1a. One way to solve algebraic equations in Maple is to use the solve command. For example, we can find the zeros of $f(x)=x^{2}-3 x+2$ by executing the command $\mathrm{f}:=\mathbf{x}->\mathbf{x}^{\wedge} 2-3 * \mathbf{x + 2}$; followed by

$$
\text { solve }(f(x)=0, x) ;
$$

Record the result below.

1b. The solve command can be used on more complicated equations. Execute the command

$$
f:=x->x^{\wedge} 3-x^{\wedge} 2-2 * x+2 ;
$$

followed by solve $(\mathbf{f}(\mathbf{x})=0, \mathbf{x})$; to find the zeros of $f(x)=x^{3}-x^{2}-2 x+2$, and record the result below.

1c. Once again, Maple did not give a completely decimal answer. We can achieve a decimal answer by using the fsolve command. Execute the command

```
fsolve(f(x)=0,x);
```

and record the result below.

2a. Sometimes the solve command is unable to solve an equation algebraically; in this case we can try to solve it numerically, as mentioned in Example 2.7 of the text, using the fsolve command. As an example, execute the command

$$
\text { solve }\left(\cos (x)=x^{\wedge} 2-1, x\right) ;
$$

to try to solve the equation $\cos (x)=x^{2}-1$. (We will learn how to use Maple with trigonometric functions in general later.) Maple could not give an algebraic answer. Now try the command

$$
\text { fsolve }\left(\cos (x)=x^{\wedge} 2-1, x\right) ;
$$

Record the output below; did we get our answer?

2b. To find all the roots, we will begin with a graph to show approximately where the solution(s), if any, might be found. Execute the command

```
plot([cos(x), x^2-1],x=-5..5);
```

to plot each side of our equation as a function of x over the domain $-5 \leq x \leq 5$, and sketch the result on the axes at right. It seems from this graph that there are solutions at roughly $x= \pm 1$, and we can now use this information in the fsolve command.

2c. Execute the command

$$
\text { fsolve }\left(\cos (x)=x^{\wedge} 2-1, x=1\right) ;
$$

to find an accurate value of the solution of the equation near $x=1$, and likewise execute

$$
\text { fsolve }\left(\cos (x)=x^{\wedge} 2-1, x=-1\right) ;
$$

to do the same near $x=-1$; record the results below.

2d. Now change parts \mathbf{b} and \mathbf{c} so as to solve the equation $\cos x=x^{2}-5$ instead; remember to replace the 1 in $\mathbf{x}=1$ to an appropriate starting value suggested by your graph, and similarly for $\mathbf{x}=-1$. Record the solutions below.

3a. Maple can perform many other algebraic operations. For example, the expand command expands algebraic expressions; execute the command expand ($\left.(x+y)^{\wedge} 7\right)$; to expand the binomial expression $(x+y)^{7}$, and record the result below.

3b. Likewise the factor command factors expressions; execute the command

$$
\text { factor }\left(x^{\wedge} 4-3 * x^{\wedge} 2+2\right) ;
$$

to find the factors of $x^{4}-3 x^{2}+2$, and record the result below.

