\qquad Please provide a handwritten response.

1a. To define the function $f(x, y, z)=e^{2 x y}-\frac{z^{2}}{y}+x z \sin y$ execute

$$
f:=\exp (2 * x * y)-\left(z^{\wedge} 2 / y\right)+x * z * \sin (y) ;
$$

followed by $\operatorname{diff}(\mathrm{f}, \mathrm{y})$; to find $f_{y}(x, y, z)$. Is the result correct?

1b. To find the second-order mixed partial derivative $f_{y x}(x, y, z)=\frac{\partial^{2} f}{\partial x \partial y}(x, y, z)$ execute $\operatorname{diff}(f, \mathbf{x}, \mathbf{y})$; and record the result below. (Note the order in which the variables are listed in the command.)

1c. Execute $\operatorname{diff}(\mathrm{f}, \mathrm{y}, \mathrm{y})$; to find $f_{y y}(x, y, z)=\frac{\partial^{2} f}{\partial y^{2}}(x, y, z)$, followed by subs ($\mathrm{x}=0.2, \mathrm{y}=3, \mathrm{z}=\operatorname{sqrt}(7), \%$); and evalf(\%); to find $f_{y y}(-0.2,3, \sqrt{7})$; record the results below.

2a. Execute $\mathrm{f}:=(\mathrm{x}, \mathrm{y})->\mathrm{x}^{\wedge} 3+3 * \mathrm{x}^{*} \mathrm{y}-\mathrm{y}^{\wedge} 3$; followed by plot3d(\{f(x,y)\},x=-0.5..1.5,y=-1.5..0.5, axes=boxed);
to draw the graph of $f(x, y)=x^{3}+3 x y-y^{3}$ over $-0.5 \leq x \leq 1.5,-1.5 \leq y \leq 0.5$; is it clear from this plot what critical point(s) f has over this range, and of what type?

2b. Modify the preceding command as follows; as usual, no carriage returns!

$$
\begin{gathered}
\operatorname{plot} 3 \mathrm{~d}(\{f(\mathrm{x}, \mathrm{y})\}, \mathrm{x}=-0.5 \ldots 1.5, \mathrm{y}=-1.5 \ldots 0.5, \\
\text { axes=boxed,orientation=}[45,90]) ;
\end{gathered}
$$

Now tell below what you can see regarding critical points. What was the effect of the extra option?

2c. To calculate $\nabla f(x, y)$ execute with (linalg) ; followed by

```
G:=grad(f(x,y), [x,y]);
```

and record the result below.

Now execute the command G[1] ; What does this command do?

2d. Because the critical points of f occur where $\nabla f(x, y)=\mathbf{0}$, execute

```
evalf(solve({G[1]=0,G[2]=0},{x,y}));
```

and record the result below. Are there really three different critical points? Do these points appear consistent with the graph in part b? To compute $f(3,2)$ execute $\mathbf{f}(3,2)$; Use this command to find the corresponding z-values for your critical points.

2e. To apply the second derivative test execute

```
fxx:=diff(f(x,y),x,x);
fyy:=diff(f(x,y),y,y);
fxy:=diff(f(x,y),x,y);
```

followed by
DSC: =fxx*fyy/fxy^2;

Execute the command subs ($\mathbf{x}=2, \mathrm{y}=3, \mathrm{DSC}$) ; to evaluate equation DSC at the point $(2,3)$. Use the equation DSC and the subs command to classify each of the critical points of g and record the results below.

3a. Define $\left.f(x, y)=\left(x^{2}-3 x y+3 y^{2}+4 x\right)\right)^{-2 x^{2}-\frac{1}{2} y^{2}}+\sin \left(\frac{x+y}{100}\right)(!)$ by executing

$$
\begin{gathered}
f:=(x, y)->\left(x^{\wedge} 2-3 * x * y+3 * y^{\wedge} 2+4 * x\right) * \exp \left(-2 * x^{\wedge} 2-y^{\wedge} 2 / 2\right) \\
+\sin ((x+y) / 100) ;
\end{gathered}
$$

Modify the last command in Question 2a to plot $f(x, y)$ over $-1.5 \leq x \leq 1.5$, $-3 \leq y \leq 3$. How many critical points does f seem to have over this range?

3b. Execute
with(plots); contourplot (\{f(x,y)\}, $x=-1.5 . .1 .5, y=-3 . .3$); and use your results so far to give below the rough cöordinates of each of the critical points and what type of critical point it is.

3c. Because the solve command cannot find the critical points for this function, execute

$$
\begin{gathered}
G:=\operatorname{grad}(\mathrm{f}(\mathrm{x}, \mathrm{y}),[\mathrm{x}, \mathrm{y}]) ; \\
\text { fsolve }(\{\mathrm{G}[1]=0, \mathrm{G}[2]=0\},\{\mathrm{x}=-0.5, \mathrm{y}=-0.1\}) ;
\end{gathered}
$$

to find the exact cöordinates of the critical point near $(-0.5,-0.1)$. Change the starting point for x and y in fsolve to find the other critical points as well, and record the results below.

