no obvious pattern. The model is ap-
propriate.

(e) The log model is more appropriate. The 95% prediction interval is(197.26, 1559.76).

7. (a)
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(b) y = 30.122+0.596x.
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(c) y = −22.714+1.305.

(d) Yes, the outlier is influential. The equation of the least-squares line changes substantially when the outlier is
removed.

9. (a) The model is log10y = β0 + β1 log10x+ ε. Note that the natural log (ln) could be used in place of log10, but
common logs are more convenient since partial pressures areexpressed as powers of 10.

(b)
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The least-squares line is log10y = −3.277−
0.225log10x. The linear model appears to fit
quite well.

(c) The theory says that the coefficientβ1 of log10x in the linear model is equal to−0.25. The estimated value is

β̂ = −0.225. We determine whether the data are consistent with the theory by testing the hypothesesH0 : β1 =
−0.25 vs.H1 : β1 6= −0.25. The value of the test statistic ist = 0.821. There are 21 degrees of freedom, so
0.20< P < 0.50 (a computer package givesP = 0.210). We do not rejectH0, so the data are consistent with
the theory.

11. (a)y = 2049.87−4.270x

(b) (12, 2046) and (13, 1954) are outliers. The least-squares line with (12, 2046) deleted isy = 2021.85−2.861x.
The least-squares line with (13, 1954) deleted isy= 2069.30−5.236x. The least-squares line with both outliers
deleted isy = 2040.88−3.809x.

(c) The slopes of the least-squares lines are noticeably affected by the outliers. They ranged from−2.861 to
−5.236.

13. The equation becomes linear upon taking the log of both sides:
lnW = β0 + β1 lnL, whereβ0 = lna andβ1 = b.
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15. (a) A physical law.

(b) It would be better to redo the experiment. If the results of an experiment violate a physical law, then something
was wrong with the experiment, and you can’t fix it by transforming variables.

Supplementary Exercises for Chapter 7

1. (a)x = 1.48, y = 1.466, ∑n
i=1(xi −x)2 = 0.628, ∑n

i=1(yi −y)2 = 0.65612,
∑n

i=1(xi −x)(yi −y) = 0.6386, n = 5.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = 1.016879 and̂β0 = y− β̂1x = −0.038981.

(b) 0

(c) The molar absorption coefficientM.

(d) r2 =
[∑n

i=1(xi −x)(yi −y)]2

∑n
i=1(xi −x)2 ∑n

i=1(yi −y)2 = 0.989726, s=

√
(1− r2)∑n

i=1(yi −y)2

n−2
= 0.0474028,

ŝβ0
= s

√
1
n

+
x2

∑n
i=1(xi −x)2 = 0.0910319.

The null and alternate hypotheses areH0 : β0 = 0 versusH1 : β0 6= 0.

There aren−2= 3 degrees of freedom.t = (−0.038981−0)/0.0910319= −0.428.

Since the alternate hypothesis is of the formβ0 6= b, theP-value is the sum of the areas to the right oft = 0.428
and to the left oft = −0.428.

From thet table, 0.50< P < 0.80. A computer package givesP = 0.698.

The data are consistent with the Beer-Lambert law.

3. (a)
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(b) x = 71.101695, y = 70.711864, ∑n
i=1(xi −x)2 = 10505.389831, ∑n

i=1(yi −y)2 = 10616.101695,

∑n
i=1(xi −x)(yi −y) = −7308.271186, n = 59.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = −0.695669 and̂β0 = y− β̂1x = 120.175090.

Ti+1 = 120.175090−0.695669Ti.

(c) r2 =
[∑n

i=1(xi −x)(yi −y)]2

∑n
i=1(xi −x)2 ∑n

i=1(yi −y)2 = 0.478908, s=

√
(1− r2)∑n

i=1(yi −y)2

n−2
= 9.851499,

ŝβ1
=

s√
∑n

i=1(xi −x)2
= 0.096116.

There aren−2 = 57 degrees of freedom.t57,.025≈ 2.002.

Therefore a 95% confidence interval forβ1 is−0.695669±2.002(0.096116), or (−0.888,−0.503).

(d) ŷ = 120.175090−0.695669(70)= 71.4783 minutes.

(e) ŷ = 71.4783,ŝy = s

√
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 1.286920.

There are 59−2= 57 degrees of freedom.t57,.01 ≈ 2.394.

Therefore a 98% confidence interval is 71.4783±2.394(1.286920), or (68.40, 74.56).

(f) ŷ = 71.4783,spred = s

√

1+
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 9.935200.

t57,.005≈ 2.6649. A 95% prediction interval is 71.4783±2.6649(9.935200) or (45.00, 97.95).

5. (a)x = 50, y = 47.909091, ∑n
i=1(xi −x)2 = 11000, ∑n

i=1(yi −y)2 = 9768.909091,

∑n
i=1(xi −x)(yi −y) = 10360, n = 11.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = 0.941818 and̂β0 = y− β̂1x = 0.818182.

(b) r2 =
[∑n

i=1(xi −x)(yi −y)]2

∑n
i=1(xi −x)2 ∑n

i=1(yi −y)2 = 0.998805, s=

√
(1− r2)∑n

i=1(yi −y)2

n−2
= 1.138846.

β̂0 = 0.818182, ŝβ0
= s

√
1
n

+
x2

∑n
i=1(xi −x)2 = 0.642396.

The null and alternate hypotheses areH0 : β0 = 0 versusH1 : β0 6= 0.

There are 11−2= 9 degrees of freedom.t = (0.818182−0)/0.642396= 1.274.
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Since the alternate hypothesis is of the formβ0 6= b, theP-value is the sum of the areas to the right oft = 1.274
and to the left oft = −1.274.

From thet table, 0.20< P < 0.50. A computer package givesP = 0.235.

It is plausible thatβ0 = 0.

(c) The null and alternate hypotheses areH0 : β1 = 1 versusH1 : β1 6= 1.

β̂1 = 0.941818, ŝβ1
=

s√
∑n

i=1(xi −x)2
= 0.010858.

There are 11−2= 9 degrees of freedom.t = (0.941818−1)/0.010858= −5.358.

Since the alternate hypothesis is of the formβ1 6= b, theP-value is the sum of the areas to the right oft = 5.358
and to the left oft = −5.358.

From thet table,P < 0.001. A computer package givesP = 0.00046.

We can conclude thatβ1 6= 1.

(d) Yes, since we can conclude thatβ1 6= 1, we can conclude that the machine is out of calibration.

Since two coefficients were tested, some may wish to apply theBonferroni correction, and multiply theP-value
for β1 by 2. The evidence thatβ1 6= 1 is still conclusive.

(e) x = 20, ŷ = β̂0 + β̂1(20) = 19.65455.

ŝy = s

√
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 0.47331. There are 9 degrees of freedom.t9,.025= 2.262.

Therefore a 95% confidence interval for the mean response is 19.65455±2.262(0.47331),
or (18.58, 20.73).

(f) x = 80, ŷ = β̂0 + β̂1(80) = 76.163636.

ŝy = s

√
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 0.47331. There are 9 degrees of freedom.t9,.025= 2.262.

Therefore a 95% confidence interval for the mean response is 76.163636±2.262(0.47331),
or (75.09, 77.23).

(g) No, when the true value is 20, the result of part (e) shows that a 95% confidence interval for the mean of the
measured values is (18.58, 20.73). Therefore it is plausible that the mean measurement will be 20, so that the
machine is in calibration.

7. (a)x = 92.0, y = 0.907407, ∑n
i=1(xi −x)2 = 514.0, ∑n

i=1(yi −y)2 = 4.738519,

∑n
i=1(xi −x)(yi −y) = 20.1, n = 27.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = 0.0391051 and̂β0 = y− β̂1x = −2.690258
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y = −2.690258+0.0391051x

(b) r2 =
[∑n

i=1(xi −x)(yi −y)]2

∑n
i=1(xi −x)2 ∑n

i=1(yi −y)2 = 0.165877, s=

√
(1− r2)∑n

i=1(yi −y)2

n−2
= 0.397618.

β̂0 = −2.690258, ŝβ0
= s

√
1
n

+
x2

∑n
i=1(xi −x)2 = 1.615327.

β̂1 = 0.0391051, ŝβ1
=

s√
∑n

i=1(xi −x)2
= 0.0175382.

There are 27−2= 25 degrees of freedom.t25,.025 = 2.060.

Therefore a 95% confidence interval forβ0 is −2.690258±2.060(1.615327), or (−6.0171,0.6366). A 95%
confidence interval forβ1 is 0.0391051±2.060(0.0175382), or (0.00298,0.0752).

(c) x = 93, ŷ = β̂0 + β̂1(93) = 0.94651.

(d) x = 93, ŷ = β̂0 + β̂1(93) = 0.94651.

ŝy = s

√
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 0.078506.

There are 25 degrees of freedom.t25,.025= 2.060.

Therefore a 95% confidence interval for the mean response is 0.94651±2.060(0.078506),
or (0.785, 1.108).

(e) x = 93, ŷ = β̂0 + β̂1(93) = 0.94651.

spred = s

√

1+
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 0.405294.

There are 25 degrees of freedom.t25,.025= 2.060.

Therefore a 95% prediction interval is 0.94651±2.060(0.405294), or (0.112, 1.781).

9. (a) lny = β0 + β1 lnx, whereβ0 = lnk andβ1 = r.

(b) Letui = lnxi and letvi = lnyi .

u = 1.755803,v = −0.563989,∑n
i=1(ui −u)2 = 0.376685, ∑n

i=1(vi −v)2 = 0.160487,

∑n
i=1(ui −u)(vi −v) = 0.244969, n = 5.

β̂1 =
∑n

i=1(ui −u)(vi −v)

∑n
i=1(ui −u)2 = 0.650328 and̂β0 = v− β̂1u = −1.705838.

The least-squares line is lny = −1.705838+0.650328lnx.
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Thereforêr = 0.650328 and̂k = e−1.705838= 0.18162.

(c) The null and alternate hypotheses areH0 : r = 0.5 versusH1 : r 6= 0.5.

r̂ = 0.650328,s= 0.0198005,ŝr =
s√

∑n
i=1(ui −u)2

= 0.0322616.

There are 5−2= 3 degrees of freedom.t = (0.650328−0.5)/0.0322616= 4.660.

Since the alternate hypothesis is of the formr 6= r0, theP-value is the sum of the areas to the right oft = 4.660
and to the left oft = −4.660.

From thet table, 0.01< P < 0.02. A computer package givesP = 0.019.

We can conclude thatr 6= 0.5.

11. (a)x = 41.428157,y = 33.428571,∑n
i=1(xi −x)2 = 6135.428571, ∑n

i=1(yi −y)2 = 4899.428157,

∑n
i=1(xi −x)(yi −y) = 2451.428571.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = 0.399553 and̂β0 = y− β̂1x = 16.875664.

The least-squares line isy = 16.875664+0.399553x.

(b) r2 =
[∑n

i=1(xi −x)(yi −y)]2

∑n
i=1(xi −x)2 ∑n

i=1(yi −y)2 = 0.199916, s=

√
(1− r2)∑n

i=1(yi −y)2

n−2
= 18.073814,

β̂1 = 0.399553, ŝβ1
=

s√
∑n

i=1(xi −x)2
= 0.230742.

There are 14−2= 12 degrees of freedom.t = (0.399553−0)/0.230742= 1.732

Since the alternate hypothesis is of the formβ1 6= b, theP-value is the sum of the areas to the right oft = 1.732
and to the left oft = −1.732.

From thet table, 0.10< P < 0.20. A computer package givesP = 0.1089.

We cannot conclude thatβ1 6= 0.

(c) r2 =
[∑n

i=1(xi −x)(yi −y)]2

∑n
i=1(xi −x)2 ∑n

i=1(yi −y)2 = 0.199916, s=

√
(1− r2)∑n

i=1(yi −y)2

n−2
= 18.073814,

β̂1 = 0.399553, ŝβ1
=

s√
∑n

i=1(xi −x)2
= 0.230742.

