## Assignment 9: Implicit Differentiation (2.8) Please provide a handwritten response.

Name $\qquad$

1a. The implicit function $x^{2} y^{2}-2 x=4-4 y$ can be entered into Maple by executing

$$
\text { eqn }:=x^{\wedge} 2 * y^{\wedge} 2-2 * x=4-4 * y ;
$$

Record the result below. (Be careful! The single equal sign $=$ is used within the equation itself, whereas the colon equal sign := is used to assign the label eqn to the entire equation.)

1b. We can take the derivative of the equation with respect to $x$ and solve for $y^{\prime}(x)$, by executing the command $\mathbf{y} \mathbf{1}:=$ implicitdiff $(e q n, y, x) ;$. Record the result below.
2. Maple can draw the graph of our equation, but first we must provide some extra capability by loading in a "package". Execute the command

```
with(plots);
```

to load in the plots package. Now execute

```
implicitplot(eqn,x=-5..5,
    y=-6..2);
```

and sketch the result on the axes.


3a. Using Maple, however, we are free to use any value of $x$ we wish to draw a tangent line, for example $x=2.235$. Execute the command

```
subs(x=2.235,eqn);
```

and record the result below. How was eqn changed by the substitution?

Now execute the command
solve (\%,y);
and record the result below. How many points on this curve satisfy $x=2.235$ ? Mark them with dots on the curve you drew in Question 2, and label their cöordinates clearly.

3b. One of the $y$-values you found in part a is -1.76271 ; based on your graph in Question 2, would you expect $y^{\prime}$ to be positive or negative at the point (2.235, -1.76271)? About how large would you expect $y^{\prime}$ to be? Why?

3c. Execute the command

```
subs(x=2.235,y=-1.76271,y1);
```

to replace $x$ and $y$ in $\mathbf{y 1}$ with the appropriate values, which will give the exact value of $y^{\prime}$ at the point ( $2.235,1.76271$ ). Record the result below.

3d. Since we found that $y^{\prime}=0.873528$ in part c, an equation of the tangent line to our curve at the point $(2.235,-1.76271)$ is given by $y=0.873528(x-2.235)-1.76271$; execute
$\mathrm{t}:=0.873528$ * $\mathbf{x}-2.235$ ) -1.76271;
and then graph the tangent line by executing
plot(t,x=-2.5..5);

3e. Execute


```
curve:=implicitplot(eqn,x=-
    5..5,y=-6..2):
    tanline:=plot(t,x=-2.5..5):display(curve,tanline);
```

and sketch the result on the axes above. (We must first name each graph before we can display them.)

