Assignment 20: Infinite Series (8.2-7) Please provide a handwritten response.

To increase the number of decimal places displayed for this assignment, first execute the command Digits:=20;
1a. To find the partial sum S_{10} of the infinite series $\sum_{k=1}^{\infty} \frac{1}{k^{0.9}}$ execute

$$
\operatorname{sum}\left(1 / k^{\wedge} 0.9, k=1 \ldots 10\right) ;
$$

and record the result in the table. By changing

n	$S_{n}=\sum_{k=1}^{n} \frac{1}{k^{0.9}}$	$S_{n}=\sum_{k=1}^{n} \frac{5}{k^{1.1}}$
10		
50		
100		
500		
1000		

1b. Likewise modify the command in part a to find the partial sums of the infinite series $\sum_{k=1}^{\infty} \frac{5}{k^{1.1}}$ and complete the third column. Notice that in each row, the entry in the second column is smaller than that in the third; can this be the case for all n ? Why?

1c. Add one more row to the bottom of the table corresponding to $n=5000$ and fill it in; are the results consistent with your answer to part b? Execute the command restart ; to reset Maple to its default values.

2a. The text explains that the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges. To get an idea of how quickly or slowly it does so, execute

$$
\mathrm{s}:=\mathrm{n}->\operatorname{sum}(1 . / \mathrm{k}, \mathrm{k}=1 \ldots \mathrm{n}) ;
$$ followed by

psums: $=[\operatorname{seq}([n, s(n)], n=1 . .50)]:$ to construct a list called psums of ordered pairs $\left(n, \sum_{k=1}^{n} \frac{1}{k}\right)$ where the " y-value" is the nth partial sum of the harmonic series. Then execute plot ([psums]) ; and roughly sketch the result on the axes at right.

2b. Repeat the last two commands in part a with 50 replaced by 500 ; would you say that the partial sums are approaching ∞ quickly?

3a. To find the Taylor polynomial with $c=\frac{\pi}{2}$ and $n=4$ for $\cos x$ execute
taylor ($\cos (x), x=P i / 2,4)$; and record the result below; what do you think the final term means?

3b. We can remove this final term using the convert command; execute tp:=convert (\%, polynom) ; and enter the result below.

3c. Now plot the cosine function and the Taylor polynomial over $-\pi \leq x \leq 2 \pi$ by executing

```
plot([cos(x),tp],x=-Pi..2*Pi);
```

Sketch the result on the axes at right, labeling the graphs; on roughly what interval are the two graphs indistinguishable on your computer screen?

3d. Change the 4 in part a to 8 and then execute the commands in parts a-c once again. Sketch the graph of the new Taylor polynomial, label it, and answer the question in part \mathbf{c} again.

3e. To measure the error in this Taylor approximation, execute

```
plot(cos(x)-tp,x=-Pi..2*Pi);
```

and sketch the result on the axes at right. How large (positive or negative) does the error become, and for what value(s) of x is the error greatest?

3f. By increasing n still further while keeping everything else the same, can we reduce the maximum error in part \mathbf{e} to less than 0.1? Experiment to find how large a value of n is needed.

3g. Try to answer part \mathbf{f} with $\cos x$ changed to $\tan ^{-1} x$ (denoted $\arctan (\mathbf{x})$), c to 0 and the interval to $-1.5 \leq x \leq 1.5$. Can you find n large enough? Why?