There are 14−2= 12 degrees of freedom.t = (0.399553−1)/0.230742= −2.602

Since the alternate hypothesis is of the formβ1 6= b, theP-value is the sum of the areas to the right oft = 2.602
and to the left oft = −2.602.

From thet table, 0.02< P < 0.05. A computer package givesP = 0.0231.

We can conclude thatβ1 6= 1.
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(d) The data do not provide sufficient evidence to conclude that the linear model is useful for predicting chlorine
concentration from pressure, because we cannot conclude thatβ1 6= 0.

13. (a)x = 225,y = 86.48333,∑n
i=1(xi −x)2 = 37500, ∑n

i=1(yi −y)2 = 513.116667,

∑n
i=1(xi −x)(yi −y) = 4370, n = 12.

β̂1 =
∑n

i=1(xi −x)(yi −y)

∑n
i=1(xi −x)2 = 0.116533 and̂β0 = y− β̂1x = 60.263333.

The estimate ofσ2 is s2 =
(1− r2)∑n

i=1(yi −y)2

n−2
.

r2 =
[∑n

i=1(xi −x)(yi −y)]2

∑n
i=1(xi −x)2 ∑n

i=1(yi −y)2 = 0.992466, s2 = 0.386600.

(b) The null and alternate hypotheses areH0 : β0 = 0 versusH1 : β0 6= 0.

s=
√

s2 = 0.621772. β̂0 = 60.263333, ŝβ0
= s

√
1
n

+
x2

∑n
i=1(xi −x)2 = 0.744397.

There are 12−2= 10 degrees of freedom.t = (60.263333−0)/0.744397= 80.956.

Since the alternate hypothesis is of the formβ0 6= b, theP-value is the sum of the areas to the right oft = 80.956
and to the left oft = −80.956.

From thet table,P < 0.001. A computer package givesP = 2.0×10−15.

We can conclude thatβ0 6= 0.

(c) The null and alternate hypotheses areH0 : β1 = 0 versusH1 : β1 6= 0.

s=
√

s2 = 0.621772. β̂1 = 0.116533, ŝβ1
=

s√
∑n

i=1(xi −x)2
= 0.0032108.

There are 12−2= 10 degrees of freedom.t = (0.116533−0)/0.0032108= 36.294.

Since the alternate hypothesis is of the formβ1 6= b, theP-value is the sum of the areas to the right oft = 36.294
and to the left oft = −36.294.

From thet table,P < 0.001. A computer package givesP = 6.0×10−12.

We can conclude thatβ1 6= 0.
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(d)

80 85 90 95

−1

−0.5

0

0.5

1

Fitted Value

R
e

s
id

u
a

l

The linear model appears to be appropriate.

(e) β̂1 = 0.116533, ŝβ1
= 0.0032108.

There aren−2 = 10 degrees of freedom.t10,.025= 2.228.

Therefore a 95% confidence interval for the slope is 0.116533±2.228(0.0032108), or (0.10938, 0.12369).

(f) x = 225, ŷ = β̂0 + β̂1(225) = 86.483333.

ŝy = s

√
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 0.179490.

There are 10 degrees of freedom.t10,.025= 2.228.

Therefore a 95% confidence interval for the mean response is 86.483333±2.228(0.179490),
or (86.083, 86.883).

(g) x = 225, ŷ = β̂0 + β̂1(225) = 86.483333.

spred = s

√

1+
1
n

+
(x−x)2

∑n
i=1(xi −x)2 = 0.647160.

There are 10 degrees of freedom.t10,.025= 2.228.

Therefore a 95% prediction interval is 86.483333±2.228(0.647160), or (85.041, 87.925).

15. (ii). The standard deviationŝy is not given in the output. To computeŝy, the quantity∑n
i=1(xi − x)2 must be

known.

17. (a) If f = 1/2 then 1/ f = 2. The estimate iŝt = 145.736−0.05180(2)= 145.63.

(b) Yes.r = −√
R-Sq= −0.988. Note thatr is negative because the slope of the least-squares line is negative.
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(c) If f = 1 then 1/ f = 1. The estimate iŝt = 145.736−0.05180(1)= 145.68.

19. (a) We need to minimize the sum of squaresS= ∑(yi − β̂xi)
2.

We take the derivative with respect toβ̂ and set it equal to 0, obtaining−2∑xi(yi − β̂xi) = 0.

Then∑xiyi − β̂∑x2
i = 0, soβ̂ = ∑xiyi/∑x2

i .

(b) Letci = xi/∑x2
i . Thenβ̂ = ∑ciyi , soσ2

β̂
= ∑c2

i σ2 = σ2 ∑x2
i /(∑x2

i )
2 = σ2/∑x2

i .

21. From the answer to Exercise 20, we know that∑n
i=1(xi −x) = 0, ∑n

i=1x(xi −x) = 0, and
∑n

i=1xi(xi −x) = ∑n
i=1(xi −x)2. Now

µβ̂0
=

n

∑
i=1

[
1
n
− x(xi −x)

∑n
i=1(xi −x)2

]
µyi

=
n

∑
i=1

[
1
n
− x(xi −x)

∑n
i=1(xi −x)2

]
(β0 + β1xi)

= β0

n

∑
i=1

1
n

+ β1

n

∑
i=1

xi

n
−β0

∑n
i=1x(xi −x)

∑n
i=1(xi −x)2 −β1

∑n
i=1xix(xi −x)

∑n
i=1(xi −x)2

= β0 + β1x−0−β1x
∑n

i=1xi(xi −x)

∑n
i=1(xi −x)2

= β0 + β1x−0−β1x

= β0

23.

σ2
β̂0

=
n

∑
i=1

[
1
n
− x(xi −x)

∑n
i=1(xi −x)2

]2

σ2

=
n

∑
i=1

[
1
n2 −

2x
n

(xi −x)

∑n
i=1(xi −x)2 +x2 ∑n

i=1(xi −x)2

[∑n
i=1(xi −x)2]2

]
σ2

=

[
n

∑
i=1

1
n2 −2

x
n

∑n
i=1(xi −x)

∑n
i=1(xi −x)2 +x2 ∑n

i=1(xi −x)2

[∑n
i=1(xi −x)2]2

]
σ2

=

[
1
n
−2

x
n
(0)+

x2

∑n
i=1(xi −x)2

]
σ2

=

[
1
n

+
x2

∑n
i=1(xi −x)2

]
σ2
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Chapter 8

Section 8.1

1. (a) The predicted strength is 26.641+3.3201(8.2)−0.4249(10)= 49.62 kg/mm2.

(b) By 3.3201(10) = 33.201 kg/mm2.

(c) By 0.4249(5) = 2.1245 kg/mm2.

3.
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The linear model is reasonable. There is no
obvious pattern to the plot.

5. (a) ŷ= 56.145−9.046(3)−33.421(1.5)+0.243(20)−0.5963(3)(1.5)−0.0394(3)(20)+0.6022(1.5)(20)+0.6901(32)+
11.7244(1.52)−0.0097(202) = 25.465.

(b) No, the predicted change depends on the values of the other independent variables, because of the interaction
terms.

(c) R2 = SSR/SST= (SST−SSE)/SST= (6777.5−209.55)/6777.5= 0.9691.

(d) There are 9 degrees of freedom for regression and 27−9−1= 17 degrees of freedom for error.

F9,17 =
SSR/9
SSE/17

=
(SST−SSE)/9

SSE/17
= 59.204.

From theF table,P < 0.001. A computer package givesP = 4.6×10−11.

The null hypothesis can be rejected.
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7. (a) ŷ = −0.21947+0.779(2.113)−0.10827(0)+1.3536(1.4)−0.0013431(730)= 2.3411 liters

(b) By 1.3536(0.05) = 0.06768 liters

(c) Nothing is wrong. In theory, the constant estimates FEV1 for an individual whose values for the other variables
are all equal to zero. Since these values are outside the range of the data (e.g., no one has zero height), the
constant need not represent a realistic value for an actual person.

9. (a) ŷ = −1.7914+0.00026626(1500)+9.8184(1.04)−0.29982(17.5)= 3.572.

(b) By 9.8184(0.01) = 0.098184.

(c) Nothing is wrong. The constant estimates the pH for a pulpwhose values for the other variables are all equal
to zero. Since these values are outside the range of the data (e.g., no pulp has zero density), the constant need
not represent a realistic value for an actual pulp.

(d) From the output, the confidence interval is (3.4207, 4.0496).

(e) From the output, the prediction interval is (2.2333, 3.9416).

(f) Pulp B. The standard deviation of its predicted pH (SE Fit) is smaller than that of Pulp A (0.1351 vs. 0.2510).

11. (a)t = −0.58762/0.2873= −2.05.

(b) ŝβ1
satisfies the equation 4.30= 1.5102/ŝβ1

, soŝβ1
= 0.3512.

(c) β̂2 satisfies the equation−0.62= β̂2/0.3944, sôβ2 = −0.2445.

(d) t = 1.8233/0.3867= 4.72.

(e) MSR= 41.76/3= 13.92.

(f) F = MSR/MSE= 13.92/0.76= 18.316.

(g) SSE= 46.30−41.76= 4.54.

(h) 3+6= 9.



SECTION 8.1 193

13. (a)ŷ = 267.53−1.5926(30)−1.3897(35)−1.0934(30)−0.002658(30)(30)= 135.92◦F

(b) No. The change in the predicted flash point due to a change in acetic acid concentration depends on the butyric
acid concentration as well, because of the interaction between these two variables.

(c) Yes. The predicted flash point will change by−1.3897(10) = −13.897◦F.

15. (a) The residuals are the valuesei = yi − ŷi for eachi. They are shown in the following table.

Fitted Value Residual
x y ŷ e= y− ŷ

150 10.4 10.17143 0.22857
175 12.4 12.97429 −0.57429
200 14.9 14.54858 0.35142
225 15 14.89429 0.10571
250 13.9 14.01143 −0.11144
275 11.9 11.90001 −0.00001

(b) SSE= ∑6
i=1e2

i = 0.52914, SST= ∑n
i=1(yi −y)2 = 16.70833.

(c) s2 = SSE/(n−3) = 0.17638

(d) R2 = 1−SSE/SST= 0.96833

(e) F =
SSR/2
SSE/3

=
(SST−SSE)/2

SSE/3
= 45.864. There are 2 and 3 degrees of freedom.

(f) Yes. From theF table, 0.001< P < 0.01. A computer package givesP = 0.0056. SinceP ≤ 0.05, the
hypothesisH0 : β1 = β2 = 0 can be rejected at the 5% level.

17. (a)ŷ = 1.18957+0.17326(0.5)+0.17918(5.7)+0.17591(3.0)−0.18393(4.1)= 2.0711.

(b) 0.17918

(c) PP is more useful, because itsP-value is small, while theP-value of CP is fairly large.

(d) The percent change in GDP would be expected to be larger inSweden, because the coefficient of PP is negative.
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19. (a) Predictor Coef StDev T P
Constant −0.012167 0.01034 −1.1766 0.278
Time 0.043258 0.043186 1.0017 0.350
Time2 2.9205 0.038261 76.33 0.000

y = −0.012167+0.043258t+2.9205t2

(b) β̂2 = 2.9205, ŝβ2
= 0.038261. There aren−3= 7 degrees of freedom.

t7,.025 = 2.365. A 95% confidence interval is therefore 2.9205±2.365(0.038261), or (2.830, 3.011).

(c) Sincea = 2β2, the confidence limits for a 95% confidence interval fora are twice the limits of the confidence
interval forβ2. Therefore a 95% confidence interval fora is (5.660, 6.022).

(d) β̂0: t7 = −1.1766,P = 0.278,β̂1: t7 = 1.0017,P = 0.350,β̂2: t7 = 76.33,P = 0.000.

(e) No, theP-value of 0.278 is not small enough to reject the null hypothesis thatβ0 = 0.

(f) No, theP-value of 0.350 is not small enough to reject the null hypothesis thatβ1 = 0.

Section 8.2

1. (a) Predictor Coef StDev T P
Constant 6.3347 2.1740 2.9138 0.009
x1 1.2915 0.1392 9.2776 0.000

β0 differs from 0 (P = 0.009),β1 differs from 0 (P = 0.000).

