Assignment 26: Vector-Valued Functions, Part II (11.1-4) Name Please provide a handwritten response.

1a. To plot the Cornu spiral execute the following commands; the output refers to the "Fresnel integrals" of applied mathematics.

$$
\begin{aligned}
& \mathrm{f}:=\operatorname{int}\left(\cos \left(P i * u^{\wedge} 2 / 2\right), u=0 \ldots t\right) ; \\
& g:=\operatorname{int}\left(\sin \left(P i * u^{\wedge} 2 / 2\right), u=0 \ldots t\right) ;
\end{aligned}
$$

Then execute $r:=[f, g]$; followed by
plot([op(r),t=-Pi..Pi]);
and sketch the result on the axes at right.
1b. Apply the int command to

```
sqrt(diff(f,t)^2+diff(g,t)^2)
```

to find the arc length of the curve from $t=0$ to $t=c$, and record the result below. What does this say about this parameterization of this curve?

1c. To find the curvature of this curve at
 $t=c$; execute

$$
\begin{gathered}
\text { with }(\operatorname{linalg}) ; \operatorname{dr}:=\operatorname{diff}(r, t) ; \\
T:=\operatorname{dr} / \operatorname{norm}(\operatorname{dr}, 2) ;
\end{gathered}
$$

to find the unit tangent vector $\mathbf{T}(t)$, followed by

```
        dT:=diff(T,t);
norm(subs(t=c,dT),2)/norm(subs(t=c,dr), 2) ;
```

Does the result tell you much? Execute simplify (\%) ; . Assume that all the absolute values are positive to further reduce the expression and record the result below. What does this say about the curve?

2a. Vector-valued functions in space are graphed using the spacecurve command; for example, to draw the graph of $\mathbf{r}(t)=\{\cos t, \ln t, \sin t\rangle$ (denoted $\mathbf{f}_{1}(t)$ in Example 1.5 over $0.1 \leq t \leq 8 \pi$, execute

$$
r:=[\cos (t), \ln (t), \sin (t)] ;
$$

followed by

```
    with(plots); spacecurve([op(r)],t=0.1..8*Pi,axes=boxed);
```

According to the Example, the result should look like Graph B; does it?

2b. Now execute the following modification of the preceding command:

Does the result look more like Graph B? The numpoints option specifies the number of points that Maple computes to draw the graph. The default is 50 . Click on the plot to see and try some of the options for the plot. You can select from the buttons or the menu.

2c. Now define $\boldsymbol{r}(t)$ by $r(t)=\langle\cos 5 t, \sin t, \sin 6 t\rangle$ and execute the command in part \mathbf{b}, with 0.1 replaced by 0 . How would you describe the result? Do you think this is an accurate graph?

2d. Execute this command again with 100 replaced by 500; do you think this is the "real thing"?

2e. Why was the graph in part c so poor? How did the numpoints option improve it?

3a. Sketch in the box at right the curve $r(t)=\langle\cos t, \sin t, \cos 2 t\rangle, 0 \leq t \leq 2 \pi$.

3b. At what point(s) on this curve do you think the curvature is greatest? Execute
crossprod (diff(r,t), diff(r,t,t));
followed by
$\mathrm{k}:=\operatorname{norm}(\%, 2) /$ norm (diff(r,t), 2) ^3;
to define the curvature κ using Theorem 4.1.

Now use Maple to find the value(s) of t for which
\mathbf{k} is greatest, and record below the corresponding points on the curve. Was your conjecture correct?

