BASIC MAPLE COMMANDS AND MENUS

This sheet is provided as a quick reference for some of the *Maple* commands and menus. For more detailed instructions, see the appropriate section in this workbook or "Using Help" under **Help** on the *Maple* menu bar.

MAIN MENU BAR

These commands can also be accessed under the menu headings **File**, **Edit**, **View**, and **Insert**. There are additional style commands under **Format** including justification for the worksheet.

PLOT MENUS

These commands can also be accessed under the menu headings **Axes**, **Color**, **Style**, and **Projection**. There are additional style commands under these menu headings for various views and coloring schemes.

COMMANDS FOR 2D PLOTS

Common Name	Maple Command and Options		
Cartesian Plot	<pre>plot([f,g],x=ab,cd,discont=true);</pre>		
	[f,g] — function(s) to be plotted (omit [] to plot one function)		
	x=ab — horizontal domain		
	cd — (optional) vertical range		
	discont=true — (optional) remove lines connecting plus and		
	minus infinity		
Contour Plot	execute with(plots);		
	<pre>contourplot(f,x=ab,y=cd);</pre>		
	f — function to be plotted		
	x=ab — horizontal domain		
	y=cd — vertical range		
Density Plot	<pre>execute with(plots);</pre>		
	<pre>densityplot({f},x=ab,y=cd);</pre>		
	f — function to be plotted		
	x=ab — horizontal domain		
	y=cd — vertical range		
Direction Field	execute with(plots);		
	<pre>fieldplot([dx,dy],x=ab,y=cd);</pre>		
	\mathbf{dx} — change in the x value		
	dy — change in the y value		
	x=ab — horizontal domain		
	y=cd — vertical range		
Histogram	<pre>execute with(stats); and with(statplots);</pre>		
	<pre>histogram(L,area=a,numbars=b);</pre>		
	L — list of data to be plotted		
	area=a — total area of all bars		
	numbars=b — number of bars to be plotted		
Implicit Plot	execute with(plots);		
_	<pre>implicitplot({f,g},x=ab,y=cd);</pre>		
	{f,g} — equation(s) to be plotted (omit {} to plot one function)		
	x=ab — horizontal domain		
	y=cd — vertical range		
Parametric Plot	plot([x,y,t=ab]);		
	\mathbf{x} — x-coordinate as a function of t		
	\mathbf{y} — y-coordinate as a function of t		
	t=ab — domain for t		
Polar Plot	<pre>execute with(plots);</pre>		
	<pre>polarplot({f,g},q=ab);</pre>		
	{f,g} — function(s) to be plotted (omit {} to plot one function)		
	q=ab — angle domain to be plotted		

COMMANDS FOR 3D PLOTS

Common Name	Maple Command and Options		
Cartesian Plot	plot3d({f},x=ab,y=cd,orientation=[p,t]);		
	$\{f\}$ — function of (x,y) to be plotted		
	x=ab — horizontal domain		
	y=cd — vertical domain		
	orientation=[p,t] — (optional) angles of view for graph		
Cylindrical Plot	execute with(plots);		
	<pre>cylinderplot([r,t,f,g],t=ab,r=cd);</pre>		
	r,t — letters used for radius and angle		
	f,g — functions used for radius, r , and angle, t		
	t=ab — domain for angle		
	r=cd — domain for radius		
Direction Field	<pre>execute with(plots);</pre>		
	<pre>fieldplot3d(F,x=ab,y=cd,z=ef);</pre>		
	\mathbf{F} — function of (x, y, z) to be plotted		
	$\mathbf{x}=\mathbf{ab}$ — domain to plot in x direction		
	y=cd — domain to plot in y direction		
	z=ef — range to plot in z direction		
Solid of Revolution	<pre>execute with(plots);</pre>		
	<pre>tubeplot([x,0,0],x=ab,radius=f);</pre>		
	[x,0,0] — axis to revolve about		
	$\mathbf{x}=\mathbf{ab}$ — domain for t		
	radius=f — function to be revolved		
Spherical Plot	execute with(plots);		
	<pre>sphereplot(f,t=ab,p=cd);</pre>		
	\mathbf{f} — function of thetheta, t , and phi, p , to be plotted		
	t=ab — domain for theta		
	p=cd — domain for phi		
Vectors	execute with(plots);		
	<pre>spacecurve([v],t=ab,axes=boxed,numpoints=n);</pre>		
	[v] — vector in (x, y, z) coordinates as functions of t		
	t=ab — domain for t		
	axes=boxed — (optional) label axes on outside edges		
	numpoints=n — number of points to compute for graph		

MULTIPLE COMMANDS

 $\it Maple$ has more than one command for some operations. This summary gives guidelines for the multiple commands.