(b) Predictor Coef StDev T P
Constant 53.964 8.7737 6.1506 0.000
x2 −0.9192 0.2821 −3.2580 0.004

β0 differs from 0 (P = 0.000),β1 differs from 0 (P = 0.004).

(c) Predictor Coef StDev T P
Constant 12.844 7.5139 1.7094 0.104
x1 1.2029 0.1707 7.0479 0.000
x2 −0.1682 0.1858 −0.90537 0.377

β0 may not differ from 0 (P = 0.104),β1 differs from 0 (P= 0.000),β2 may not differ from 0 (P = 0.377).
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(d) The model in part (a) is the best. When bothx1 andx2 are in the model, only the coefficient ofx1 is significantly
different from 0. In addition, the value ofR2 is only slightly greater (0.819 vs. 0.811) for the model containing
bothx1 andx2 than for the model containingx1 alone.

3. (a) Plot (i) came from Engineer B, and plot (ii) came from Engineer A. We know this because the variablesx1 and
x2 are both significantly different from 0 for Engineer A but notfor Engineer B. Therefore Engineer B is the
one who designed the experiment to have the dependent variables nearly collinear.

(b) Engineer A’s experiment produced the more reliable results. In Engineer B’s experiment, the two dependent
variables are nearly collinear.

5. (a) ForR1 < 4, the least squares line isR2 = 1.233+0.264R1. ForR1 ≥ 4, the least squares line isR2 = −0.190+
0.710R1.

(b) The relationship is clearly non-linear whenR1 < 4.

Quadratic Model
Predictor Coef StDev T P
Constant 1.2840 0.26454 4.8536 0.000
R1 0.21661 0.23558 0.91947 0.368
R2

1 0.0090189 0.044984 0.20049 0.843

Cubic Model
Predictor Coef StDev T P
Constant −1.8396 0.56292 −3.2680 0.004
R1 4.4987 0.75218 5.9809 0.000
R2

1 −1.7709 0.30789 −5.7518 0.000
R3

1 0.22904 0.039454 5.8053 0.000

Quartic Model
Predictor Coef StDev T P
Constant −2.6714 2.0117 −1.3279 0.200
R1 6.0208 3.6106 1.6675 0.112
R2

1 −2.7520 2.2957 −1.1988 0.245
R3

1 0.49423 0.61599 0.80234 0.432
R4

1 −0.02558 0.05930 −0.43143 0.671
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(c)
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Quartic Model

(d)
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The correlation coefficient betweenR3
1 andR4

1
is 0.997.

(e) R3
1 andR4

1 are nearly collinear.

(f) The cubic model is best. The quadratic is inappropriate because the residual plot exhibits a pattern. The residual
plots for both the cubic and quartic models look good, however, there is no reason to includeR4

1 in the model
since it merely confounds the effect ofR3

1.

Section 8.3

1. (a) False. There are usually several models that are aboutequally good.

(b) True.

(c) False. Model selection methods can suggest models that fit the data well.

(d) True.
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3. (v). x2
2, x1x2, andx1x3 all have largeP-values and thus may not contribute significantly to the fit.

5. (iv). Carbon and Silicon both have largeP-values and thus may not contribute significantly to the fit.

7. The four-variable model with the highest value ofR2 has a lowerR2 than the three-variable model with the
highest value ofR2. This is impossible.

9. (a) SSEfull = 7.7302, SSEreduced= 7.7716, n = 165, p = 7, k = 4.

F =
(SSEreduced−SSEfull)/(p−k)

SSEfull/(n− p−1)
= 0.2803.

(b) 3 degrees of freedom in the numerator and 157 in the denominator.

(c) P > 0.10 (a computer package givesP = 0.840). The reduced model is plausible.

(d) This is not correct. It is possible for a group of variables to be fairly strongly related to an independent variable,
even though none of the variables individually is strongly related.

(e) No mistake. Ify is the dependent variable, then the total sum of squares is∑(yi −y)2. This quantity does not
involve the independent variables.

11. SSEfull = 9.37, SSEreduced= 27.49, n = 24, p = 6, k = 3. The value of theF statistic for testing the
plausibility of the reduced model is

F =
(SSEreduced−SSEfull)/(p−k)

SSEfull/(n− p−1)
= 10.958.

There arep−k = 3 andn− p−1= 17 degrees of freedom.

From theF table,P < 0.001. A computer package givesP = 0.000304.

The reduced model is not plausible.

13. (a) Predictor Coef StDev T P
Constant 37.989 53.502 0.71004 0.487
x 1.0774 0.041608 25.894 0.000
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(b) Predictor Coef StDev T P
Constant −253.45 132.93 −1.9067 0.074
x 1.592 0.22215 7.1665 0.000
x2 −0.00020052 0.000085328 −2.3499 0.031

(c)
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Linear Model
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Quadratic Model

(e) The quadratic model seems more appropriate. TheP-value for the quadratic term is fairly small (0.031), and
the residual plot for the quadratic model exhibits less pattern. (There are a couple of points somewhat detached
from the rest of the plot, however.)

(f) 1683.5

(g) (1634.7, 1732.2)

15. (a) Predictor Coef StDev T P
Constant 25.613 10.424 2.4572 0.044
x1 0.18387 0.12353 1.4885 0.180
x2 −0.015878 0.0040542 −3.9164 0.006
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(b) Predictor Coef StDev T P
Constant 14.444 16.754 0.86215 0.414
x1 0.17334 0.20637 0.83993 0.425

(c) Predictor Coef StDev T P
Constant 40.370 3.4545 11.686 0.000
x2 −0.015747 0.0043503 −3.6197 0.007

(d) The model containingx2 as the only independent variable is best. There is no evidence that the coefficient of
x1 differs from 0.

17. The modely = β0 + β1x2 + ε is a good one. One way to see this is to compare the fit of this model to the full
quadratic model. The ANOVA table for the full model is

Source DF SS MS F P
Regression 5 4.1007 0.82013 1.881 0.193
Residual Error 9 3.9241 0.43601
Total 14 8.0248

The ANOVA table for the modely = β0 + β1x2 + ε is

Source DF SS MS F P
Regression 1 2.7636 2.7636 6.8285 0.021
Residual Error 13 5.2612 0.40471
Total 14 8.0248

From these two tables, theF statistic for testing the plausibility of the reduced modelis

(5.2612−3.9241)/(5−1)

3.9241/9
= 0.7667.

The null distribution isF4,9, soP > 0.10 (a computer package givesP = 0.573). The largeP-value indicates
that the reduced model is plausible.

Supplementary Exercises for Chapter 8

1. (a) ŷ = 46.802−130.11(0.15)−807.10(0.01)+3580.5(0.15)(0.01)= 24.6%.

(b) By 130.11(0.05)−3580.5(0.006)(0.05)= 5.43%.

(c) No, we need to know the oxygen content, because of the interaction term.
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3. (a) β̂0 satisfies the equation 0.59= β̂0/0.3501, sôβ0 = 0.207.

(b) ŝβ1
satisfies the equation 2.31= 1.8515/ŝβ1

, soŝβ1
= 0.8015.

(c) t = 2.7241/0.7124= 3.82.

(d) s=
√

MSE=
√

1.44= 1.200.

(e) There are 2 independent variables in the model, so there are 2 degrees of freedom for regression.

(f) SSR= SST−SSE= 104.09−17.28= 86.81.

(g) MSR= 86.81/2= 43.405.

(h) F = MSR/MSE= 43.405/1.44= 30.14.

(i) 2+12= 14.

5. (a) Predictor Coef StDev T P
Constant 10.84 0.2749 39.432 0.000
Speed −0.073851 0.023379 −3.1589 0.004
Pause −0.12743 0.013934 −9.1456 0.000
Speed2 0.0011098 0.00048887 2.2702 0.032
Pause2 0.0016736 0.00024304 6.8861 0.000
Speed·Pause −0.00024272 0.00027719 −0.87563 0.390

S = 0.33205 R-sq = 92.2% R-sq(adj) = 90.6%

Analysis of Variance
Source DF SS MS F P
Regression 5 31.304 6.2608 56.783 0.000
Residual Error 24 2.6462 0.11026
Total 29 33.95

(b) We drop the interaction term Speed·Pause.

Predictor Coef StDev T P
Constant 10.967 0.23213 47.246 0.000
Speed −0.079919 0.022223 −3.5961 0.001
Pause −0.13253 0.01260 −10.518 0.000
Speed2 0.0011098 0.00048658 2.2809 0.031
Pause2 0.0016736 0.0002419 6.9185 0.000

S = 0.33050 R-sq = 92.0% R-sq(adj) = 90.7%
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Analysis of Variance
Source DF SS MS F P
Regression 4 31.22 7.8049 71.454 0.000
Residual Error 25 2.7307 0.10923
Total 29 33.95

Comparing this model with the one in part (a),F1,24 =
(2.7307−2.6462)/(5−4)

2.6462/24
= 0.77,P > 0.10. A com-

puter package givesP = 0.390 (the same as theP-value for the dropped variable).

(c)
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There is a some suggestion of heteroscedas-
ticity, but it is hard to be sure without more
data.

(d)

Predictor Coef StDev T P
Constant 9.9601 0.21842 45.601 0.000
Pause -0.13253 0.020545 -6.4507 0.000
Pause2 0.0016736 0.00039442 4.2431 0.000

S = 0.53888 R-sq = 76.9% R-sq(adj) = 75.2%

Analysis of Variance
Source DF SS MS F P
Regression 2 26.11 13.055 44.957 0.000
Residual Error 27 7.8405 0.29039
Total 29 33.95

Comparing this model with the one in part (a),F3,24 =
(7.8405−2.6462)/(5−2)

2.6462/24
= 15.70, P < 0.001. A

computer package givesP = 7.3×10−6.
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(e)

S
p
e
e
d

S P *
S P p a P
p a e u a
e u e s u
e s d e s

Vars R-Sq R-Sq(adj) C-p S d e 2 2 e
1 61.5 60.1 92.5 0.68318 X
1 60.0 58.6 97.0 0.69600 X
2 76.9 75.2 47.1 0.53888 X X
2 74.9 73.0 53.3 0.56198 X X
3 90.3 89.2 7.9 0.35621 X X X
3 87.8 86.4 15.5 0.39903 X X X
4 92.0 90.7 4.8 0.33050 X X X X
4 90.5 89.0 9.2 0.35858 X X X X
5 92.2 90.6 6.0 0.33205 X X X X X

(f) The model containing the dependent variables Speed, Pause, Speed2 and Pause2 has both the lowest value of
Cp and the largest value of adjustedR2.

7.
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The residual plot shows an obvious curved
pattern, so the linear model is not appropri-
ate.
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There is no obvious pattern to the residual
plot, so the quadratic model appears to fit
well.
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There is no obvious pattern to the residual
plot, so the cubic model appears to fit well.

9. (a) Under model 1, the prediction is−320.59+0.37820(1500)−0.16047(400)= 182.52.

Under model 2, the prediction is−380.1+0.41641(1500)−0.5198(150)= 166.55.

Under model 3, the prediction is−301.8+0.3660(1500)−0.2106(400)+0.164(150)= 187.56.

(b) Under model 1, the prediction is−320.59+0.37820(1600)−0.16047(300)= 236.39.

Under model 2, the prediction is−380.1+0.41641(1600)−0.5198(100)= 234.18.

Under model 3, the prediction is−301.8+0.3660(1600)−0.2106(300)+0.164(100)= 237.02.

(c) Under model 1, the prediction is−320.59+0.37820(1400)−0.16047(200)= 176.80.

Under model 2, the prediction is−380.1+0.41641(1400)−0.5198(75)= 163.89.

Under model 3, the prediction is−301.8+0.3660(1400)−0.2106(200)+0.164(75)= 180.78.

(d) (iv). The output does not provide much to choose from between the two-variable models. In the three-variable
model, none of the coefficients are significantly different from 0, even though they were significant in the
two-variable models. This suggest collinearity.

