Assignment 17: Euler's Method (7.3)

Name Please provide a handwritten response.

1a. To apply Euler's method to the differential equation $y^{\prime}=\sin y-x^{2}$, first define $f(x, y)=\sin y-x^{2}$ by executing

$$
f:=(x, y)->\sin (y)-x^{\wedge} 2 ;
$$

In Maple functions of two or more variables are handled similarly to functions of one variable; for example, execute $\mathrm{f}(-3, \mathrm{Pi} / 2)$; to find $f\left(-3, \frac{\pi}{2}\right)$ and record the result below; is it correct?

1b. To draw a direction field using Maple we must first load in a package; execute
with(plots);
and

$$
\text { fieldplot }([1, f(x, y)], x=0 \ldots 2, y=1 \ldots 3) ;
$$

Roughly sketch the result on the axes at right. (The fieldplot command draws at the point (x, y) an arrow in the plane whose slope is $\frac{f(x, y)}{1}$, or $f(x, y)$; following the arrows therefore leads to a curve which is a solution to the differential equation.)

1c. We will store the steps of Euler's method in what Maple calls a "list"; at each step we add one more ordered pair to our list using the
 op command. For example, execute (using square brackets, not parentheses!)
sample:=[[-2, 3]];
representing a list consisting of the one ordered pair $(-2,3)$, and then execute
sample:=[op(sample), [-3,Pi/2]];

What did this do to sample?

1d. Execute $[3,-2]+[4,7]$; and record the result below; what do you think happened here? (This "list addition" will come in handy in part g.)

1e. At each step of Euler's method we must evaluate $f(x, y)$ at the last ordered pair in our list, in order to compute the next ordered pair. This will take just a bit of fancy stuff: Execute sample [2]; and tell below what you think the [] command does to a list.

1f. Because Maple will not do much with f (sample[2]) ; (try it), we need specify the x and y values to "apply" \mathbf{f} to the two numbers in sample [2]. Earlier we calculated $f\left(-3, \frac{\pi}{2}\right)$; now execute $\mathrm{f}($ sample $[2,1]$, sample$[2,2])$; and record the result below. Is it correct?

1g. Now we can go ahead with the Exercise. We will begin our list with the initial condition $y(0)=2$ given in the Exercise. To approximate $y(2)$ we will take 20 steps starting from $x_{0}=0$. Using the proc command we now can generate our list of Euler steps all at once; execute

$$
\begin{aligned}
P:= & \operatorname{proc}(n, h) m:=[[0,2,0]] ; \\
& f:=(x, y)->\sin (y)-x^{\wedge} 2 ;
\end{aligned}
$$

for i from 1 to n do $m:=[0 p(m), m[i]+[h, h * f(m[i, 1], m[i, 2])]]$; od; end;
(Careful! You must enter m as $m:=[[0,2.0]] ;$, using the decimal on the 2, to generate a list in decimal form.) Now execute the command euler1: $=P(20,0.1)$; to set the step size $h=0.1$ and compute the first 20 iterations. What are $y(1)$ and $y(2)$ according to this approximation?

1h. The command plot will plot the points of our list. Execute

```
plot([euler1]);
```

1i. Execute euler2:=P (40,0.05); to set the step size to $h=0.05$ and compute the first 40 iterations. Tell below the values of $y(1)$ and $y(2)$ according to this approximation.

1j. Now execute
plot([euler2]);
followed by plot([euler1, euler2]) ; to combine the graphs, and sketch the result on your direction field in part \mathbf{b}, labeling both curves clearly.

