Assignment 32: Vector Fields in Space (14.6-8) Please provide a handwritten response.

Name \qquad

1a. To graph the surface S defined parametrically by $x=u \cos v, y=u \sin v, z=v$ over $0 \leq u \leq 10,0 \leq v \leq 4 \pi$ execute $r:=(u, v)->[u * \cos (v), u * \sin (v), v] ;$ followed by

```
plot3d(r(u,v),u=0..10,v=0..4*Pi,
    axes=boxed);
```

Sketch the result in the box at right and describe the surface.

1b. We want to study the flux integral

$\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)$ is the vector field $\langle y,-x, 1\rangle$. Execute
with(plots);
and then draw \mathbf{F} using the commands

$$
\begin{gathered}
F:=(x, y, z)->[y,-x, 1] ; \\
\text { fieldplot3d }(F(x, y, z), x=-10 \ldots 10, y=-10 \ldots 10, z=0 \ldots 10, \\
\text { axes=boxed, color=black); }
\end{gathered}
$$

Suppose $\mathbf{F}(x, y, z)$ were the velocity vector of the wind at the point (x, y, z) and you released a leaf into this wind; in your own words, where would it go?

1c. Taking the unit normal \mathbf{n} to have positive z-component, would we expect $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ to be positive, negative or zero? Why?

1d. To find a normal vector $\mathbf{r}_{u} \times \mathbf{r}_{v}$ execute

$$
\begin{aligned}
& \text { with(linalg); } \\
& \text { N: =crossprod (diff(r(u,v),u), diff(r(u,v),v)); }
\end{aligned}
$$

and explain how we know that this is the "correct" normal vector.

1e. To find the integrand $\mathbf{F} \cdot \mathbf{n d S}$ execute
assume (u, real) ; assume (v,real) ; Fn:=dotprod (F (op (r (u,v))),N) ; followed by
with(student); Doubleint(Fn,u=0..10,v=0..4*Pi); value(\%); and record the result below. Were your expectations borne out?

2a. To graph the region Q bounded by $z=x^{2}+y^{2}$ and $z=4$ using cylindrical cöordinates execute

unassign('r');

cylinderplot ($\left\{\left[r, t, r^{\wedge} 2\right],[r, t, 4]\right\}, r=0.2, t=0.2 * P i$, axes=boxed) ;
Sketch the result in the box at right. Next redefine F to be the vector field $\mathbf{F}(x, y, z)=\left\langle x^{3}, y^{3}-z, x y^{2}\right\rangle$.
Execute $\operatorname{div}:=\operatorname{diverge}(F(x, y, z),[x, y, z]) ;$ and crl:=curl $(F(x, y, z),[x, y, z])$; to find $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$, and record the results below.

2b. Now set up an iterated integral giving $\iiint_{Q} \nabla \cdot \mathbf{F}(x, y, z) d V$ and use Maple to evaluate it; record your answers below.

2c. By Stokes' Theorem, $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$ is the same whether S is the "bowl" or the "lid" of ∂Q. Parameterize the "bowl" using $\mathbf{r}(u, v)=\left\langle u \cos v, u \sin v, u^{2}\right\rangle, 0 \leq u \leq 2,0 \leq v \leq 2 \pi$ and use Question 1d to find $\mathbf{r}_{u} \times \mathbf{r}_{v}$. Execute
deff: =subs ($\mathrm{x}=\mathrm{r}(\mathrm{u}, \mathrm{v}$) [1], $\mathrm{y}=\mathrm{r}(\mathrm{u}, \mathrm{v})[2], \mathrm{z}=\mathrm{r}(\mathrm{u}, \mathrm{v})$ [3],op(crl)); and then find $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$ for the "bowl" by executing

Doubleint (dotprod (defF, N) , u=0. . 2 , v=0. . 2 *Pi) ; value (\%) ;
Now make slight modifications in the above to calculate $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$ for the "lid"; do the two results agree? What are they?

