Percentage change approximation

Suppose we know that $Z=A B$. If A changes by ΔA and B changes by ΔB, what will be the change in Z ? What about percentage changes?

We can start by noting that $Z+\Delta Z=(A+\Delta A) \cdot(B+\Delta B)$. Multiplying out the terms on the right, we have $Z+\Delta Z=A B+B \Delta A+A \Delta B+\Delta A \Delta B$. But since $Z=A B$, this simplifies to $\Delta Z=B \Delta A+A \Delta B+$ $\Delta A \Delta B$. For small changes, $\Delta A \Delta B$ will be an order of magnitude smaller and so we have as an approximation, $\Delta Z \approx B \Delta A+A \Delta B$. To convert this to percentage changes, we can divide by Z on the left side and the equal term $A B$ on the right to obtain $\frac{\Delta Z}{Z} \approx \frac{B \Delta A}{A B}+\frac{A \Delta B}{A B}=\frac{\Delta A}{A}+\frac{\Delta B}{B}$. In words, the percentage change in the product of two variables is approximately equal to the sum of their component percentage changes.

What if $Z=A / C$? Does a similar relationship hold? As before, let A change by ΔA and C change by ΔC to obtain $Z+\Delta Z=\frac{A+\Delta A}{C+\Delta C}$. To obtain percentage changes, divide the left side by Z and the right side by the equal amount A / C (equivalent to multiplying by C / A). Then $\frac{Z+\Delta Z}{Z}=1+\frac{\Delta Z}{Z}=$ $\frac{A+\Delta A}{C+\Delta C} \cdot \frac{C}{A}$. Next we will subtract 1 from each side, but on the right side this 1 will take the form $\frac{A(C+\Delta C)}{A(C+\Delta C)}$ to get a common denominator. This leaves us with $\frac{\Delta Z}{Z}=\frac{A C+C \Delta A-A C-A \Delta C}{A(C+\Delta C)}$. The first and third terms in the numerator cancel, and if we multiply the last term by $\mathrm{C} / \mathrm{C}=1$, we can then factor out the common term $\frac{C}{C+\Delta C}$ to obtain $\frac{\Delta Z}{Z}=\frac{C}{C+\Delta C}\left[\frac{\Delta A}{A}-\frac{\Delta C}{C}\right]$.

For small values of $\Delta C, \frac{C}{C+\Delta C}$ is approximately equal to 1 , which gives us our final result: if $Z=A / C$, then $\frac{\Delta Z}{Z} \approx \frac{\Delta A}{A}-\frac{\Delta C}{C}$.
In the text example, real income (Z) is equal to nominal income (A) divided by the price index (C). Consequently, for small changes in the price level, the approximation applies: the percentage change in real income \approx the percentage change in nominal income minus the percentage change in the price level.

There is a shortcut to these relationships as well: Note that for any Z, the differential of the natural logarithm of Z is $d(\ln Z)=d Z / Z$. At the limit as $d Z$ approaches zero, the term on the right is simply the point-estimate of the percentage change in Z —an approximation of $\frac{\Delta Z}{Z}$. As before suppose that $Z=$ $A B$. Taking the natural \log of both sides, we have $\ln Z=\ln A+\ln B$. Differentiating, we obtain $\mathrm{d} Z / Z=$ $\mathrm{d} A / A+\mathrm{d} B / B$ as before. Likewise, if $Z=A / C$, then $\ln Z=\ln A-\ln C$ so that $\mathrm{d}(\ln Z)=\mathrm{d} Z / Z=\mathrm{d} A / A-\mathrm{d} C / C$.

