Assignment 21: Fourier Series (8.9) Please provide a handwritten response.

Name \qquad

1. Execute ?signum; . Describe signum(x) below. Then execute $\mathbf{f}:=\mathbf{x}->$ signum (\mathbf{x}) ; to define f, and use the plot command to sketch the graph of f over $-\pi \leq x \leq \pi$; sketch the result on the axes at right.

2a. We can find the Fourier coefficients of f in Maple. To apply the Euler-Fourier formulas directly, execute the following commands, noting the use of $\boldsymbol{*}$ between \mathbf{k} and \mathbf{x} to indicate multiplication:

$$
\begin{gathered}
\mathrm{a} 0:=(1 / \mathrm{Pi}) * \operatorname{int}(\mathrm{f}(\mathrm{x}), \mathrm{x}=-\mathrm{Pi} \ldots \mathrm{Pi}) ; \\
\mathrm{a}:=\mathrm{k}->(1 / \mathrm{Pi}) * \operatorname{int}(\mathrm{f}(\mathrm{x}) * \cos (\mathrm{k} * \mathrm{x}), \mathrm{x}=-\mathrm{Pi} . . \mathrm{Pi}) ; \\
\mathrm{b}:=\mathrm{k}->(1 / \mathrm{Pi}) * \operatorname{int}(\mathrm{f}(\mathrm{x}) * \sin (\mathrm{k} * \mathrm{x}), \mathrm{x}=-\mathrm{Pi} . . \mathrm{Pi}) ;
\end{gathered}
$$

Record this last result below, and explain why the first two results came out as they did.

2b. Now construct the partial sum $\mathbf{F 5}$ of the Fourier series of f by executing

$$
F 5:=a 0 / 2+\operatorname{sum}(a(k) * \cos (k * x)+b(k) * \sin (k * x), k=1 \ldots 5) ;
$$

Record the result below. Execute plot ($[\mathrm{f}(\mathrm{x}), \mathrm{F} 5], \mathbf{x}=-\mathrm{Pi} . . \mathrm{Pi}$); to graph f and F5 together over $-\pi \leq x \leq \pi$ and sketch the result on your graph above.

2c. To measure how well this partial sum approximates f execute

$$
\text { plot }(f(x)-F 5, x=-P i . . P i) ;
$$

and sketch the result on the axes at right. Roughly, what is the largest value, positive or negative, of the error in this approximation?

2d. Repeat parts \mathbf{b} and \mathbf{c} with 5 replaced by 50 and explain below why we might naturally expect our answer about the error in part \mathbf{c} to become smaller. Does it?

2e. Experiment with still larger values of n, as computer memory allows; are you able to find a partial sum of the Fourier series of f for which the maximum error in the approximation over $-\pi \leq x \leq \pi$ is smaller than your results so far? (When n is large it will be helpful to attach a colon to the end of the command in part \mathbf{b} to suppress the output on the screen.)

3a. Execute ? floor; and describe floor(x) below. Then execute

```
g:=x->x-floor(x);
```

and graph g over $-2 \leq x \leq 2$; sketch the result on the axes at right. Do the vertical lines have any significance?

3b. The period T of this function is not 2π; what is it? Try to use the Euler-Fourier formulas to modify the first command in
 Question 2a to define a0 for g. Was this successful? Why?

3c. Actually Maple has the capability to build a procedure to find the \mathbf{N} partial sums of a Fourier series for a function \mathbf{f}, centered at zero with period \mathbf{T}. Execute the following commands. (Don't worry when you get the message "Warning, premature end of input." This message will disappear when you execute the last line.)

$$
\begin{aligned}
& \text { FT: =proc (f,T,N) L:=T/2;a0:=1/L*int (f,x=-L..L); } \\
& \text { ak: =1/L*int (f*cos (k*Pi*x/L), x=-L..L) ; } \\
& \text { bk: }=1 / \mathrm{L} * \operatorname{int}(\mathrm{f} * \sin (\mathrm{k} * \mathrm{Pi} * \mathrm{x} / \mathrm{L}), \mathrm{x}=-\mathrm{L} . . \mathrm{L}) \text {; } \\
& a 0 / 2+\operatorname{sum}(a k * \cos (k * P i * x / L)+b k * \sin (k * P i * x / L), k=1 . . N) ; e n d ;
\end{aligned}
$$

To find the $5^{\text {th }}$ partial sum for $g(x)$, execute the command $\operatorname{FT}(\mathbf{x}-\mathrm{floor}(\mathbf{x}), 1,5)$; Why is it that the constant term is nonzero but there are no cosine terms in the result?
4. Execute $\mathbf{F T}\left(\mathbf{x}^{\wedge} 2,6,5\right)$; to find the Fourier expansion of $f(x)=x^{2}$ on $[-3,3]$. What is the coefficient of $\cos \left(\frac{5 \pi x}{3}\right)$?

