Assignment 5: Limits, Part I (1.2) Please provide a handwritten response.

Name_____

1a. Many ordinary limits can be found in *Maple* using the limit command. For example, to evaluate the limit in Example 2.2, execute the command

$$limit((3*x+9)/(x^2-9),x=-3);$$

and record the result below; is your answer the same as that in the text?

1b. Example 2.4 suggests that $\lim_{x\to 0} \frac{\sin x}{x} = 1$; execute the command

$$limit(sin(x)/x,x=0);$$

and record the result below. Does Maple's result support the conjecture made in the text?

2a. To evaluate $\lim_{x\to 0} \frac{\tan x}{\sin x}$ graphically, first execute the command

$$f:=x->tan(x)/sin(x);$$

followed by

$$plot(f(x), x=-Pi/4..Pi/4);$$

and sketch the result on the axes at right. What

value for $\lim_{x\to 0} \frac{\tan x}{\sin x}$ does this graph suggest?

2b. To evaluate $\lim_{x\to 0} \frac{\tan x}{\sin x}$ numerically, execute the commands

f(0.1);, f(0.01);, etc. and complete the table at right.

What value for $\lim_{x\to 0} \frac{\tan x}{\sin x}$ does the table suggest?

x	f(x)
0.1	
0.01	
0.001	
-0.1	
-0.01	
-0.001	

2c. Finally, execute the command

$$limit(f(x), x=0);$$

and record the result below; did all three approaches lead you to the same conclusion? **3a.** The example $\lim_{x\to 0} \frac{\cos x - 1}{x^2}$ shows that round–off error can cause very misleading computed results. Execute the command

f:=x->(cos	(\mathbf{x})	-1)	/x^2;
\		/	/	/ /

to define $f(x) = \frac{\cos x - 1}{x^2}$ and then use this *Maple*

function to complete the table at right. (Be sure to

x	f(x)
0.1	
0.0001	
0.0000001	
0.00000001	
0.000000001	

count the zeros!) Then execute the command limit(f(x), x=0); and record the result below.

3b. Do you think that all of *Maple*'s results in part **a** are correct? If not, then which one(s) do you think are wrong, and why?

4a. To find one—sided limits we give the direction in the limit command; inserting left gives the limit from the left, and inserting right gives the limit from the right.

For example, the function $g(x) = \frac{x}{|x|}$ would be written in *Maple* using the **abs** function

by executing the following command:

$$g:=x->x/abs(x);$$

Next execute the command

$$plot(g(x), x=-5...5);$$

and sketch the result on the axes at right. Now execute the command

$$limit(g(x),x=0,left);$$

to find $\lim_{x \to \infty} g(x)$, and record the result below.

4b. Now execute the command limit(g(x), x=0, right); to find $\lim_{x\to 0^+} g(x)$, and record the result below.

4c. Finally execute limit(g(x), x=0); would we have expected this result? Why?