11. (a) Linear Model
Predictor Coef StDev T P
Constant 40.751 5.4533 7.4728 0.000
Hardwood 0.54013 0.61141 0.88341 0.389

S = 12.308 R-sq = 4.2% R-sq(adj) =−1.2%

Analysis of Variance
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Source DF SS MS F P
Regression 1 118.21 118.21 0.78041 0.38866
Residual Error 18 2726.5 151.47
Total 19 2844.8

Quadratic Model
Predictor Coef StDev T P
Constant 12.683 3.9388 3.2199 0.005
Hardwood 10.067 1.1028 9.1287 0.000
Hardwood2 −0.56928 0.063974 −8.8986 0.000

S = 5.3242 R-sq = 83.1% R-sq(adj) = 81.1%

Analysis of Variance
Source DF SS MS F P
Regression 2 2362.9 1181.4 41.678 0.000
Residual Error 17 481.90 28.347
Total 19 2844.8

Cubic Model
Predictor Coef StDev T P
Constant 27.937 2.9175 9.5755 0.000
Hardwood 0.48749 1.453 0.3355 0.742
Hardwood2 0.85104 0.20165 4.2204 0.001
Hardwood3 −0.057254 0.0080239 −7.1354 0.000

S = 2.6836 R-sq = 95.9% R-sq(adj) = 95.2%

Analysis of Variance
Source DF SS MS F P
Regression 3 2729.5 909.84 126.34 0.000
Residual Error 16 115.23 7.2018
Total 19 2844.8

Quartic Model
Predictor Coef StDev T P
Constant 30.368 4.6469 6.5351 0.000
Hardwood −1.7962 3.6697 −0.48946 0.632
Hardwood2 1.4211 0.8632 1.6463 0.120
Hardwood3 −0.10878 0.076229 −1.4271 0.174
Hardwood4 0.0015256 0.0022438 0.67989 0.507

S = 2.7299 R-sq = 96.1% R-sq(adj) = 95.0%

Analysis of Variance
Source DF SS MS F P
Regression 4 2733 683.24 91.683 0.00
Residual Error 15 111.78 7.4522
Total 19 2844.8

The values of SSE and their degrees of freedom for models of degrees 1, 2, 3, and 4 are:
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Linear 18 2726.55
Quadratic 17 481.90
Cubic 16 115.23
Quartic 15 111.78

To compare quadratic vs. linear,F1,17 =
(2726.55−481.90)/(18−17)

481.90/17
= 79.185.

P≈ 0. A computer package givesP = 8.3×10−8.

To compare cubic vs. quadratic,F1,16 =
(481.90−115.23)/(17−16)

115.23/16
= 50.913.

P≈ 0. A computer package givesP = 2.4×10−6.

To compare quartic vs. cubic,F1,15 =
(115.23−111.78)/(16−15)

111.78/15
= 0.463.

P > 0.10. A computer package givesP = 0.507.

The cubic model is selected by this procedure.

(b) The cubic model isy = 27.937+ 0.48749x+ 0.85104x2− 0.057254x3. The estimatey is maximized when
dy/dx = 0. dy/dx = 0.48749+ 1.70208x− 0.171762x2. Thereforex = 10.188 (x = −0.2786 is a spurious
root).

13. (a) Lety1 represent the lifetime of the sponsor’s paint,y2 represent the lifetime of the competitor’s paint,x1 repre-
sent January temperature,x2 represent July temperature, andx3 represent Precipitation.

Then one good model fory1 is y1 = −4.2342+ 0.79037x1 + 0.20554x2− 0.082363x3− 0.0079983x1x2 −
0.0018349x2

1.

A good model fory2 is y2 = 6.8544+0.58898x1+0.054759x2−0.15058x3−0.0046519x1x2+0.0019029x1x3−
0.0035069x2

1.

(b) Substitutex1 = 26.1, x2 = 68.9, andx3 = 13.3 to obtainŷ1 = 13.83 andŷ2 = 13.90.

15. (a) Linear Model
Predictor Coef StDev T P
Constant 0.25317 0.0065217 38.819 0.000
x −0.041561 0.040281 −1.0318 0.320

(b) Quadratic Model
Predictor Coef StDev T P
Constant 0.21995 0.0038434 57.23 0.000
x 0.58931 0.06146 9.5886 0.000
x2 −2.2679 0.2155 −10.524 0.000
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(c) Cubic Model
Predictor Coef StDev T P
Constant 0.22514 0.0068959 32.648 0.000
x 0.41105 0.20576 1.9977 0.069
x2 −0.74651 1.6887 −0.44206 0.666
x3 −3.6728 4.043 −0.90843 0.382

(d) Quartic Model
Predictor Coef StDev T P
Constant 0.23152 0.013498 17.152 0.000
x 0.10911 0.58342 0.18702 0.855
x2 3.4544 7.7602 0.44515 0.665
x3 −26.022 40.45 −0.64333 0.533
x4 40.157 72.293 0.55548 0.590

(e) The quadratic model. The coefficient ofx3 in the cubic model is not significantly different from 0. Neither is
the coefficient ofx4 in the quartic model.

(f) ŷ = 0.21995+0.58931(0.12)−2.2679(0.122) = 0.258

17. (a) Predictor Coef StDev T P
Constant −0.093765 0.092621 −1.0123 0.335
x1 0.63318 2.2088 0.28666 0.780
x2 2.5095 0.30151 8.3233 0.000
x2

1 5.318 8.2231 0.64672 0.532
x2

2 −0.3214 0.17396 −1.8475 0.094
x1x2 0.15209 1.5778 0.09639 0.925

Analysis of Variance
Source DF SS MS F P
Regression 5 20.349 4.0698 894.19 0.000
Residual Error 10 0.045513 0.0045513
Total 15 20.394

(b) The model containing the variablesx1, x2, andx2
2 is a good one. Here are the coefficients along with their

standard deviations, followed by the analysis of variance table.

Predictor Coef StDev T P
Constant −0.088618 0.068181 −1.2997 0.218
x1 2.1282 0.30057 7.0805 0.000
x2 2.4079 0.13985 17.218 0.000
x2

2 −0.27994 0.059211 −4.7279 0.000

Analysis of Variance
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Source DF SS MS F P
Regression 3 20.346 6.782 1683.9 0.000
Residual Error 12 0.048329 0.0040275
Total 15 20.394

TheF statistic for comparing this model to the full quadratic model is

F2,10 =
(0.048329−0.045513)/(12−10)

0.045513/10
= 0.309,P > 0.10,

so it is reasonable to dropx2
1 andx1x2 from the full quadratic model. All the remaining coefficients are signifi-

cantly different from 0, so it would not be reasonable to reduce the model further.

(c) The output from the MINITAB best subsets procedure is

Response is y

x x x
1 2 1

Mallows x x ˆ ˆ x
Vars R-Sq R-Sq(adj) C-p S 1 2 2 2 2

1 98.4 98.2 61.6 0.15470 X
1 91.8 91.2 354.1 0.34497 X
2 99.3 99.2 20.4 0.10316 X X
2 99.2 99.1 25.7 0.11182 X X
3 99.8 99.7 2.2 0.062169 X X X
3 99.8 99.7 2.6 0.063462 X X X
4 99.8 99.7 4.0 0.064354 X X X X
4 99.8 99.7 4.1 0.064588 X X X X
5 99.8 99.7 6.0 0.067463 X X X X X

The model with the best adjustedR2 (0.99716) contains the variablesx2, x2
1, andx2

2. This model is also the
model with the smallest value of Mallows’ Cp (2.2). This is not the best model, since it containsx2

1 but notx1.
The model containingx1, x2, andx2

2, suggested in the answer to part (b), is better. Note that theadjustedR2 for
the model in part (b) is 0.99704, which differs negligibly from that of the model with the largest adjustedR2

value.

19. (a) Predictor Coef StDev T P
Constant 1.1623 0.17042 6.8201 0.006
t 0.059718 0.0088901 6.7174 0.007
t2 −0.00027482 0.000069662 −3.9450 0.029

(b) Letx be the time at which the reaction rate will be equal to 0.05. Then 0.059718−2(0.00027482)x= 0.05, so
x = 17.68 minutes.

(c) β̂1 = 0.059718, ŝβ1
= 0.0088901.

There are 6 observations and 2 dependent variables, so thereare 6−2−1= 3 degrees of freedom for error.
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t3,.025 = 3.182.

A 95% confidence interval is 0.059718±3.182(0.0088901), or (0.0314, 0.0880).

(d) The reaction rate is decreasing with time ifβ2 < 0. We therefore testH0 : β2 ≥ 0 versusH1 : β2 < 0.

From the output, the test statistic for testingH0 : β2 = 0 versusH1 : β2 6= 0 is ist = −3.945.

The output givesP = 0.029, but this is the value for a two-tailed test.

For the one-tailed test,P = 0.029/2= 0.0145.

It is reasonable to conclude that the reaction rate decreases with time.

21. y = β0 + β1x1 + β2x2 + β3x1x2 + ε.

23. (a) The 17-variable model containing the independent variablesx1, x2, x3, x6, x7, x8, x9, x11, x13, x14, x16, x18, x19,
x20, x21, x22, andx23 has adjustedR2 equal to 0.98446. The fitted model is

y = −1569.8−24.909x1+196.95x2+8.8669x3−2.2359x6

−0.077581x7+0.057329x8−1.3057x9−12.227x11+44.143x13

+4.1883x14+0.97071x16+74.775x18+21.656x19−18.253x20

+82.591x21−37.553x22+329.8x23

(b) The 8-variable model containing the independent variablesx1, x2, x5, x8, x10, x11, x14, andx21 has Mallows’ Cp

equal to 1.7. The fitted model is

y = −665.98−24.782x1+76.499x2+121.96x5+0.024247x8+20.4x10−7.1313x11+2.4466x14+47.85x21

(c) Using a value of 0.15 for bothα-to-enter andα-to-remove, the equation chosen by stepwise regression is
y = −927.72+142.40x5+0.081701x7+21.698x10+0.41270x16+45.672x21.

(d) The 13-variable model below has adjustedR2 equal to 0.95402. (There are also two 12-variable models whose
adjustedR2 is only very slightly lower.)

z = 8663.2−313.31x3−14.46x6+0.358x7−0.078746x8

+13.998x9+230.24x10−188.16x13+5.4133x14+1928.2x15

−8.2533x16+294.94x19+129.79x22−3020.7x23
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(e) The 2-variable modelz= −1660.9+0.67152x7+134.28x10 has Mallows’ Cp equal to−4.0.

(f) Using a value of 0.15 for bothα-to-enter andα-to-remove, the equation chosen by stepwise regression is
z= −1660.9+0.67152x7+134.28x10

(g) The 17-variable model below has adjustedR2 equal to 0.97783.

w = 700.56−21.701x2−20.000x3+21.813x4+62.599x5+0.016156x7−0.012689x8

+1.1315x9+15.245x10+1.1103x11−20.523x13−90.189x15−0.77442x16+7.5559x19

+5.9163x20−7.5497x21+12.994x22−271.32x23

(h) The 13-variable model below has Mallows’ Cp equal to 8.0.

w = 567.06−23.582x2−16.766x3+90.482x5+0.0082274x7−0.011004x8+0.89554x9

+12.131x10−11.984x13−0.67302x16+11.097x19+4.6448x20+11.108x22−217.82x23

(i) Using a value of 0.15 for bothα-to-enter andα-to-remove, the equation chosen by stepwise regression is
w = 130.92−28.085x2+113.49x5+0.16802x9−0.20216x16+11.417x19+12.068x21−78.371x23.
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Chapter 9

Section 9.1

1. (a) Source DF SS MS F P
Temperature 3 202.44 67.481 59.731 0.000
Error 16 18.076 1.1297
Total 19 220.52

(b) Yes.F3,16 = 59.731,P < 0.001 (P≈ 0).

3. (a) Source DF SS MS F P
Treatment 4 19.009 4.7522 2.3604 0.117
Error 11 22.147 2.0133
Total 15 41.155

(b) No. F4,11 = 2.3604,P > 0.10 (P = 0.117).

