## Assignment 2: Graphing Functions (0.2) Please provide a handwritten response.

1a. In Maple, functions $y=f(x)$ are graphed using the plot command. For example, execute the command

$$
f:=x->x^{\wedge} 2 ;
$$

to define the familiar function $f(x)=x^{2}$ and then graph this function over the domain $-2 \leq x \leq 2$ by executing the command

$$
\operatorname{plot}(f(x), x=-2 \ldots 2) ;
$$

Sketch the result on the axes at right.

1b. Maple automatically chose an appropriate $y$-range for the graph in Question 1. However, we can specify a different $y$-range by specifying the plot range in the plot command. Execute the command

$$
\operatorname{plot}(f(x), x=-2 \ldots 2,-3 \ldots 4) ;
$$

to graph $f$ over the same domain as in part a but with $y$-range $-3 \leq y \leq 4$, and sketch the result on the axes at right.

1c. The plot command can also be used to graph two or more functions together. Execute the command

$$
g:=x->4-x^{\wedge} 2 ;
$$

to define the function $g(x)=4-x^{2}$, and then graph $f$ and $g$ over the domain $-2 \leq x \leq 2$ on the same axes by executing the command

```
plot([f(x),g(x)],x=-2..2);
```

Sketch the result on the axes at right.




2a. We can also use the plot command to "zoom" in on details of graphs. Execute the command $\mathrm{f}:=\mathbf{x}->\mathbf{x}^{\wedge} 3+4 * \mathbf{x}^{\wedge} 2-5 * \mathbf{x}-1$; to define the function $f(x)=x^{3}+4 x^{2}-5 x-1$ in Maple, and then execute the command plot $(\mathbf{f}(\mathbf{x}), \mathbf{x}=-$ 4. . 4) ; (Note: We do not need to use the unassign command. Maple automatically reassigns $f(x)$.)

2b. The graph seems to have a local minimum between $x=0$ and $x=1$; we can use zooming to locate this minimum as accurately as we wish. Start by executing the command

$$
\operatorname{plot}(\mathrm{f}(\mathrm{x}), x=0 \ldots 1) ;
$$

to get a closer look, and sketch the result on the axes at right.

2c. We can see now that the minimum actually lies between $x=0.4$ and $x=0.6$; zoom in still further by executing the command
plot(f(x), x=0.4..0.6);
and sketch the result on the axes at right. What can we now say about the location of the minimum?
3. Execute the command

$$
f:=x->(x-1) /\left(x^{\wedge} 2-5 * x+6\right) ;
$$

to define the function $f(x)=\frac{x-1}{x^{2}-5 x+6}$.
Now use the plot command with the range option as you did above to graph $f$ over the domain $1 \leq x \leq 4$ with $y$-range $-10 \leq y \leq 8$, and sketch the result on the axes at right. Do the cöordinate axes cross at the origin? Why does the graph include two vertical lines?




Use the command plot ( $\mathrm{f}(\mathrm{x}), \mathrm{x}=1 . .4,-10 . .8$, discont=true) ; to remove the vertical lines.

