Chapter 12
 SOUND

Problems

1. Strategy Use Eqs. (11-6) and (12-3).

Solution Find the wavelength of the ultrasonic waves.

$$
\lambda=\frac{v}{f} \text { and } v=v_{0} \sqrt{\frac{T}{T_{0}}} \text {, so } \lambda=\frac{v}{f}=\frac{v_{0}}{f} \sqrt{\frac{T}{T_{0}}}=\frac{331 \mathrm{~m} / \mathrm{s}}{1.0 \times 10^{5} \mathrm{~Hz}} \sqrt{\frac{273.15 \mathrm{~K}+15 \mathrm{~K}}{273.15}}=3.4 \mathrm{~mm} .
$$

9. Strategy Replace each quantity with its SI units and simplify. In (a), use Eq. (12-1). In (b), analyze each combination of ρ and B.

Solution

(a) Show that Eq. (12-1) gives the speed of sound in m / s.

$$
v=\sqrt{\frac{B}{\rho}}, \text { so } \sqrt{\frac{\mathrm{N} / \mathrm{m}^{2}}{\mathrm{~kg} / \mathrm{m}^{3}}}=\sqrt{\frac{\left(\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right) / \mathrm{m}^{2}}{\mathrm{~kg} / \mathrm{m}^{3}}}=\sqrt{\frac{1 /\left(\mathrm{m} \cdot \mathrm{~s}^{2}\right)}{1 / \mathrm{m}^{3}}}=\sqrt{\frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}}=\mathrm{m} / \mathrm{s}
$$

(b) Show that no other combination of B and ρ of than $\sqrt{B / \rho}$ can give dimensions of speed.
$\frac{\rho}{B}$ has units $\frac{\mathrm{kg}}{\mathrm{m}^{3}} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~N}}=\frac{\mathrm{kg}}{\mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}}=\frac{\mathrm{s}^{2}}{\mathrm{~m}^{2}} ; \quad \rho B$ has units $\frac{\mathrm{kg}}{\mathrm{m}^{3}} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=\frac{\mathrm{kg}^{2} \cdot \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~m}^{5}}=\frac{\mathrm{kg}^{2}}{\mathrm{~m}^{4} \cdot \mathrm{~s}^{2}}$; and
$\frac{1}{\rho B}$ has units $\frac{\mathrm{m}^{4} \cdot \mathrm{~s}^{2}}{\mathrm{~kg}^{2}}$.
No power of the above three combinations (other than $-1 / 2$, which gives $\sqrt{B / \rho}$) will give the dimensions of speed; therefore, Eq. (12-1) must be correct except for the possibility of a dimensionless constant.
23. Strategy $f_{n}=n v /(2 L)$ for a pipe open at both ends.

Solution Find the length of the organ pipe.

$$
f_{1}=\frac{v}{2 L}, \text { so } L=\frac{v}{2 f_{1}}=\frac{331 \mathrm{~m} / \mathrm{s}}{2(382 \mathrm{~Hz})}=43.3 \mathrm{~cm} .
$$

37. Strategy Since the observer is moving and the source is stationary, use Eq. (12-13).

Solution As Mandy walks toward one siren (1), $v_{0}<0$. As she recedes from the other siren (2), $v_{0}>0$.
Find the beat frequency heard by Mandy.

$$
f_{1}-f_{2}=\left(1+\frac{\left|v_{\mathrm{o}}\right|}{v}\right) f_{\mathrm{s}}-\left(1-\frac{\left|v_{\mathrm{o}}\right|}{v}\right) f_{\mathrm{s}}=\frac{2\left|v_{\mathrm{o}}\right| f_{\mathrm{s}}}{v}=\frac{2(1.56 \mathrm{~m} / \mathrm{s})(698 \mathrm{~Hz})}{343 \mathrm{~m} / \mathrm{s}}=6.35 \mathrm{~Hz}
$$

47. Strategy The distance traveled (round trip) by the sound wave in time Δt is $v \Delta t$. The depth d of the lake is half this distance.

Solution Find the depth of the lake.
$d=\frac{1}{2} v \Delta t=\frac{1}{2}(0.540 \mathrm{~s})(1493 \mathrm{~m} / \mathrm{s})=403 \mathrm{~m}$
61. Strategy The distance traveled (round trip) by the sound pulse in time Δt is $v \Delta t$. The distance to the ocean floor is half this distance.

Solution Find the elapsed time between an emitted pulse and the return of its echo at the correct depth d. $2 d=v \Delta t$, so $\Delta t=\frac{2 d}{v}=\frac{2(40.0 \text { fathoms })\left(1.83 \frac{\mathrm{~m}}{\text { fathom }}\right)}{1533 \mathrm{~m} / \mathrm{s}}=0.0955 \mathrm{~s}$.