5. (a) Source DF SS MS F P
Age 5 3.8081 0.76161 7.9115 0.000
Error 73 7.0274 0.096266
Total 78 10.835

(b) Yes,F5,73 = 7.9115,P < 0.01 (P = 5.35×10−6).

7. (a) Source DF SS MS F P
Group 3 0.19218 0.064062 1.8795 0.142
Error 62 2.1133 0.034085
Total 65 2.3055

(b) No. F3,62 = 1.8795,P > 0.10 (P = 0.142).

9. (a) Source DF SS MS F P
Temperature 2 148.56 74.281 10.53 0.011
Error 6 42.327 7.0544
Total 8 190.89

(b) Yes.F2,6 = 10.53, 0.01< P < 0.05 (P = 0.011).
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11. No,F3,16 = 15.83,P < 0.001 (P≈ 4.8×10−5).

13. (a) Source DF SS MS F P
Temperature 3 58.650 19.550 8.4914 0.001
Error 16 36.837 2.3023
Total 19 95.487

(b) Yes,F3,16 = 8.4914, 0.001< P < 0.01 (P= 0.0013).

15. (a) From Exercise 13, MSE= 2.3023, sos=
√

2.3023= 1.517.

(b) The MINITAB output for the power calculation is

Power and Sample Size

One-way ANOVA

Alpha = 0.05 Assumed standard deviation = 1.517 Number of Lev els = 4

SS Sample Target Maximum
Means Size Power Actual Power Difference

2 18 0.9 0.912468 2

The sample size is for each level.

(c) The MINITAB output for the power calculation is

Power and Sample Size

One-way ANOVA

Alpha = 0.05 Assumed standard deviation = 2.2755 Number of Le vels = 4

SS Sample Target Maximum
Means Size Power Actual Power Difference

2 38 0.9 0.902703 2

The sample size is for each level.
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17. (a) Source DF SS MS F P
Machine 4 6862 1715.5 7.8825 0.000
Error 30 6529.1 217.64
Total 34 13391

(b) (b) Yes,F4,30 = 7.8825,P≈ 0 (P = 0.00018171).

19. (a) Source DF SS MS F P
Soil 2 2.1615 1.0808 5.6099 0.0104
Error 23 4.4309 0.19265
Total 25 6.5924

(b) Yes.F2,23 = 5.6099, 0.01< P < 0.05 (P = 0.0104).

Section 9.2

1. (a) Yes,F5,6 = 46.64,P≈ 0.

(b) q6,6,.05 = 5.63. The value of MSE is 0.00508. The 5% critical value is therefore 5.63
√

0.00508/2= 0.284. Any
pair that differs by more than 0.284 can be concluded to be different. The following pairs meet this criterion:
A and B, A and C, A and D, A and E, B and C, B and D, B and E, B and F, D and F.

(c) t6,.025/15 = 4.698 (the value obtained by interpolating is 4.958). The value of MSE is 0.00508. The 5% critical

value is therefore 4.698
√

2(0.00508)/2= 0.335. Any pair that differs by more than 0.335 may be concluded
to be different. The following pairs meet this criterion: A and B, A and C, A and D, A and E, B and C, B and
D, B and E, B and F, D and F.

(d) The Tukey-Kramer method is more powerful, since its critical value is smaller (0.284 vs. 0.335).

(e) Either the Bonferroni or the Tukey-Kramer method can be used.

3. (a) MSE= 2.9659,Ji = 12 for all i. There are 7 comparisons to be made. Nowt88,.025/7 = 2.754, so the 5% critical

value is 2.754
√

2.9659(1/12+1/12) = 1.936. All the sample means of the non-control formulations differ
from the sample mean of the control formulation by more than this amount. Therefore we conclude at the 5%
level that all the non-control formulations differ from thecontrol formulation.

(b) There are 7 comparisons to be made. We should use the Studentized range valueq7,88,.05. This value is not in the
table, so we will useq7,60,.05 = 4.31, which is only slightly larger. The 5% critical value is 4.31

√
2.9659/12=

2.14. All of the non-control formulations differ from the sample mean of the control formulation by more than
this amount. Therefore we conclude at the 5% level that all the non-control formulations differ from the control
formulation.
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(c) The Bonferroni method is more powerful, because it is based on the actual number of comparisons being made,
which is 7. The Tukey-Kramer method is based on the largest number of comparisons that could be made,
which is(7)(8)/2 = 28.

5. (a)t16,.025/6 = 3.0083 (the value obtained by interpolating is 3.080). The value of MSE is 2.3023. The 5% critical

value is therefore 3.0083
√

2(2.3023)/5= 2.8869. We may conclude that the mean for 750◦C differs from the
means for 850◦C and 900◦C, and that the mean for 800◦ differs from the mean for 900◦C.

(b) q4,16,.05 = 4.05. The value of MSE is 2.3023. The 5% critical value is therefore 4.05
√

2.3023/5 = 2.75. We
may conclude that the mean for 750◦C differs from the means for 850◦C and 900◦C, and that the mean for 800◦

differs from the mean for 900◦C.

(c) The Tukey-Kramer method is more powerful, because its critical value is smaller.

7. (a)t16,.025/3 = 2.6730 (the value obtained by interpolating is 2.696). The value of MSE is 2.3023. The 5% critical

value is therefore 2.6730
√

2(2.3023)/5= 2.5651. We may conclude that the mean for 900◦C differs from the
means for 750◦C and 800◦C.

(b) q4,16,.05 = 4.05. The value of MSE is 2.3023. The 5% critical value is therefore 4.05
√

2.3023/5 = 2.75. We
may conclude that the mean for 900◦C differs from the means for 750◦C and 800◦C.

(c) The Bonferroni method is more powerful, because its critical value is smaller.

9. (a)t73,.025 = 1.993, MSE= 0.096266, the s ample sizes are 12 and 15. The sample means areX1 = 1.6825,
X6 = 2.0353. The 95% confidence interval is 0.3528±1.993

√
0.096266(1/12+1/15), or (0.1133,0.5923).

(b) The sample sizes areJ1 = 12,J2 = 12,J3 = 13,J4 = 12, J5 = 15, J6 = 15. MSE= 0.096266. We should use
the Studentized range valueq6,73,.05. This value is not in the table, so we will useq6,60,.05 = 4.16, which is only
slightly larger. The values ofq6,60,.05

√
(MSE/2)(1/Ji +1/Jj) and the values of the differences|Xi. −X j .| are

presented in the following two tables.

q6,60,.05
√

(MSE/2)(1/Ji +1/Jj)

1 2 3 4 5 6
1 − 0.37260 0.36536 0.37260 0.35348 0.35348
2 0.37260 − 0.36536 0.37260 0.35348 0.35348
3 0.36536 0.36536 − 0.36536 0.34584 0.34584
4 0.37260 0.37260 0.36536 − 0.35348 0.35348
5 0.35348 0.35348 0.34584 0.35348 − 0.33326
6 0.35348 0.35348 0.34584 0.35348 0.33326 −
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|Xi. −X j .|
1 2 3 4 5 6

1 0 0.0075 0.49904 0.15083 0.5475 0.35283
2 0.0075 0 0.49154 0.14333 0.54 0.34533
3 0.49904 0.49154 0 0.34821 0.048462 0.14621
4 0.15083 0.14333 0.34821 0 0.39667 0.202
5 0.5475 0.54 0.048462 0.39667 0 0.19467
6 0.35283 0.34533 0.14621 0.202 0.19467 0

The differences that are significant at the 5% level are: mean1 differs from means 3 and 5; mean 2 differs from
means 3 and 5; and mean 4 differs from mean 5.

11. (a)t8,.025= 2.306, MSE= 1.3718. The sample means areX1 = 1.998 andX3 = 5.300. The sample sizes areJ1 = 5
andJ3 = 3. The 95% confidence interval is therefore 3.302±2.306

√
1.3718(1/5+1/3), or (1.330,5.274).

(b) The sample means areX1 = 1.998,X2 = 3.0000,X3 = 5.300. The sample sizes areJ1 = 5,J2 = J3 = 3. The up-
per 5% point of the Studentized range isq3,8,.05 = 4.04. The 5% critical value for|X1−X2| and for|X1−X3| is
4.04

√
(1.3718/2)(1/5+1/3)= 2.44, and the 5% critical value for|X2−X3| is 4.04

√
(1.3718/2)(1/3+1/3)=

2.73. Therefore means 1 and 3 differ at the 5% level.

13. (a)X.. = 88.04, I = 4, J = 5, MSTr= ∑I
i=1J(Xi.−X..)

2/(I −1) = 19.554.

F = MSTr/MSE = 19.554/3.85 = 5.08. There are 3 and 16 degrees of freedom, so 0.01 < P < 0.05
(a computer package givesP = 0.012). The null hypothesis of no difference is rejected at the5% level.

(b) q4,16.05 = 4.05, so catalysts whose means differ by more than 4.05
√

3.85/5 = 3.55 are significantly different
at the 5% level. Catalyst 1 and Catalyst 2 both differ significantly from Catalyst 4.

15. The value of theF statistic isF = MSTr/MSE= 19.554/MSE. The upper 5% point of theF3,16 distribution is
3.24. Therefore theF test will reject at the 5% level if 19.554/MSE≥ 3.24, or, equivalently, if MSE≤ 6.035.

The largest difference between the sample means is 89.88−85.79= 4.09. The upper 5% point of the Studen-
tized range distribution isq4,16,.05 = 4.05. Therefore the Tukey-Kramer test will fail to find any differences
significant at the 5% level if 4.09< 4.05

√
MSE/5, or equivalently, if MSE> 5.099.

Therefore theF test will reject the null hypothesis that all the means are equal, but the Tukey-Kramer test will
not find any pair of means to differ at the 5% level, for any value of MSE satisfying 5.099< MSE< 6.035.

Section 9.3

1. Let I be the number of levels of oil type, letJ be the number of levels of piston ring type, and letK be the
number of replications. ThenI = 4, J = 3, andK = 3.
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(a) The number of degrees of freedom for oil type isI −1 = 3.

(b) The number of degrees of freedom for piston ring type isJ−1 = 2.

(c) The number of degrees of freedom for interaction is(I −1)(J−1) = 6.

(d) The number of degrees of freedom for error isIJ(K−1) = 24.

(e) The mean squares are found by dividing the sums of squaresby their respective degrees of freedom.

TheF statistics are found by dividing each mean square by the meansquare for error. The number of degrees
of freedom for the numerator of anF statistic is the number of degrees of freedom for its effect,and the number
of degrees of freedom for the denominator is the number of degrees of freedom for error.

P-values may be obtained from theF table, or from a computer software package.

Source DF SS MS F P
Oil 3 1.0926 0.36420 5.1314 0.007
Ring 2 0.9340 0.46700 6.5798 0.005
Interaction 6 0.2485 0.041417 0.58354 0.740
Error 24 1.7034 0.070975
Total 35 3.9785

(f) Yes. F6,24 = 0.58354,P > 0.10 (P = 0.740).

(g) No, some of the main effects of oil type are non-zero.F3,24 = 5.1314, 0.001< P < 0.01 (P = 0.007).

(h) No, some of the main effects of piston ring type are non-zero. F2,24 = 6.5798, 0.001< P < 0.01 (P = 0.005).

3. (a) Let I be the number of levels of mold temperature, letJ be the number of levels of alloy, and letK be the
number of replications. ThenI = 5, J = 3, andK = 4.

The number of degrees of freedom for mold temperature isI −1 = 4.

The number of degrees of freedom for alloy isJ−1 = 2.

The number of degrees of freedom for interaction is(I −1)(J−1) = 8.

The number of degrees of freedom for error isIJ(K−1) = 45.

The mean squares are found by dividing the sums of squares by their respective degrees of freedom.

TheF statistics are found by dividing each mean square by the meansquare for error. The number of degrees
of freedom for the numerator of anF statistic is the number of degrees of freedom for its effect,and the number
of degrees of freedom for the denominator is the number of degrees of freedom for error.

P-values may be obtained from theF table, or from a computer software package.
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Source DF SS MS F P
Mold Temp. 4 69738 17434.5 6.7724 0.000
Alloy 2 8958 4479.0 1.7399 0.187
Interaction 8 7275 909.38 0.35325 0.939
Error 45 115845 2574.3
Total 59 201816

(b) Yes.F8,45 = 0.35325,P > 0.10 (P = 0.939).

