Assignment 27: Functions of Two Variables (12.1–2) Please provide a handwritten response.

Name____

1a. To graph the function $f(x,y) = \sin(y - x^2)$ execute

$$f := (x,y) -> \sin(y-x^2);$$

followed by

$$plot3d({f(x,y)}, x=-2..2, y=-2..2, axes=boxed);$$

Sketch the result in the box at right; rather than try to copy every line drawn by *Maple*, just use general outlines and shading to give the overall shape.

1b. Graph *f* over a wider range and describe the general appearance of the resulting surface.

1c. To draw a contour plot of f execute

and sketch the result in the frame at right.

1d. Now execute the command

densityplot(
$$\{f(x,y)\}$$
, y=-2..2, x=-2..2, axes=none);

1

how is the result more, and less, accurate than the preceding result?

2a. The fact that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$ and that $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ does not exist can be

detected using contour plots.

Execute

$$f := (x,y) -> x^2*y/(x^2+y^2);$$

followed by

and sketch the result in the frame at right. Execute this command again with .01 replaced throughout by .001; does the pattern seem to change?

2b. How do these graphs support the conclusion that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$ exists?

2c. Now execute

$$f := (x,y) - x^2/(x^2+y^2);$$

followed by the **contourplot** command in part **a**, and sketch the result in the frame at right. Again, repeat this command with .01 replaced throughout by .001; does the pattern seem to change here?

2d. How do these graphs support the conclusion that $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ does not exist?

2e. Based on contour plots, do you think that $\lim_{(x,y)\to(0,0)} \frac{x \sin y}{x^2 + y^2}$ exists? Explain your answer.