1a. The limit command can be used even when the answer is $\pm \infty$. The $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist, it is nonetheless true that $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ and that $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$. Execute the command $\operatorname{limit}(1 / x, x=0, r i g h t) ;$ to find $\lim _{x \rightarrow 0^{+}} \frac{1}{x}$ and record the result below. Is Maple's result correct?

1b. Likewise execute the command $\operatorname{limit}(1 / x, x=0,1$ eft $)$; to find $\lim _{x \rightarrow 0^{-}} \frac{1}{x}$ and record the result below. Is Maple's result again correct?

2a. To evaluate $\lim _{x \rightarrow 2^{+}} \frac{4-x}{(x-2)^{2}}$ first execute the command

$$
f:=x->(4-x) /(x-2)^{\wedge} 2 ;
$$

and then the command

$$
\operatorname{plot}(f(x), x=1 \ldots 3,0 \ldots 14000) ;
$$

to see the graph near $x=2$. Sketch the result on the axes at right.

2b. Based on this graph, what do you think is
 the value of $\lim _{x \rightarrow 2^{+}} \frac{4-x}{(x-2)^{2}}$?

2c. Based on this graph, do you think that $\lim _{x \rightarrow 2} \frac{4-x}{(x-2)^{2}}$ exists? If so, then what is its value?

2d. Execute the command limit $(\mathbf{f}(\mathbf{x}), \mathbf{x}=\mathbf{2}$, right $)$; to find $\lim _{x \rightarrow 2^{+}} \frac{4-x}{(x-2)^{2}}$, and record the result below. Does Maple's result appear to be correct?
3. The limit command can also be used when $x \rightarrow \infty$ or $x \rightarrow-\infty$; in this case we refer to ∞ as infinity. For example, execute the command

```
limit((5*x-7)/(4*x+3),x=infinity);
```

and record the result below. Is this answer correct?

4a. To calculate the $\lim _{x \rightarrow-\infty} \frac{x+\cos x}{3 x+2}$ first execute the command

```
\(g:=x->(x+\cos (x)) /(3 * x+2) ;\)
```

and then the command

```
plot(g(x), x=-10..0, 0..1,
    discont=true);
```

to see how the graph looks when x is large and
 negative. Sketch the result on the axes at right.

4b. Based on this graph, how accurately can you tell the value of $\lim _{x \rightarrow-\infty} \frac{x+\cos x}{3 x+2}$? What do you think it is?

4c. Zoom out further by executing

$$
\begin{gathered}
\text { plot (g (x) , x=-100..10, 0..1, } \\
\text { discont=true); }
\end{gathered}
$$

Sketch the result on the axes at right. Can you now be more specific about the value of $\lim _{x \rightarrow-\infty} \frac{x+\cos x}{3 x+2}$? Why was the graph in part a so much smoother than this one?

4d. Try executing limit ($\mathbf{g}(\mathbf{x}), \mathbf{x}=-$ infinity) ; to find our limit; is the result surprising?