(c) No, some of the main effects of mold temperature are non-zero.F4,45 = 6.7724,P < 0.001 (P≈ 0).

(d) Yes.F3,45 = 1.7399,P > 0.10, (P = 0.187).

5. (a) Main Effects of
Solution

NaCl −9.1148
Na2HPO4 9.1148

Main Effects of
Temperature

25◦C 1.8101
37◦C −1.8101

Interactions
Temperature

Solution 25◦C 37◦C
NaCl −0.49983 0.49983

Na2HPO4 0.49983 −0.49983

(b) Source DF SS MS F P
Solution 1 1993.9 1993.9 5.1983 0.034
Temperature 1 78.634 78.634 0.20500 0.656
Interaction 1 5.9960 5.9960 0.015632 0.902
Error 20 7671.4 383.57
Total 23 9750.0

(c) Yes,F1,20 = 0.015632,P > 0.10 (P = 0.902).

(d) Yes, since the additive model is plausible. The mean yield stress differs between Na2HPO4 and NaCl:
F1,20 = 5.1983, 0.01< P < 0.05 (P = 0.034).

(e) There is no evidence that the temperature affects yield stress:F1,20 = 0.20500,P > 0.10 (P = 0.656).

7. (a) Source DF SS MS F P
Adhesive 1 17.014 17.014 10.121 0.008
Pressure 2 35.663 17.832 10.607 0.002
Interaction 2 4.3544 2.1772 1.2951 0.310
Error 12 20.173 1.6811
Total 17 77.205
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(b) Yes.F2,12 = 1.2951,P > 0.10 (P = 0.310).

(c) Yes, since the additive model is plausible. The mean strength differs between the two adhesives:F1,12 = 10.121,
P < 0.01 (P = 0.008).

(d) Yes, since the additive model is plausible. The mean strength differs among the pressures:F2,12 = 10.607,
P < 0.01 (P = 0.002).

9. (a) Main Effects of
Speed

80 −13.074
120 −5.7593
150 19.463

Main Effects of
Time

5 −8.4259
10 −0.2037
15 8.6296

Interactions
Time

Speed 5 10 15
80 5.6481 0.75926 −6.4074

120 2.3704 −0.018519 −2.3519
150 −8.0185 −0.74074 8.7593

(b) Source DF SS MS F P
Speed 2 10796 5397.9 63.649 0.000
Time 2 2619.1 1309.6 15.442 0.000
Interaction 4 1357.5 339.38 4.0018 0.007
Error 45 3816.3 84.807
Total 53 18589

(c) No,F4,45 = 4.0018,P < 0.01 (P = 0.007)

(d) No, because the additive model is rejected.

(e) No, because the additive model is rejected.

11. (a) Main Effects of
Material

CPTi-ZrO2 0.044367
TiAlloy-ZrO2 −0.044367

Main Effects of
Neck Length

Short −0.018533
Medium −0.024833

Long 0.043367

Interactions
Neck Length

Short Medium Long
CPTi-ZrO2 0.0063333 −0.023767 0.017433

TiAlloy-ZrO2 0.0063333 0.023767 −0.017433
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(b) Source DF SS MS F P
Taper Material 1 0.059052 0.059052 23.630 0.000
Neck Length 2 0.028408 0.014204 5.6840 0.010
Interaction 2 0.0090089 0.0045444 1.8185 0.184
Error 24 0.059976 0.002499
Total 29 0.15652

(c) Yes, the interactions may plausibly be equal to 0. The value of the test statistic is 1.8185, its null distribution is
F2,24, andP > 0.10 (P = 0.184).

(d) Yes, since the additive model is plausible. The mean coefficient of friction differs between CPTi-ZrO2 and
TiAlloy-ZrO2: F1,24 = 23.630,P < 0.001.

(e) Yes, since the additive model is plausible. The mean coefficient of friction is not the same for all neck lengths:
F2,24 = 5.6840,P ≈ 0.01. To determine which pairs of effects differ, we useq3,24,.05 = 3.53. We compute
3.53

√
0.002499/10= 0.056. We conclude that the effect of long neck length differs from both short and

medium lengths, but we cannot conclude that the effects of short and medium lengths differ from each other.

13. (a) Main Effects of
Concentration
15 0.16667
40 −0.067778

100 −0.098889

Main Effects of
Delivery Ratio
1:1 0.73333
1:5 −0.30000

1:10 −0.43333

Interactions
Delivery Ratio

Concentration 1:1 1:5 1:10
15 0.66778 −0.30222 −0.36556
40 −0.20111 −0.064444 0.26556

100 −0.46667 0.36667 0.10000

(b) Source DF SS MS F P
Concentration 2 0.37936 0.18968 3.8736 0.040
Delivery Ratio 2 7.34 3.67 74.949 0.000
Interaction 4 3.4447 0.86118 17.587 0.000
Error 18 0.8814 0.048967
Total 26 12.045

(c) No. The The value of the test statistic is 17.587, its nulldistribution isF4,18, andP≈ 0.
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The slopes of the line segments are quite different from one
another, indicating a high degree of interaction.

15. (a) Main Effects of
Attachment
Nail −1.3832

Adhesive 1.3832

Main Effects of
Length

Quarter −7.1165
Half −2.5665
Full 9.683

Interactions
Length

Quarter Half Full
Nail 0.48317 0.33167 −0.51633

Adhesive −0.48317 −0.33167 0.51633

(b) Source DF SS MS F P
Attachment 1 114.79 114.79 57.773 0.000
Length 2 3019.8 1509.9 759.94 0.000
Interaction 2 10.023 5.0115 2.5223 0.090
Error 54 107.29 1.9869
Total 59 3251.9

(c) The additive model is barely plausible:F2,54 = 2.5223, 0.05< P < 0.10 (P = 0.090).

(d) Yes, the attachment method does affect the critical buckling load:F1,54 = 57.773,P≈ 0.

(e) Yes, the side member length does affect the critical buckling load: F2,54 = 759.94,P≈ 0. To determine which
effects differ at the 5% level, we should useq3,54,.05. This value is not found in Table A.8, so we approximate it
with q3,40,.05 = 3.44. We compute 3.44

√
1.9869/20= 1.08. We conclude that the effects of quarter, half and

full all differ from each other.

17. (a) Source DF SS MS F P
Wafer 2 114661.4 57330.7 11340.1 0.000
Operator 2 136.78 68.389 13.53 0.002
Interaction 4 6.5556 1.6389 0.32 0.855
Error 9 45.500 5.0556
Total 17 114850.3
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(b) There are differences among the operators.F2,9 = 13.53, 0.01< P < 0.001 (P = 0.002).

19. (a) Source DF SS MS F P
PVAL 2 125.41 62.704 8.2424 0.003
DCM 2 1647.9 823.94 108.31 0.000
Interaction 4 159.96 39.990 5.2567 0.006
Error 18 136.94 7.6075
Total 26 2070.2

(b) Since the interaction terms are not equal to 0, (F4,18 = 5.2567,P= 0.006), we cannot interpret the main effects.
Therefore we compute the cell means. These are

DCM (ml)
PVAL 50 40 30
0.5 97.8 92.7 74.2
1.0 93.5 80.8 75.4
2.0 94.2 88.6 78.8

We conclude that a DCM level of 50 ml produces greater encapsulation efficiency than either of the other levels.
If DCM = 50, the PVAL concentration does not have much effect.Note that for DCM = 50, encapsulation
efficiency is maximized at the lowest PVAL concentration, but for DCM = 30 it is maximized at the highest
PVAL concentration. This is the source of the significant interaction.

Section 9.4

1. (a) NaOH concentration is the blocking factor, age is the treatment factor.

(b) Source DF SS MS F P
Treatment 3 386.33 128.78 211.14 0.000
Blocks 4 13.953 3.4882 5.7192 0.008
Error 12 7.3190 0.6099
Total 19 407.60

(c) Yes,F3,12 = 211.14,P≈ 0 (P = 1.202×10−10)

(d) q4,12.05 = 4.20, MSAB = 0.6099, andJ = 5. The 5% critical value is therefore 4.20
√

0.6099/5= 1.4669. The
sample means areX0 = 55.46, X4 = 45.22, X8 = 46.26, andX12 = 44.47. We therefore conclude that age 0
differs from ages 4, 8, and 12, and that age 8 differs from age 12.
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3. (a) LetI be the number of levels for lighting method, letJ be the number of levels for blocks, and letK be the
number of replications. ThenI = 4, J = 3, andK = 3.

The number of degrees of freedom for treatments isI −1 = 3.

The number of degrees of freedom for blocks isJ−1 = 2.

The number of degrees of freedom for interaction is(I −1)(J−1) = 6.

The number of degrees of freedom for error isIJ(K−1) = 24.

The mean squares are found by dividing the sums of squares by their respective degrees of freedom.

TheF statistics are found by dividing each mean square by the meansquare for error. The number of degrees
of freedom for the numerator of anF statistic is the number of degrees of freedom for its effect,and the number
of degrees of freedom for the denominator is the number of degrees of freedom for error.

P-values may be obtained from theF table, or from a computer software package.

Source DF SS MS F P
Lighting 3 9943 3314.33 3.3329 0.036
Block 2 11432 5716.00 5.7481 0.009
Interaction 6 6135 1022.50 1.0282 0.431
Error 24 23866 994.417
Total 35 51376

(b) Yes. TheP-value for interactions is large (0.431).

(c) Yes. TheP-value for lighting is small (0.036).

5. (a) Source DF SS MS F P
Variety 9 339032 37670 2.5677 0.018
Block 5 1860838 372168 25.367 0.000
Error 45 660198 14671
Total 59 2860069

(b) Yes,F9,45 = 2.5677,P = 0.018.

7. (a) Source DF SS MS F P
Waterworks 3 1253.5 417.84 4.8953 0.005
Block 14 1006.1 71.864 0.84193 0.622
Error 42 3585.0 85.356
Total 59 5844.6

(b) Yes,F3,42 = 4.8953,P = 0.005.
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(c) To determine which effects differ at the 5% level, we should useq4,42,.05. This value is not found in Table A.8,
so we approximate it withq4,40,.05 = 3.79. The 5% critical value is 3.79

√
85.356/15= 9.04. The sample

means areXA = 34.000,XB = 22.933,XC = 24.800,XD = 31.467. We can conclude that A differs from both
B and C.

(d) TheP-value for the blocking factor is large (0.622), suggestingthat the blocking factor (time) has only a small
effect on the outcome. It might therefore be reasonable to ignore the blocking factor and perform a one-way
ANOVA.

9. (a) One motor of each type should be tested on each day. The order in which the motors are tested on any given
day should be chosen at random. This is a randomized block design, in which the days are the blocks. It is not
a completely randomized design, since randomization occurs only within blocks.

(b) The test statistic is
∑5

i=1(Xi. −X..)
2

∑4
j=1 ∑5

i=1(Xi j −Xi.−X. j −X..)2/12
.

Section 9.5

1. A B C D
1 − − − −
ad + − − +
bd − + − +
ab + + − −
cd − − + +
ac + − + −
bc − + + −
abcd + + + +

The alias pairs are{A,BCD}, {B,ACD}, {C,ABD}, {D,ABC},
{AB,CD}, {AC,BD}, and{AD,BC}
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3. (a) Sum of Mean
Variable Effect DF Squares Square F P
A 6.75 1 182.25 182.25 11.9508 0.009
B 9.50 1 361.00 361.00 23.6721 0.001
C 1.00 1 4.00 4.00 0.2623 0.622
AB 2.50 1 25.00 25.00 1.6393 0.236
AC 0.50 1 1.00 1.00 0.0656 0.804
BC 0.75 1 2.25 2.25 0.1475 0.711
ABC −2.75 1 30.25 30.25 1.9836 0.197
Error 8 122.00 15.25
Total 15 727.75

(b) Factors A and B (temperature and concentration) seem to have an effect on yield. There is no evidence that pH
has an effect. None of the interactions appear to be significant. TheirP-values are all greater than 0.19.

