Assignment 7: Limits, Part III (1.7) Please provide a handwritten response.

Name_____

1a. The function
$$f(x) = \frac{(x^3 + 4)^2 - x^6}{x^3}$$

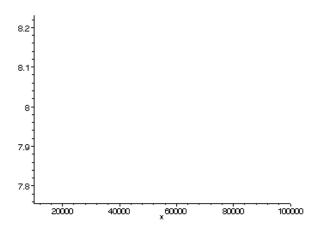
illustrates the dangers of loss of significance errors. Execute the command

$$f:=x->((x^3+4)^2-x^6)/x^3;$$

to define f and then execute the command

$$plot(f(x), x=10000..100000);$$

to produce a graph. Sketch the result on the axes at right. Does this graph give any indication of the value of $\lim_{x\to\infty} f(x)$? Explain.



1b. Next, execute the commands **evalf(f(1000))**;, **evalf(f(10000))**;, etc. to complete the table at right.

1c. Now execute the command

and record the result below. Is it likely that all of these results are correct? Which ones are not?

x	f(x)
1000	
10000	
100000	
1000000	
10000000	

1d. Since f can be rewritten as $f(x) = \frac{8x^3 + 16}{x^3}$; execute the command

$$f:=x->(8*x^3+16)/x^3;$$

and then complete the table at right with this new (but equivalent) formula for f. Do you think these new results are more trustworthy?

х	f(x)
1000	
10000	
100000	
1000000	
10000000	

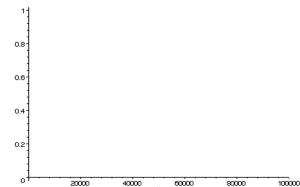
2. Scientific notation is used to write very large or very small numbers in a convenient form; for example, .00000000000002673 would be written in scientific notation as 2.673×10^{-12} . In *Maple* execute the command 2.673×10^{-12}); and record the result below.

3a. To find a value of
$$x$$
 for which loss of significance occurs in $\lim_{x\to\infty} \sqrt{x} \left(\sqrt{x+4} - \sqrt{x+2} \right)$, define $g(x) = \sqrt{x} \left(\sqrt{x+4} - \sqrt{x+2} \right)$ by executing the command

Then execute the command

$$plot(g(x), x=0..100000);$$

and sketch the result on the axes at right. Based on this graph, what value would you give for $\lim_{x\to\infty} \sqrt{x} \left(\sqrt{x+4} - \sqrt{x+2} \right)$?



3b. Next, execute the commands $g(1.*10^8)$;, $g(1.*10^9)$;, etc. to complete the table at right. Where does loss of significance occur?

3c. We can rewrite g to avoid loss of significance; you can check that multiplying g(x) by $\frac{\sqrt{x+4} + \sqrt{x+2}}{\sqrt{x+4} + \sqrt{x+2}}$ gives $\frac{2\sqrt{x}}{\sqrt{x+4} + \sqrt{x+2}}$. Enter the command

х	g(x)
1×10^8	
1×10 ⁹	
1×10 ¹⁰	
1×10 ¹¹	
1×10^{12}	

$$g:=x->2*sqrt(x)/(sqrt(x+4)+sqrt(x+2));$$

Then complete the table at right just as in part **b**. Do these results seem more reliable?

3d. Finally, execute the command

and record the result below. Does it seem to be correct?

3e. Repeat parts **a** and **b** for $g(x) = x(\sqrt{x^3 + 8} - x^{3/2})$. Is there a loss of significance for this function?

х	g(x)
1×10^8	
1×10^9	
1×10^{10}	
1×10 ¹¹	
1×10^{12}	