Category	Commands	Guidelines	
Declare equation	f:=x->	The created equation is a function of x .	
		Substitution is done by entering $f(a)$. This	
		can be cumbersome when plotting or	
		doing other operations with a function.	
	y: =	Names an equation, plot, or anything. The	
		equation may include an equal sign.	
		Using the named expression in plots or	
		other equations is done by just using the	
		given letter. Substitution must be done	
		using the command subs(x=a,y);.	
Derivative	D(f)(x)	Maple uses this command if f is declared	
		f(x). This must be used to declare a new	
		function as a derivative of a given	
		function.	
	<pre>diff(y,x);</pre>	Takes the derivative of any expression.	
	diff(f(x),x);	The expression may be a named equation	
		or an $f(x)$.	
	<pre>Diff(y,x);</pre>	Displays, but does not compute the	
		derivative.	
Integral	<pre>int(y,x);</pre>	Gives the most general antiderivative of	
	<pre>int(f(x),x);</pre>	any expression. The expression may be a	
		named equation or an $f(x)$.	
	<pre>int(y,x=ab);</pre>	Computes the definite integral on the	
		range $x=a$ to $x=b$.	
	Int(y,x);	Displays, but does not compute the	
	<pre>Int(y,x=ab);</pre>	integral.	
Solve equation	<pre>solve(f=g,x);</pre>	Maple gives the exact roots for the	
		equality. The answer may be in rational	
		numbers, radical form, complex numbers,	
	5 7 (5	or as "ROOTS" of a given equation in Z.	
	<pre>fsolve(f=g,x);</pre>	Maple gives a decimal approximation for	
		the real roots of the equality. If no real	
	£ = 1 = = (£ = = = =)	roots exist, no answer is given.	
	<pre>fsolve(f=g,x=a);</pre>	Maple gives a decimal approximation for	
	51(5	the real root nearest $x=a$.	
	<pre>fsolve(f=g,x=ab);</pre>	Maple gives a decimal approximation for	
		the real root between $x=a$ and $x=b$.	

QUICK REFERENCE OF COMMON COMMANDS

To Do	Command	Comments
Arithmetic	+	Add
	-	Subtract
	*	Multiply
	/	Divide
	<pre>sqrt(a);</pre>	Take square root of <i>a</i> .
	^	Raise to a power
	abs(a);	Take absolute value of <i>a</i> .
Clear <i>Maple</i> 's memory	restart;	This does not delete the
		worksheet. Only Maple's
		memory is cleared.
Decimal form of number	<pre>evalf(n);</pre>	Changes the given number,
		n, to a decimal.
Decimal places	Digits:=n;	Sets the <i>Maple</i> display to <i>n</i>
		decimal places. (See page 39.)
Derivative	<pre>diff(y,x);</pre>	Computes derivative of <i>y</i>
		with respect to <i>x</i> .
Graph	<pre>plot(y,x=ab);</pre>	Graphs the equation, y, on
		the domain $x=a$ to $x=b$.
Integrate (indefinite)	<pre>int(y,x);</pre>	Integrates y with respect to
		x.
Integrate (definite)	<pre>int(y,x=ab);</pre>	Computes integral of <i>y</i> from
		x=a to $x=b$.
Substitute	f(a);	Substitutes the value a for x .
	<pre>subs(x=a,f);</pre>	Use f(a); if the
		expression was declared
		using f:=x-> . Use
		<pre>subs(x=a,f); if the</pre>
		expression was declared
		using f:= .
Un-name	unassign('f');	Removes the expression
		assigned to f from Maple's
		memory.