(c) Since the effect of temperature is positive and statistically significant, we can conclude that the mean yield is
higher when temperature is high.

5. (a) Variable Effect
A 3.3750
B 23.625
C 1.1250
AB −2.8750
AC −1.3750
BC −1.6250
ABC 1.8750

(b) No, since the design is unreplicated, there is no error sum of squares.

(c) No, none of the interaction terms are nearly as large as the main effect of factorB.

(d) If the additive model is known to hold, then the ANOVA table below shows that the main effect ofB is not
equal to 0, while the main effects ofA andC may be equal to 0.

Sum of Mean
Variable Effect DF Squares Square F P
A 3.3750 1 22.781 22.781 2.7931 0.170
B 23.625 1 1116.3 1116.3 136.86 0.000
C 1.1250 1 2.5312 2.5312 0.31034 0.607
Error 4 32.625 8.1562
Total 7 1174.2
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7. (a) Term Effect
A −119.25
B 259.25
C −82.75
AB 101.75
AC −6.25
BC −52.75
ABC −2.25

(b) No, since the design is unreplicated, there is no error sum of squares.

(c) The AB interaction is among the larger effects.

(d) No, because the AB interaction is large.

9. (a) Variable Effect
A 1.2
B 3.25
C −16.05
D −2.55
AB 2
AC 2.9
AD −1.2
BC 1.05
BD −1.45
CD −1.6
ABC −0.8
ABD −1.9
ACD −0.15
BCD 0.8
ABCD 0.65

(b) FactorC is the only one that really stands out.
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11. (a) Sum of Mean
Variable Effect DF Squares Square F P
A 14.245 1 811.68 811.68 691.2 0.000
B 8.0275 1 257.76 257.76 219.5 0.000
C −6.385 1 163.07 163.07 138.87 0.000
AB −1.68 1 11.29 11.29 9.6139 0.015
AC −1.1175 1 4.9952 4.9952 4.2538 0.073
BC −0.535 1 1.1449 1.1449 0.97496 0.352
ABC −1.2175 1 5.9292 5.9292 5.0492 0.055
Error 8 9.3944 1.1743
Total 15 1265.3

(b) All main effects are significant, as is theAB interaction. Only theBC interaction has aP value that is reasonably
large. All three factors appear to be important, and they seem to interact considerably with each other.

13. (ii) The sum of the main effect ofA and theBCDE interaction.

Supplementary Exercises for Chapter 9

1. Source DF SS MS F P
Gypsum 3 0.013092 0.0043639 0.28916 0.832
Error 8 0.12073 0.015092
Total 11 0.13383

The value of the test statistic isF3,8 = 0.28916;P > 0.10 (P = 0.832). There is no evidence that the pH differs
with the amount of gypsum added.

3. Source DF SS MS F P
Day 2 1.0908 0.54538 22.35 0.000
Error 36 0.87846 0.024402
Total 38 1.9692

We conclude that the mean sugar content differs among the three days (F2,36 = 22.35,P≈ 0).
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5. (a) No. The variances are not constant across groups. In particular, there is an outlier in group 1.

(b) No, for the same reasons as in part (a).

(c) Source DF SS MS F P
Group 4 5.2029 1.3007 8.9126 0.000
Error 35 5.1080 0.14594
Total 39 10.311

We conclude that the mean dissolve time differs among the groups (F4,35 = 8.9126,P≈ 0).

7. The recommendation is not a good one. The engineer is trying to interpret the main effects without looking at
the interactions. The smallP-value for the interactions indicates that they must be taken into account. Looking
at the cell means, it is clear that if design 2 is used, then theless expensive material performs just as well as
the more expensive material. The best recommendation, therefore, is to use design 2 with the less expensive
material.

9. (a) Source DF SS MS F P
Base 3 13495 4498.3 7.5307 0.000
Instrument 2 90990 45495 76.164 0.000
Interaction 6 12050 2008.3 3.3622 0.003
Error 708 422912 597.33
Total 719 539447

(b) No, it is not appropriate because there are interactionsbetween the row and column effects (F6,708 = 3.3622,
P = 0.003).

11. (a) Source DF SS MS F P
Channel Type 4 1011.7 252.93 8.7139 0.001
Error 15 435.39 29.026
Total 19 1447.1

Yes.F4,15 = 8.7139,P = 0.001.

(b) q5,20,.05 = 4.23, MSE= 29.026,J = 4. The 5% critical value is therefore 4.23
√

29.026/4= 11.39. The sample
means for the five channels areX1 = 44.000,X2 = 44.100,X3 = 30.900,X4 = 28.575,X5 = 44.425. We can
therefore conclude that channels 3 and 4 differ from channels 1, 2, and 5.
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13. Source DF SS MS F P
Well Type 4 5.7523 1.4381 1.5974 0.175
Error 289 260.18 0.90028
Total 293 265.93

No. F4,289= 1.5974,P > 0.10 (P = 0.175).

15. (a) From Exercise 11, MSE= 29.026, sos=
√

29.026= 5.388.

(b) The MINITAB output for the power calculation is

Power and Sample Size

One-way ANOVA

Alpha = 0.05 Assumed standard deviation = 5.388 Number of Lev els = 5

SS Sample Target Maximum
Means Size Power Actual Power Difference

50 10 0.9 0.901970 10

The sample size is for each level.

(c) The MINITAB output for the power calculation is

Power and Sample Size

One-way ANOVA

Alpha = 0.05 Assumed standard deviation = 8.082 Number of Lev els = 5

SS Sample Target Maximum
Means Size Power Actual Power Difference

50 22 0.9 0.913650 10

The sample size is for each level.

17. (a) Variable Effect Variable Effect Variable Effect Variable Effect
A 3.9875 AB −0.1125 BD −0.0875 ACD 0.4875
B 2.0375 AC 0.0125 CD 0.6375 BCD −0.3125
C 1.7125 AD −0.9375 ABC −0.2375 ABCD −0.7125
D 3.7125 BC 0.7125 ABD 0.5125



228 CHAPTER 9

(b) The main effects are noticeably larger than the interactions, and the main effects forA andD are noticeably
larger than those forB andC.

(c) Sum of Mean
Variable Effect DF Squares Square F P
A 3.9875 1 63.601 63.601 68.415 0.000
B 2.0375 1 16.606 16.606 17.863 0.008
C 1.7125 1 11.731 11.731 12.619 0.016
D 3.7125 1 55.131 55.131 59.304 0.001
AB −0.1125 1 0.050625 0.050625 0.054457 0.825
AC 0.0125 1 0.000625 0.000625 0.00067231 0.980
AD −0.9375 1 3.5156 3.5156 3.7818 0.109
BC 0.7125 1 2.0306 2.0306 2.1843 0.199
BD −0.0875 1 0.030625 0.030625 0.032943 0.863
CD 0.6375 1 1.6256 1.6256 1.7487 0.243
Interaction 5 4.6481 0.92963
Total 15 158.97

We can conclude that each of the factorsA, B, C, andD has an effect on the outcome.

(d) TheF statistics are computed by dividing the mean square for eacheffect (equal to its sum of squares) by the
error mean square 1.04. The degrees of freedom for eachF statistic are 1 and 4. The results are summarized in
the following table.

Sum of Mean
Variable Effect DF Squares Square F P
A 3.9875 1 63.601 63.601 61.154 0.001
B 2.0375 1 16.606 16.606 15.967 0.016
C 1.7125 1 11.731 11.731 11.279 0.028
D 3.7125 1 55.131 55.131 53.01 0.002
AB −0.1125 1 0.050625 0.050625 0.048678 0.836
AC 0.0125 1 0.000625 0.000625 0.00060096 0.982
AD −0.9375 1 3.5156 3.5156 3.3804 0.140
BC 0.7125 1 2.0306 2.0306 1.9525 0.235
BD −0.0875 1 0.030625 0.030625 0.029447 0.872
CD 0.6375 1 1.6256 1.6256 1.5631 0.279
ABC −0.2375 1 0.22563 0.22563 0.21695 0.666
ABD 0.5125 1 1.0506 1.0506 1.0102 0.372
ACD 0.4875 1 0.95063 0.95063 0.91406 0.393
BCD −0.3125 1 0.39062 0.39062 0.3756 0.573
ABCD −0.7125 1 2.0306 2.0306 1.9525 0.235

(e) Yes. None of theP-values for the third- or higher-order interactions are small.

(f) We can conclude that each of the factorsA, B, C, andD has an effect on the outcome.
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19. Source DF SS MS F P
Location 2 3.0287 1.5144 9.4427 0.000
Error 107 17.16 0.16037
Total 109 20.189

Yes,F2,107= 9.4427,P≈ 0.

21. (a) Source DF SS MS F P
H2SO4 2 457.65 228.83 8.8447 0.008
CaCl2 2 38783 19391 749.53 0.000
Interaction 4 279.78 69.946 2.7036 0.099
Error 9 232.85 25.872
Total 17 39753

(b) TheP-value for interactions is 0.099. One cannot rule out the additive model.

(c) Yes,F2,9 = 8.8447, 0.001< P < 0.01 (P = 0.008).

(d) Yes,F2,9 = 749.53,P≈ 0.000.

23. Source DF SS MS F P
Angle 6 936.4 156.07 20.302 0.000
Error 39 299.81 7.6874
Total 45 1236.2

Yes,F6,39 = 20.302,P≈ 0.
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Chapter 10

Section 10.1

1. (a) Count

(b) Continuous

(c) Binary

(d) Continuous

3. (a) is in control

(b) has high capability

5. (a) False. Being in a state of statistical control means only that no special causes are operating. It is still possible
for the process to be calibrated incorrectly, or for the variation due to common causes to be so great that much
of the output fails to conform to specifications.

(b) False. Being out of control means that some special causes are operating. It is still possible for much of the
output to meet specifications.

(c) True. This is the definition of statistical control.

(d) True. This is the definition of statistical control.

Section 10.2

1. (a) The sample size isn = 4. The upper and lower limits for theR-chart areD3RandD4R, respectively.

From the control chart table,D3 = 0 andD4 = 2.282.

R= 143.7/30= 4.79. Therefore LCL = 0, and UCL = 10.931.

(b) The sample size isn = 4. The upper and lower limits for theS-chart areB3sandB4s, respectively.

From the control chart table,B3 = 0 andB4 = 2.266.

s= 62.5/30= 2.08333. Therefore LCL = 0 and UCL = 4.721.
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(c) The upper and lower limits for theX-chart areX−A2RandX +A2R, respectively.

From the control chart table,A2 = 0.729.R= 143.7/30= 4.79 andX = 712.5/30= 23.75.

Therefore LCL = 20.258 and UCL = 27.242.

(d) The upper and lower limits for theX-chart areX−A3sandX +A3s, respectively.

From the control chart table,A3 = 1.628.s= 62.5/30= 2.08333 andX = 712.5/30= 23.75.

Therefore LCL = 20.358 and UCL = 27.142.

3. (a) The sample size isn = 5. The upper and lower limits for theR-chart areD3RandD4R, respectively.

From the control chart table,D3 = 0 andD4 = 2.114.

R= 0.1395. Therefore LCL = 0 and UCL = 0.2949. The variance is in control.

(b) The upper and lower limits for theX-chart areX−A2RandX +A2R, respectively.

From the control chart table,A2 = 0.577.R= 0.1395 andX = 2.505.

Therefore LCL = 2.4245 and UCL = 2.5855. The process is out of control for the first time on sample 8.

(c) The 1σ limits areX−A2R/3 = 2.478 andX +A2R/3 = 2.5318, respectively.

The 2σ limits areX−2A2R/3 = 2.4513 andX +2A2R/3 = 2.5587, respectively.

The process is out of control for the first time on sample 7, where 2 out of the last three samples are below the
lower 2σ control limit.

5. (a)X has a normal distribution withµ= 14 andσX = 3/
√

5 = 1.341641.

The 3σ limits are 12±3(1.341641), or 7.97508 and 16.02492.

The probability that a point plots outside the 3σ limits is p = P(X < 7.97508)+P(X > 16.02492).

