Assignment 8: Derivatives of Explicit Functions (2.1-9) Name

 Please provide a handwritten response.1a. The derivative of the function $f(x)=3 x^{3}+2 x-1$ is $f^{\prime}(x)=9 x^{2}+2$. To carry out this calculation in Maple, first execute the command

$$
\mathrm{f}:=\mathbf{x}->3 * \mathbf{x}^{\wedge} 3+2 * \mathbf{x}-1 ;
$$

 find the derivative correctly?
$\mathbf{1 b}$. The slope $m_{\text {tan }}$ of the line tangent to the graph of f at, say, $x=1$ is given by $f^{\prime}(1)$; execute subs ($\mathbf{x}=\mathbf{1}, \mathbf{f 1}$) ; to see that $m_{\text {tan }}=11$ in this case. Also execute $\mathbf{f}(1)$; to see that $y=4$ when $x=1$. The equation of our tangent line is therefore

$$
\begin{aligned}
y=11(x-1)+4 & =11 x-7 ; \text { execute } \\
\mathrm{t} & :=\mathbf{x}->11 * \mathbf{x}-7
\end{aligned}
$$

followed by

$$
\text { plot }([f(x), t(x)], x=-1 \ldots 1.5) ;
$$

to graph both f and the tangent line together. Sketch the result on the axes at right. Does the tangent line really look as though its slope is 11 ? Why?

2a. To find the second derivative $f^{\prime \prime}$ of f, execute the command $\operatorname{diff}(\mathbf{f}(\mathbf{x}), \mathbf{x}, \mathbf{x})$; Record the result below; is it correct?

2b. Next execute the commands $g:=\mathbf{x}->\sin (2 * x /(x+1))$; and $\operatorname{diff}(\mathrm{g}(\mathbf{x}), \mathbf{x}, \mathbf{x}) ;$, and record the result below; would you care to work this out by hand?!

3a. Execute $\mathbf{f}:=\mathbf{x}->\mathbf{x}^{\wedge} 2 * \exp (\sin (\mathbf{x}))$; to define the function $f(x)=x^{2} e^{\sin x}$,
 presented in this chapter did Maple need to find $f^{\prime}(x)$?

3b. Execute the command

$$
\text { plot }(f 1, x=-4 . .4) ;
$$

to plot the derivative $f^{\prime}(x)$ over $-4 \leq x \leq 4$; sketch the result on the axes at right.

3c. According to the definition of derivative, if h is a small fixed number, then the
difference quotient $\frac{f(x+h)-f(x)}{h}$ should be close to $f^{\prime}(x)$, and so their graphs should
 lie close together. For the moment let's choose $h=0.5$; execute

$$
r:=(f(x+0.5)-f(x)) / 0.5 ;
$$

to define $r(x)$ as the quotient

$$
\begin{aligned}
& \frac{f(x+0.5)-f(x)}{0.5} \text {, and then execute } \\
& \operatorname{plot}([f 1, \mathrm{r}], \mathbf{x}=-4 \ldots 4) ;
\end{aligned}
$$

to graph both $f^{\prime}(x)$ and $r(x)$ over $-4 \leq x \leq 4$ on the same axes. Sketch the result on the axes at right, using a dotted curve for the graph of $r(x)$.

3d. Change the 0.5 to 0.4 in the definition of $r(x)$ in part \mathbf{c}, and execute the commands in parts \mathbf{b} and \mathbf{c} again. Are the two graphs closer? Can you still tell them apart?

3e. Experiment with smaller and smaller values of h until the graphs of $f^{\prime}(x)$ and $r(x)$ over $-4 \leq x \leq 4$ become indistinguishable on your computer screen. How small does h have to be for this to happen?

