Assignment 18: Integration Techniques (6.1-6) Please provide a handwritten response.

Name \qquad

1a. The text notes that using identities we can often show that two different-looking results for an integral are both correct. Evaluate $\int \cos ^{3} x \sin ^{2} x d x$ by hand and record the result below.

1b. Evaluate this integral in Maple by executing

$$
\operatorname{int}\left(\cos (x)^{\wedge} 3 * \sin (x)^{\wedge} 2, x\right) ;
$$

and record the result below. Does it look the same as your answer in part a?

1c. The simplify(trig) command applies identities to change the form of trigonometric expressions; execute

$$
\operatorname{simplify}\left((1 / 3) * \sin (x)^{\wedge} 3-(1 / 5) * \sin (x)^{\wedge} 5\right) \text {; }
$$

to transform your result in part a and record the result below. Was Maple's result correct after all?

2a. Multiplication in some CAS can be denoted by a space, however Maple must use the multiplication operator *. To find $\int x \sin x d x$ execute both

$$
\operatorname{int}(x * \sin (x), x) ;
$$

and then with a space between x and $\sin x$.

```
int(x sin(x),x);
```

and record the result below; was there any difference between the two?

2b. Now repeat the last command without the space between \mathbf{x} and $\sin (\mathbf{x})$, and record the result below. What does this result mean?

3a. The inverse tangent function is denoted in Maple by arctan; execute

```
int(exp(x)*arctan(exp (x)),x);
```

to evaluate the integral $\int e^{x} \tan ^{-1} e^{x} d x$ and record the result below.

3b. The \% symbol (found above the " 5 " on your keyboard) refers in Maple to the immediately preceding output, and is useful provided you don't lose track of what the last output was! (Remember: Versions earlier than Release 5.0 use ".) Execute \%; and compare it to your answer in part \mathbf{a}.

3c. We can differentiate Maple's result in part a using the diff command introduced earlier; execute $\operatorname{diff}(\%, \mathbf{x})$; and record the result below. Was Maple’s integral correct?

4a. To investigate Maple's ability to evaluate $\int x^{3} e^{5 x} \cos 3 x d x$; execute

$$
\operatorname{int}\left(x^{\wedge} 3 * \exp (5 * x) * \cos (3 * x), x\right) ;
$$

and record below just the denominator of the leading fraction in Maple's result.

4b. Now check your result by executing $\operatorname{diff}(\%, \mathbf{x})$; as in Question 2c. Is your answer surprising? Do you think that Maple has made a mistake somewhere?

4c. Bearing in mind that \% now refers to the output you just obtained, execute simplify (\%); and record the result below. What lesson should we learn here?

5a. The convert (parfrac) command performs partial fraction decompositions. Convert $\frac{x^{2}+2 x-1}{(x-1)^{2}\left(x^{2}+4\right)}$ to partial fractions by executing

```
convert((x^2+2*x-1)/((x-1)^2* (x^2+4)),parfrac,x);
```

and recording the result below. Check your result by executing normal (\%); does everything look correct?
$\mathbf{5 b}$. Use the int command to find an antiderivative of the expression in part a, and record the result below.

5c. Now proceed according to Question $\mathbf{4 b}$, \mathbf{c} to check Maple's result. Does it appear to be correct at first? At last?
6. Go through the three steps in Question 4 for $\int \frac{\cos (x)}{\sin ^{2}(x)(3+2 \sin (x))} d x$. Are you able to confirm that Maple's antiderivative is correct? Explain.

