Assignment 25: Vector-Valued Functions, Part I (11.1-3) Name Please provide a handwritten response.

1a. Execute

$$
r:=t->[\cos (3 * t), \sin (2 * t)] ;
$$

to define the vector-valued function $\mathbf{r}(t)=\langle\cos 3 t, \sin 2 t\rangle, 0 \leq t \leq 2 \pi$ and draw the graph of $\mathbf{r}(t)$ by executing

```
plot([op(r(t)),t=0..2*Pi]);
```

Sketch the resulting "Lissajous curve" on the axes at right.

1b. To list the points $\mathbf{r}(0), \mathbf{r}\left(\frac{\pi}{4}\right)$, etc. execute

```
evalf(seq(r(n*Pi/4),n=0..8));
```

Mark these cöordinates, with their corresponding values of t, on the graph, and then draw arrows to show the orientation of the curve.

1c. Thinking of $\mathbf{r}(t)$ as representing the position of a moving point, execute

$$
\mathrm{v}:=\operatorname{diff}(r(t), t) ;
$$

to find the velocity vector $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$, followed by

$$
\begin{gathered}
\text { with(linalg); } \\
\text { speed:=norm }(\mathrm{v}, 2) \text {; }
\end{gathered}
$$

to find the speed $\|\mathbf{v}(t)\|=\sqrt{\mathbf{v}(t) \cdot \mathbf{v}(t)}$. Sketch the graph of $\|\mathbf{v}(t)\|$ over $0 \leq t \leq 2 \pi$ on the axes
 at right; based on this graph, does the moving point ever stop?

1d. Now execute $r \mathbf{r}:=r(t+3 * \sin (t))$; to define the reparameterization $\mathbf{r}_{1}(t)=\mathbf{r}(t+3 \sin t), 0 \leq t \leq 2 \pi$ and execute plot ([op(r1),t=0..2*Pi]); to draw the graph of $\mathbf{r}_{1}(t)$ over $0 \leq t \leq 2 \pi$. What is the subtle difference between this graph and that in part a? Draw the graph of $\mathbf{r}_{1}(t)$ also over $0 \leq t \leq 2 \pi-0.05$; what light does this shed?

1e. Execute vr1:=diff(r1,t); to find $v r 1(t)=r 1^{\prime}(t)$. Imitate part \mathbf{c} to plot over $0 \leq t \leq 2 \pi$ the speed of a point moving under $\mathbf{r}_{1}(t)$, note the approximate values of t where the speed is zero, and apply \mathbf{f} solve to speed= 0 to find more accurate values. Then use subs and $\mathbf{r} 1$ to find the cöordinates of these points where $\mathbf{r}_{1}(t)$ "stops", and record the results below. (You may have to use evalf to convert to a decimal.)

1f. Suppose you knew only the graph of a vector-valued function; so far, can we say for sure whether there are any points at which the function "stops"?

1g. Finding the points where this curve crosses itself, which amounts to finding pairs of numbers s and t such that $\mathbf{r}(s)=\mathbf{r}(t)$, would be difficult symbolically but is easy using fsolve provided suitable starting values for s and t are given. For example, execute

$$
\begin{gathered}
\text { fsolve }(\{o p(1, r(t))=o p(1, r(s)), o p(2, r(t))=o p(2, r(s))\}, \\
\{s, t\},\{s=0.1, t=4 \ldots 5\}) ;
\end{gathered}
$$

to start near $s=0.6$ and $t=4$. Evaluate $r(t)$ at the values and record the result below.

2a. Clear variables and redefine $\mathbf{r}(\mathrm{t})$ as
$\mathbf{r}(t)=\langle 2 \cos t+\sin 2 t, 2 \sin t+\cos 2 t\rangle$,
$0 \leq t \leq 2 \pi$ and sketch the graph of $\mathbf{r}(t)$ on the axes at right.
$\mathbf{2 b}$. Find and mark on the graph any stationary points of $\mathbf{r}(t)$, as above.

2c. Execute r 1: $=r(t+\sin (t))$; to define
 the vector-valued function $\mathbf{r}_{1}(t)=\mathbf{r}(t+\sin t)$, $0 \leq t \leq 2 \pi$. Execute plot ([op(r1), $\mathrm{t}=0.2$ *Pi]); to draw the graph of $\mathbf{r}_{1}(t)$ over $0 \leq t \leq 2 \pi$. Check for stationary points; how do the results compare with part \mathbf{b} ?

2d. Repeat part \mathbf{c} with $\mathbf{r}_{1}(t)$ redefined by $\mathbf{r}_{2}(t)=\mathbf{r}\left(t^{2}\right), 0 \leq t \leq \sqrt{2 \pi}$.

2e. Would you now modify your answer to Question 1f? How?