Thez-score for 7.97508 is(7.97508−14)/1.341641= −4.49.

Thez-score for 16.02492 is(16.02492−14)/1.341641= 1.51.

The probability that a point plots outside the 3σ limits is the sum of the area to the left ofz= −4.49 and the
area to the right ofz= 1.51.

Thereforep = 0.0000+0.0655= 0.0655.

The ARL is 1/p = 1/0.0655= 15.27.

(b) Letm be the required value. Since the shift is upward,m> 12.

The probability that a point plots outside the 3σ limits is p = P(X < 7.97508)+P(X > 16.02492).

Since ARL = 4,p = 1/4. Sincem> 12,P(X > 16.02492) > P(X < 7.97508).

Findm so thatP(X > 16.02492) = 1/4, and check thatP(X < 7.97508)≈ 0.

Thez-score for 16.02492 is(16.02492−m)/1.341641. Thez-score with an area of 1/4 = 0.25 to the right is
approximatelyz= 0.67.

Therefore 0.67= (16.02492−m)/1.341641, som= 15.126.
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Now check thatP(X < 7.97508)≈ 0.

Thez-score for 7.97508 is(7.97508−15.126)/1.341641= −5.33. SoP(X < 7.97508)≈ 0.

Thereforem= 15.126.

(c) We will find the required value forσX .

The probability that a point plots outside the 3σ limits is p = P(X < 12−3σX)+P(X > 12+3σX).

Since ARL = 4,p = 1/4. Since the process mean is 14,P(X > 12+3σX) > P(X > 12−3σX).

Find σ so thatP(X > 12+3σX) = 1/4, and check thatP(X < 12−3σX) ≈ 0.

Thez-score for 12+3σX is (12+3σX −14)/σX. Thez-score with an area of 1/4 = 0.25 to the right is approx-
imatelyz= 0.67.

Therefore(12+3σX −14)/σX = 0.67, soσX = 0.8584.

Now check thatP(X < 12−3σX) ≈ 0.

12−3σX = 9.425. Thez-score for 9.425 is(9.425−14)/0.8584= −5.33, soP(X < 12−3σX) ≈ 0.

ThereforeσX = 0.8584.

Sincen = 5, σX = σ/
√

5.

Thereforeσ = 1.92.

(d) Letn be the required sample size. ThenσX = 3/
√

n.

From part (c),σX = 0.8584. Therefore 3/
√

n = 0.8584, son = 12.214.

Round up to obtainn = 13.

7. The probability of a false alarm on any given sample is 0.0027, and the probability that there will not be a false
alarm on any given sample is 0.9973.

(a) The probability that there will be no false alarm in the next 50 samples is 0.997350 = 0.874. Therefore the
probability that there will be a false alarm within the next 50 samples is 1−0.874= 0.126.

(b) The probability that there will be no false alarm in the next 100 samples is 0.9973100= 0.763. Therefore the
probability that there will be a false alarm within the next 50 samples is 1−0.763= 0.237.

(c) The probability that there will be no false alarm in the next 200 samples is 0.9973200= 0.582.

(d) Letnbe the required number. Then 0.9973n = 0.5, sonln0.9973= ln0.5. Solving fornyieldsn = 256.37≈ 257.

9. (a) The sample size isn = 8. The upper and lower limits for theS-chart areB3sandB4s, respectively.

From the control chart table,B3 = 0.185 andB4 = 1.815.

s= 0.0880. Therefore LCL = 0.01628 and UCL = 0.1597. The variance is in control.

(b) The upper and lower limits for theX-chart areX−A3sandX +A3s, respectively.
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From the control chart table,A3 = 1.099.s= 0.0880 andX = 9.9892.

Therefore LCL = 9.8925 and UCL = 10.0859. The process is out ofcontrol for the first time on sample 3.

(c) The 1σ limits areX−A3s/3 = 9.9570 andX +A3s/3 = 10.0214, respectively.

The 2σ limits areX−2A3s/3 = 9.9247 andX +2A3s/3 = 10.0537, respectively.

The process is out of control for the first time on sample 3, where one sample exceeds the upper 3σ control
limit.

11. (a) The sample size isn = 5. The upper and lower limits for theS-chart areB3sandB4s, respectively.

From the control chart table,B3 = 0 andB4 = 2.089.

s= 0.4647. Therefore LCL = 0 and UCL = 0.971. The variance is in control.

(b) The upper and lower limits for theX-chart areX−A3sandX +A3s, respectively.

From the control chart table,A3 = 1.427.s= 0.4647 andX = 9.81.

Therefore LCL = 9.147 and UCL = 10.473. The process is in control.

(c) The 1σ limits areX−A3s/3 = 9.589 andX +A3s/3 = 10.031, respectively.

The 2σ limits areX−2A3s/3 = 9.368 andX +2A3s/3 = 10.252, respectively.

The process is out of control for the first time on sample 9, where 2 of the last three sample means are below
the lower 2σ control limit.

13. (a) The sample size isn = 4. The upper and lower limits for theS-chart areB3sandB4s, respectively.

From the control chart table,B3 = 0 andB4 = 2.266.

s= 3.082. Therefore LCL = 0 and UCL = 6.984.

The variance is out of control on sample 8. After deleting this sample,X = 150.166 ands= 2.911. The new
limits for theS-chart are 0 and 6.596. The variance is now in control.

(b) The upper and lower limits for theX-chart areX−A3sandX +A3s, respectively.

From the control chart table,A3 = 1.628.s= 2.911 andX = 150.166.

Therefore LCL = 145.427 and UCL = 154.905. The process is in control.

(c) The 1σ limits areX−A3s/3 = 148.586 andX +A3s/3 = 151.746, respectively.

The 2σ limits areX−2A3s/3 = 147.007 andX +2A3s/3 = 153.325, respectively.

The process is in control (recall that sample 8 has been deleted).
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Section 10.3

1. The sample size isn = 200. p = 1.64/30= 0.054667.

The centerline isp = 0.054667.

The LCL is p−3
√

p(1− p)/200= 0.00644.

The UCL isp+3
√

p(1− p)/200= 0.1029.

3. Yes, the only information needed to compute the control limits isp and the sample sizen. In this case,n= 100,
andp = (622/50)/100= 0.1244.

The control limits arep±3
√

p(1− p)/n, so

LCL = 0.0254 and UCL = 0.2234.

5. (iv). The sample size must be large enough so the mean number of defectives per sample is at least 10.

7. It was out of control. The UCL is 23.13.

Section 10.4

1. (a) No samples need be deleted.

(b) The estimate ofσX is A2R/3. The sample size isn = 5.

R= 0.1395. From the control chart table,A2 = 0.577.

ThereforeσX = (0.577)(0.1395)/3= 0.0268.

(c)
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(d) The process is out of control on sample 8.

(e) The Western Electric rules specify that the process is out of control on sample 7.

3. (a) No samples need be deleted.

(b) The estimate ofσX is A2R/3. The sample size isn = 5.

R= 1.14. From the control chart table,A2 = 0.577.

ThereforeσX = (0.577)(1.14)/3= 0.219.

(c)
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(d) The process is out of control on sample 9.

(e) The Western Electric rules specify that the process is out of control on sample 9.

5. (a)
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(b) The process is in control.
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Section 10.5

1. (a) µ̂= X = 0.248,s= 0.002, LSL= 0.246, USL= 0.254. The sample size isn = 6.

σ̂ = s/c4. From the control chart table,c4 = 0.9515.

Thereforêσ = 0.002102.

Sinceµ̂ is closer toLSL than toUSL, Cpk = (µ̂−LSL)/(3σ̂) = 0.3172.

(b) No. SinceCpk < 1, the process capability is not acceptable.

3. (a) The capability is maximized when the process mean is equidistant from the specification limits.
Therefore the process mean should be set to 15.50.

(b) LSL= 15.40, USL= 15.60, σ̂ = 0.017562.

If µ= 15.50, thenCpk = (15.60−15.50)/[3(0.017562)]= 1.898.

5. (a) Letµ be the optimal setting for the process mean.

ThenCp = (USL−µ)/(3σ) = (µ−LSL)/(3σ), so 1.2 = (USL−µ)/(3σ) = (µ−LSL)/(3σ).

Solving forLSLandUSLyieldsLSL= µ−3.6σ andUSL= µ+3.6σ.

(b) Thez-scores for the upper and lower specification limits arez= ±3.60.

Therefore, using the normal curve, the proportion of units that are non-conforming is the sum of the areas under
the normal curve to the right ofz= 3.60 and to the left ofz= −3.60.

The proportion is 0.0002+0.0002= 0.0004.

(c) Likely. The normal approximation is likely to be inaccurate in the tails.

Supplementary Exercises for Chapter 10

1. The sample size isn = 300. p = 5.83/100= 0.0583.

The centerline isp = 0.0583

The LCL is p−3
√

p(1− p)/300= 0.0177.

The UCL isp+3
√

p(1− p)/300= 0.0989.
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3. (a) The sample size isn = 3. The upper and lower limits for theR-chart areD3RandD4R, respectively.

From the control chart table,D3 = 0 andD4 = 2.575.

R= 0.110. Therefore LCL = 0 and UCL = 0.283. The variance is in control.

(b) The upper and lower limits for theX-chart areX−A2RandX +A2R, respectively.

From the control chart table,A2 = 1.023.R= 0.110 andX = 5.095.

Therefore LCL = 4.982 and UCL = 5.208. The process is out of control on sample 3.

(c) The 1σ limits areX−A2R/3 = 5.057 andX +A2R/3 = 5.133, respectively.

The 2σ limits areX−2A2R/3 = 5.020 andX +2A2R/3 = 5.170, respectively.

The process is out of control for the first time on sample 3, where a sample mean is above the upper 3σ control
limit.

5. (a) No samples need be deleted.

(b) The estimate ofσX is A2R/3. The sample size isn = 3.

R= 0.110. From the control chart table,A2 = 1.023.

ThereforeσX = (1.023)(0.110)/3= 0.0375.

(c)
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(d) The process is out of control on sample 4.

(e) The Western Electric rules specify that the process is out of control on sample 3. The CUSUM chart first
signaled an out-of-control condition on sample 4.

7. (a) The sample size isn = 300.

The mean number of defectives over the last 20 days is 12.0.
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Thereforep = 12.0/300= 0.04.

The control limits arep±3
√

p(1− p)/n.

Therefore LCL = 0.00606 and UCL = 0.0739.

(b) Sample 7. The proportion of defective chips is then 1/300= 0.0033, which is less than the lower control limit.

(c) No, this special cause improves the process. It should bepreserved rather than eliminated.
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Appendix B

1.
∂v
∂x

= 3+2y4,
∂v
∂y

= 8xy3

2.
∂w
∂x

=
3x2

x2 +y2 −
2x(x3 +y3)

(x2 +y2)2 ,
∂w
∂y

=
3y2

x2 +y2 −
2y(x3 +y3)

(x2 +y2)2

3.
∂z
∂x

= −sinxsiny2,
∂z
∂y

= 2ycosxcosy2

4.
∂v
∂x

= yexy,
∂v
∂y

= xexy

5.
∂v
∂x

= ex(cosy+sinz),
∂v
∂y

= −exsiny,
∂v
∂z

= excosz

6.
∂w
∂x

=
x√

x2 +4y2+3z2
,

∂w
∂y

=
4y√

x2 +4y2+3z2
,

∂w
∂z

=
3z√

x2 +4y2+3z2

7.
∂z
∂x

=
2x

x2 +y2 ,
∂z
∂y

=
2y

x2 +y2

8.
∂v
∂x

=
2xy

x2y+z
−zey2

sin(xz),
∂v
∂y

=
x2

x2y+z
+2yey2

cos(xz),
∂v
∂z

=
1

x2y+z
−xey2

sin(xz)

9.
∂v
∂x

=

√
y5

x
− 3

2

√
y3

x
,

∂v
∂y

= 5
√

xy3− 9
2
√

xy

10.
∂z
∂x

=
xycos(x2y)√

sin(x2y)
,

∂z
∂y

=
x2cos(x2y)

2
√

sin(x2y)


