Assignment 12: Integration and Riemann Sums (4.1-4) Please provide a handwritten response.

Name

1a. The int command is used to find both indefinite and definite integrals. Execute

$$
\mathrm{f}:=\mathrm{x}->4 * \mathrm{x}-2 * \operatorname{sqrt}(\mathrm{x}) ;
$$

followed by

$$
\operatorname{int}(f(x), x) ;
$$

to find the indefinite integral $\int(4 x-2 \sqrt{x}) \mid x$ and record the result below. Is the answer correct? Note Maple omits the arbitrary constant " $+c$ ".

1b. Next execute $\mathrm{f}:=\mathrm{x}->\mathbf{2} \boldsymbol{x}^{\wedge} \mathbf{~} 3 /\left(\mathbf{x}^{\wedge} \mathbf{4}+\mathbf{1}\right)$; and

$$
F:=\operatorname{int}(f(x), x) ;
$$

to calculate $F(x)=\int \frac{2 x^{3}}{x^{4}+1} d x$; record the result below.

1c. By definition of antiderivative, what should $F^{\prime}(x)$ be? Execute $\operatorname{diff(F,x);~and~}$ record the result below; is it correct?

2a. To approximate the area under the graph of $f(x)=\cos x$ on the interval $\left[0, \frac{\pi}{2}\right]$ execute

$$
f:=x->\cos (x) ;
$$

and then use the plot command to graph f over $[0, \pi / 2]$. (Remember that π is denoted by Pi in Maple.) Sketch the result on the axes at right.

2b. Use $n=50$ rectangles in our approximation; moreover, in this case, our endpoints a and b are given by $a=0$ and $b=\pi / 2$. Execute in order the commands $a:=0$; , $\mathrm{b}:=\mathrm{Pi} / 2 ;, \mathrm{n}:=50$; and deltax:=evalf((b-a)/n);. What value for Δx did Maple give? Is this correct?

2c. The Riemann sum $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ for right-hand evaluation can be found using the rightsum command. To use this command, we must load the student package; execute with(student); evalf(rightsum(f(x), x=a..b,n));
and record the result below. Is this a plausible approximation to the area?

2d. The Riemann sum for left-hand evaluation is $\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x$. Execute

```
evalf(leftsum(f(x),x=a..b,n));
```

and record the result below. Is your answer greater or less than your result in part d? Why should this be so?

2e. Likewise, the Riemann sum for midpoint evaluation is $\sum_{i=1}^{n} f\left[\frac{1}{2}\left(x_{i-1}+x_{i}\right)\right] \Delta x$. Execute evalf(middlesum ($\mathrm{f}(\mathrm{x}), \mathrm{x}=\mathrm{a} . \mathrm{b}, \mathrm{n})$);
and record the result below.

2f. Execute $n:=100$; in order to replace $n=50$ by $n=100$ and re-execute all of the commands in Question 2. Do the three approximations in parts $\mathbf{c}-\mathbf{e}$ become more spread out or closer together? Is this what you would expect?
3. The exact value of the area we approximated in Question 2 is given by $\int_{0}^{\pi / 2} \cos x d x$. The int command can also find such definite integrals: Execute

$$
\operatorname{int}(f(x), x=0 \ldots P i / 2) ;
$$

and record the result below. Based on the evidence we have already gathered, is this answer plausible?

