Assignment 6: Limits, Part II (1.5) Please provide a handwritten response.

Name

1a. The limit command can be used even when the answer is $\pm \infty$. The $\lim_{x\to 0} \frac{1}{x}$ does not exist, it is nonetheless true that $\lim_{x\to 0^+} \frac{1}{x} = \infty$ and that $\lim_{x\to 0^-} \frac{1}{x} = -\infty$. Execute the command limit (1/x,x=0,right); to find $\lim_{x\to 0^+} \frac{1}{x}$ and record the result below. Is *Maple*'s result correct?

1b. Likewise execute the command limit(1/x, x=0, left); to find $\lim_{x\to 0^-} \frac{1}{x}$ and record the result below. Is *Maple*'s result again correct?

2a. To evaluate
$$\lim_{x\to 2^+} \frac{4-x}{(x-2)^2}$$
 first execute the

command

$$f:=x->(4-x)/(x-2)^2;$$

and then the command

$$plot(f(x), x=1..3, 0..14000);$$

to see the graph near x = 2. Sketch the result on the axes at right.

2b. Based on this graph, what do you think is the value of $\lim_{x\to 2^+} \frac{4-x}{(x-2)^2}$?

2c. Based on this graph, do you think that $\lim_{x\to 2} \frac{4-x}{(x-2)^2}$ exists? If so, then what is its value?

2d. Execute the command limit (f(x), x=2, right); to find $\lim_{x\to 2^+} \frac{4-x}{(x-2)^2}$, and record the result below. Does *Maple*'s result appear to be correct?

1

3. The limit command can also be used when $x \to \infty$ or $x \to -\infty$; in this case we refer to ∞ as infinity. For example, execute the command

$$limit((5*x-7)/(4*x+3),x=infinity);$$

and record the result below. Is this answer correct?

4a. To calculate the $\lim_{x \to -\infty} \frac{x + \cos x}{3x + 2}$ first execute the command

$$g:=x->(x+cos(x))/(3*x+2);$$

and then the command

to see how the graph looks when *x* is large and negative. Sketch the result on the axes at right.

4b. Based on this graph, how accurately can you tell the value of $\lim_{x \to -\infty} \frac{x + \cos x}{3x + 2}$? What do you think it is?

4c. Zoom out further by executing

Sketch the result on the axes at right. Can you now be more specific about the value of

$$\lim_{x \to -\infty} \frac{x + \cos x}{3x + 2}$$
? Why was the graph in part **a** so much smoother than this one?

4d. Try executing limit(g(x), x=-infinity); to find our limit; is the result surprising?