1a. Recall from Assignment 17 that vector fields can be drawn in Maple. Since we need to name plots to combine them, we will name and display each plot as we define it. Execute

```
with(plots);
```

and then draw the vector field for $F(x, y)=\left\langle-1 . y^{2}\right\rangle$ by executing

$$
\text { vf:=fieldplot([-1, } \left.\left.y^{\wedge} 2\right], x=-2 . .2, y=-2 . .2\right): \text { display (vf) ; }
$$

Sketch the result on the axes at right.
1b. The flow lines for this vector field are solutions of the separable differential equation $\frac{d y}{d x}=-y^{2}$. To graph them, first execute

$$
\mathrm{G}:=\operatorname{int}\left(1 / \mathrm{y}^{\wedge} 2, \mathrm{y}\right) ;
$$

and

$$
\mathrm{H}:=\operatorname{int}(1, x) ;
$$

followed by the commands

gensoln: $=\mathrm{G}+\mathrm{H}+\mathrm{C}$;

```
f:=solve(gensoln,y);
```

Then execute

```
flow:=implicitplot({seq(gensoln, c=-3.. 3)},x=-2..2,y=-2..2) :
                display(flow);
```

to graph several flow lines simultaneously in red. Finally execute

```
display(vf,flow);
```

to draw the vector field and flow lines together, and sketch the flow lines on your graph above. Are the horizontal lines flow lines too?
2. To draw the gradient field corresponding to $f(x, y)=y \sin x$ execute
$\mathrm{f}:=\mathrm{y} * \sin (\mathrm{x})$; followed by

```
    gf:=gradplot(f,x=-2..2,y=-2..2,color=black,axes=boxed):
```

Next, to draw the level curves of $f(x, y)$ in red, execute

$$
\text { c1: =contourplot }(f, x=-2 . .2, y=-2 . .2, \text { color=red) }:
$$

followed by display (gf,c1); , and sketch the result on the axes at right. What general connection between level curves and the gradient vector field does this graph bring out?

3a. To study the line integral

$$
\oint_{C}\left(x^{2}-y\right) d x+y^{2} d y
$$

execute the commands
$\mathrm{m}:=(\mathrm{x}, \mathrm{y})->\mathrm{x}^{\wedge} 2-\mathrm{y} ; \mathrm{n}:=(\mathrm{x}, \mathrm{y})->\mathrm{y}^{\wedge} 2$; $\mathrm{F}:=(\mathrm{x}, \mathrm{y})->[\mathrm{m}(\mathrm{x}, \mathrm{y}), \mathrm{n}(\mathrm{x}, \mathrm{y})]$; to define $M(x, y)=x^{2}-y, N(x, y)=y^{2}$ and $\mathbf{F}(x, y)=\left\langle x^{2}-y, y^{2}\right\rangle$. Next draw the vector field for \mathbf{F} by executing

$$
\begin{gathered}
\text { vf:=fieldplot (} F(x, y), x=-1 \ldots 1, \\
y=-1 . .1): \text { display(vf); }
\end{gathered}
$$

Sketch the result on the axes at right. Now execute $r:=t->[\cos (t), \sin (t)] ;$ to parameterize the curve C by
$\mathbf{r}(t)=\langle\cos t, \sin t\rangle, 0 \leq t \leq 2 \pi$ and then execute

$$
\text { crv: }=p l o t([o p(r(t)), t=0 \ldots 2 * P i]):
$$

followed by display (vf, crv) ; Add the result to the axes at right.
3b. The commands $r(t)$ [1] ; and $r(t)$ [2] ; give the first and second components of $\mathbf{r}(t)$. (Try them). Thus

$$
\begin{gathered}
\text { with(linalg); assume (t,real); } \\
\text { dotprod(F(r(t) }[1], r(t)[2]), \operatorname{diff}(r(t), t)) ;
\end{gathered}
$$

gives $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)$, to which we can then apply int over $0 \leq t \leq 2 \pi$ to find $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$. Record the result of this below and tell whether Green's theorem gives the same result.

3c. Suppose the integration in part \mathbf{b} were taken over $\frac{3 \pi}{4} \leq t \leq \pi$ instead; would the graph lead you to expect a positive or negative result? Why? What result does Maple give? Repeat for $\frac{3 \pi}{2} \leq t \leq 2 \pi$.

