Assignment 16: Separable Differential Equations (7.2) Name Please provide a handwritten response.

1a. The separable differential equation $y^{\prime}=\frac{x^{2}+\sqrt{x}}{e^{2 y}+y-\sin y}$ is written $\int\left(e^{2 y}+y-\sin y\right) d y=\int\left(x^{2}+\sqrt{x}\right) d x$ with variables separated. To solve the equation in Maple we first treat each side separately; execute

$$
\text { G:=int }(\exp (2 * y)+y-\sin (y), y) ;
$$

to calculate $G(y)=\int\left(e^{2 y}+y-\sin y\right) d y$ and record the result below.

Then execute

$$
H:=\operatorname{int}\left(x^{\wedge} 2+\operatorname{sqrt}(x), x\right) ;
$$

to calculate $H(x)=\int\left(x^{2}+\sqrt{x}\right) d x$ and record the result below.

1b. Execute gensoln: $=\mathbf{G}=\mathrm{H}+\mathrm{c}$; to enter the general solution of the differential equation. (Review the comments in Assignment 9, Question 1a regarding the single equal and colon equal signs.) Record the result below.

1c. We can form an IVP by adding the initial condition $y(1.5)=1$ to our differential equation. To extract the value of c corresponding to this initial condition, first execute

```
subs(x=1.5,y=1,gensoln);
```

to watch Maple substitute $x=1.5$ and $y=1$ into the general solution using the replacement operator subs; record the result below.

Now execute

```
const:=fsolve(subs(x=1.5,y=1,gensoln),c);
```

to find our value of c, and record the result below.

To substitute this value of c in the general solution, execute

```
partsoln:=subs(c=const,gensoln);
```

and record the result below.

1d. As you can see, it would be impossible to solve this particular solution for y; so, to graph this solution we will resort to the implicitplot command as in Assignment 9. Execute

```
with(plots);
```

Execute
implicitplot(partsoln, $x=0.5$, $\mathrm{y}=-6 . .6$);
to graph the solution of our IVP over the viewing window $0 \leq x \leq 5,-6 \leq y \leq 6$.

Sketch the result on the axes at right. Use a large dot to mark the point on the curve corresponding to the initial condition.

1e. Did the graph include the entire y-range $-6 \leq y \leq 6$? Why? Try to get a bigger view by changing $\mathbf{x}=0 \ldots 5$ to $\mathbf{x}=-1 \ldots 5$ in the preceding command; do things get better or worse? Why?

1f. If there were no initial condition attached to our differential equation, then we could create a family of particular solutions by letting c range, say, from -5 to 5 ; all these solutions could then be graphed on the same axes, showing how the solutions vary with c. Execute

```
solnfamily:=seq(gensoln,
    c=-5..5);
```

(You need not record the result!) followed by

```
implicitplot({solnfamily},
        x=0..7,y=-10..3);
```


and sketch the result on the axes at right. Can you get a better view using different viewing windows?

